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Abstract 

Euclid presented his classic approach to geometry as a succession of propositions. Here, an approach 
to geometry education today is offered through a sequence of quite different propositions. They suggest 
focal points of a philosophy of computer-supported collaborative learning that emerged from research 
on teaching and learning dynamic geometry. In particular, this chapter proposes that dynamic 
geometry can provide a model of dependencies in interconnected systems, preparing students to 
understand mathematical structure of interactions among human and natural systems in the new age 
of the Anthropocene.  

By providing an illustrative case of educating for the Anthropocene, this chapter suggests that 
dynamic geometry as taught in the reviewed research project can provide student thinking with a model of 
dependencies in interconnected systems. Review of this research into the development of mathematical 
cognition by student groups learning dynamic geometry in online teams elaborates a theory of learning 
and thinking as “group cognition.” This conception of group cognition seems appropriate for designing 
the teaching and learning of mathematics in the Anthropocene. 
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Proposition α: The Anthropocene 

Living in the Anthropocene requires new ways of understanding interactions among countless actors: 
including human, animal, mineral, technological, computational and Earth-system agents. 

According to many scientists, the world changed significantly with the advent of the Anthropocene 
epoch about 70 years ago. The atomic bomb, the population explosion, exponential growth of fossil-fuel 
usage and CO2 emissions, urban/suburban sprawl and many other socio-economic transformations led to a 
rapidly increasing influence of human behavior on worldwide natural systems. Our public knowledge 
systems now have to catch up with these changes so we can comprehend and moderate the new and 
potentially dangerous processes. The educational system must develop revised approaches to 
understanding and teaching about this new world. This will require new conceptualizations of knowledge 
and new approaches to education. 

Referring to the present geological epoch as the “Anthropocene” denotes the essential influence of 
human (anthropological) behavior, industry and consumption upon major systems of the biosphere, 
including the land, oceans, vegetation, animals, sea life, insects, viruses and climate (Crutzen & Stoermer, 
2000; Steffen et al., 2015; Wallace-Wells, 2020). The current coupling and interpenetration of cultural and 
natural evolution (Donald, 1991; Donges et al., 2017) requires more than simple mechanistic laws and 
equations of Galileo and Newton to comprehend, anticipate and influence; it involves thinking in terms of 
probabilistic formulations of subtle interdependencies (Thomas, Williams & Zalasiewicz, 2020; Wiener, 
1950). Teaching and learning mathematics in our age should provide cognitive tools and perspectives for 
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humanity to survive in this complex setting of climate change and potential extinction (Coles, 2017; 
Gomby, 2022). 

In response to a major shift in reality, we need to reconceptualize scientific analysis, including its 
mathematical and cognitive underpinnings (Griscom et al., 2017; Steffen & Morgan, 2021). Just as 
physics has had to consider stochastic and non-linear processes, relativistic and quantum calculations, 
feedback and observer influences, field and gauge theories or conceptualizations like entropy, strings, 
entanglement, dark energy and alternative universes, our understanding of the everyday world 
(environment, biosphere, Gaia) needs to see how things are tied together in surprising ways with 
exponential growth, feedback loops and tipping points (Kemp et al., 2022; Steffen, 2018). New 
approaches to teaching and learning mathematics are required here as much as in particle physics (Boylan 
& Coles, 2017; Mikulan & Sinclair, 2017). This chapter reports on a research project to develop a 
computer-supported collaborative-learning approach to teaching dynamic geometry as a way of 
conceptualizing dependencies among objects as a foundation for comprehending interconnections. 

Proposition β: Dynamic Geometry 

Teaching and learning relevant mathematical thinking may be promoted by student exploration of 
dynamic geometry. This interactive application allows students to investigate the structure and 
interrelationships of well-defined geometric elements and complexes. This can provide a basis for 
understanding the complexities of the intertwined Anthropocene world. 

Dynamic geometry is a computer-based form of mathematics grounded on Euclidean geometry and 
implemented in popular applications such as GeoGebra and Geometer’s Sketchbook (Sinclair, 2008). In 
Figure 1, an equilateral triangle is constructed in dynamic geometry with side lengths dependent upon 
circles with equal radii, as specified in Euclid’s first proposition. Then an interior equilateral triangle is 
constructed with vertices equal distances from the vertices of the exterior triangle. Dragging around 
points of each triangle suggests that the two triangles both remain equilateral regardless of the positions of 
the specified points. 

Proposition γ: Dragging Shapes 

Dynamic geometry visualizes the generalization implicit in Euclidean geometry and the dependencies 
that underlie it by allowing points, lines and figures to be interactively dragged to alternative possible 
locations. Dependencies that persist despite such dragging reveal underlying causal relationships. They 
suggest which relationships still hold when locations are generalized from illustrated positions of 
points to other possible positions. 

 
Figure 1. Inscribed equilateral triangles constructed in GeoGebra and dragged to different positions. 
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While the Greek proofs stress deduction, they implicitly assume the generality of their constructions. 
Digital geometry, by contrast, allows points to be moved around, rearranging related elements in order to 
maintain dependencies defined by the construction process. This allows a viewer to observe some of the 
generality of the construction, including effects (constraints) of the dependencies. The relevant 
dependencies are established by Euclidean constructions when carried out in dynamic geometry. 

The implication of Euclid’s (300 BCE) text in Figure 2 is that this construction works for any finite 
straight line and that the construction using the specific line AB in the accompanying diagram is an 
example of how to do the construction for any similar lines located elsewhere. If this construction is 
carried out in dynamic geometry as in Figure 1, then one can drag point A, point B and/or line AB to 
arbitrary other positions and the constructed triangle ABC will still be equilateral. Such dragging, which 
is typical of dynamic geometry, displays visually that the construction is valid for many lines AB – all 
those tested with different locations for end points A and B. It also displays the dependencies imposed by 
the construction that constrain the triangle to be equilateral: namely the two circles of radius AB, which 
ensure that the lengths of sides BC and AC are each equal to the length of line segment AB, and therefore 
the triangle’s three sides are all equal to each other. 

The same applies to Euclid’s propositions which are proofs rather than constructions. They are 
presented as examples of how to conduct proofs for specific diagrams at specific locations, but are 
intended to be generalized to any diagrams with the same features (Netz, 1999). It is because Euclid’s 
constructions and proofs are designed to be generalizable to points, triangles, etc. located anywhere, that 
his static diagrams translate directly to dynamic-geometry constructions. They are tacitly built around the 
application of dependencies, such as the length of a line segment being dependent upon a circle of certain 
radius. These dependencies underlie the proofs, for which diagrams are constructed following Euclid’s 
propositions. An understanding of dynamic geometry in terms of the design of dependencies provides 
insight into the design of geometric figures – insight that is not always fostered by a traditional 
presentation of deductive proof. 

Proposition δ: Constructing Figures 

Construction of dynamic-geometry figures by students can offer them insightful understanding of the 
elements of associated proof structures. Active construction provides immediate feedback on 
consequences of design decisions. By actively building up figures, students become aware of the 
sequentiality and interdependency of constructions related to propositions.  

Becoming a skilled constructor of dynamic-geometry figures involves paying close attention to 
actions that establish dependencies among objects, such as dragging points to make sure that the software 
has defined those points at intended line intersections. A student’s growing explicit concern for 
establishing and checking effective dependency relationships gradually becomes habitual, a matter of 
assumed behavior that is henceforth carried out tacitly. 

Viewing, understanding and manipulating constructions in terms of their interdependencies provides 
students with insight into why associated proofs work the way they do (deVilliers, 2004). It is because 

On a given finite straight line to construct an equilateral triangle. 
Let AB be the given finite straight line.  
…. 
Therefore, the triangle ABC is equilateral; and it has been constructed on the given finite straight line 
AB.  
Being what it was required to do. 

 

Figure 2. Introduction and conclusion from Euclid’s first proposition. 
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triangle ABC’s sides were constructed by radii equal in length to segment AB that the three sides are 
always necessarily of equal length. The construction of the internal triangle DEF in Figure 1 is more 
complicated and the proof of the equality of its sides is correspondingly longer, but similarly related to 
constructed dependencies. 

Proposition ε: Dependencies among Objects 

Geometry can be viewed as the systematic study of dependencies that are designed into or discovered 
within complexes of simple objects like points, lines, angles, circles, polygons. The dependencies 
inherent in dynamic-geometry constructions correspond to characteristics and relationships of figures 
referenced in their corresponding proofs. The establishment and preservation of dependencies is 
fundamental to the logic of Euclid’s propositions and to the mechanisms of dynamic geometry’s 
software. 

Euclid’s propositions talk about points and lines being placed in the plane, but do not explicitly 
discuss the dependencies that are implicitly designed into the constructions. The dynamic-geometry 
software, on the other hand, must keep systematic track of these dependencies behind the scenes. When a 
point is moved, the software checks for any dependencies involving that point, and moves other points in 
ways that maintain the dependencies. The dynamic-geometry display thereby provides a model of a 
geometric structure that obeys sets of dependencies among its elements. 

Students exploring dynamic geometry can learn to think about systems of interdependent elements, 
some of which are completely dependent upon the positions of others, some are constrained (e.g., to move 
only in a fixed circle around another point) and some are simply free to move anywhere (Hölzl, Healy, 
Hoyles & Noss, 1994; Jones, 1996). This kind of systems thinking can later be applied to evolutionary 
models of nature, such as a model of animal populations dependent upon climate, vegetation and 
interactions among species.  

Proposition ζ: Texts Referencing Visualizations 

Since the Greek geometers, constructions and their proofs have been communicated among 
mathematicians and math students through carefully structured texts that reference associated 
diagrams. Understanding geometry involves reading/writing the specialized language and being aware 
of previous propositions. Mathematical cognition takes place in such inscriptions: sequential 
descriptive statements, illustrative figures and specialized symbol systems. 

Geometric cognition is embodied in inscriptions – texts coordinated with labelled constructions 
(such as Figures 1 and 2 above). These are knowledge-building artifacts in the visible material world. 
Their meaning is shared and based on intersubjective language and cultural traditions. The meaning must 
be understood and interpreted by trained and capable individuals. Students have to learn how to make 
careful constructions, but also how to discuss these constructions and their designed dependencies with 
other people in the precise language of mathematics. These are skills requiring deep understanding and 
personal engagement, not just rote memorization of terminology and facts. 

There is a subtle combination of individual, small-group and community cognition at work in the 
teaching and learning of mathematics. The knowledge of how to construct an equilateral triangle is 
expressed in an inscription of Euclid’s first proposition. This inscription may be included in a geometry 
textbook or in a dynamic-geometry exercise. Its meaning is defined by the shared understanding of the 
mathematical community, including textbook authors, schoolteachers and – to a lesser extent – beginning 
geometry students. 

 If a small group of students explores one of Euclid’s propositions, the group cognition consists of 
the shared meaning in the group discourse – issuing from the multiple perspectives and individual 
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linguistic abilities to understand and contribute to the group interaction. The group processes of 
collaborative learning involve individual capacities to participate effectively. However, while individual 
cognition is required for group cognition, the group level cannot be reduced to a sum of individual 
contributions. The collaborative level includes references, anticipations, goals, agreements, decisions and 
history of the group as such. Individuals in the group are typically not consciously aware of most of these 
factors and would not be subject to them if not participating in the group interaction. 

Proposition η: Mediated Cognition 

In general, high-level cognitive functions of individual human minds are developed first through 
small-group interactions and may be subsequently further developed as individual skills. Intellectual 
skills are mediated by language and tools. Mathematical cognition is mediated by the terminology, 
practices, symbols and inscriptions adopted by the worldwide, historical community of practitioners. 

The common focus on individual cognition in philosophy, psychology and educational theory is 
based on introspection by adults and observation of skilled practitioners. As adults, we picture ourselves 
learning through solitary reading or silent reflection. However, if we observe infants and toddlers learning 
the basic skills for living in the physical and social world, we can see the central role of interaction with 
other people, such as parents and siblings. Vygotsky (1930, p.57) concluded that cultural development – 
including formation of concepts – occurs first on a social level. For instance, children in his studies 
“could do only under guidance, in collaboration and in groups at the age of three-to-five years what they 
could do independently when they reached the age of five-to-seven years.” 

Vygotsky’s analysis of the development of the pointing gesture (p.56) provides a clear example of 
group cognition. The mother does not teach her infant how to point to what he wants; the meaningful 
gesture is not “enculturated” from existing culture. Rather, it is co-constructed by the participants situated 
in the setting as an intersubjective meaning-making interaction. The gesture develops as tacitly 
understood within the intimate mother/infant group and gradually becomes sedimented into a symbolizing 
artifact through repetitive habituation. The meaning of the pointing finger as a reference to some desired 
object is mediated by the whole situated interaction involving mutual recognition of agency, observed 
glances, bodily orientations and physical relations among the actors and  intended objects. There is more 
going on here at the group level of analysis than the coordination of individual mental representations. 
Deixis, pointing or reference is a fundamental cognitive function. Here, we see how it develops as 
primarily a phenomenon of group interaction, rather than just individual mental mechanisms. 

More generally, Vygotsky concluded that cognition is mediated by language and artifacts. He 
developed the foundations of a theory of “mediated cognition.” Cognition is not a matter of isolated 
mental functions that individuals develop internally, but a consequence of interaction with the social and 
physical world, including other people, physical artifacts and spoken language. To study such learning, 
one must observe early learning in real-world social settings and observe the embodied, intersubjective 
origin of cognition and learning. To stress the social basis of learning and cognition, we use the term 
“group cognition” as an alternative to the traditional focus on individual cognition. 

Proposition θ: Networks of Interdependent Agents 

In human cultures — especially advanced technological ones — cognition is mediated by writings, 
symbol systems, drawings, maps, external memories, computational devices, automated processes, 
feedback signals, and so on. Cognitive accomplishments come about due to innumerable influences, 
determinants, factors and considerations. The causation is not mechanical, but dependent upon the 
nature of the agents and their relationships. Social interactions are matters of understanding, 
interpretation and ambiguity. Predictions can at best be probabilistic, taking into account tendencies 
and trends. Understanding human/nature interactions in the Anthropocene world requires similar 
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analysis. Like a butterfly fluttering in the breeze, an emitted CO2 molecule reflecting a sunray does not 
cause a storm, but may imperceptibly contribute to its likelihood or magnitude. 

Causation can no longer be considered a simple effect of individual thoughts determining action. 
First, cognition increasingly takes place within tools, such as sheets of paper, charts, calculators, computer 
models, spreadsheet analyses. Ideas are posed, worked out, communicated and preserved in these media 
in ways they could not be in pure thought (Donald, 2001). They are also discussed, shared, critiqued, 
developed and negotiated in small groups. Although people today can internalize some of these aids and 
alternative perspectives to take them into account to some degree in their own mind, the embodied and 
interrelated character of situated group cognition remains dominant. 

Second, the consequences of individual human intentions and actions are not simple direct results of 
individual cognition. Latour (2014, p.7) points out that the central military outcome in Tolstoy’s 
presentation of War and Peace was not simply due to the commander’s agency, but was influenced by 
innumerable peripheral actors. The details of a messenger’s wanderings while delivering military orders, a 
cannonball’s bouncing through the enemy’s front line, a horse rearing in the calvary line are examples 
multiplied many times of influencing events. Latour develops a new conceptualization of causation 
involving potentially huge networks of actors, both human and non-human. Technological artifacts, for 
instance, can embody inferred human intentionality, such as a spring door closer trying to keep a door 
shut (Latour, 1988). 

Third, especially in the Anthropocene, human actions involve and affect natural phenomena. The 
causal relationships involved are complex and only partially understood. They may involve huge numbers 
of objects and intricate patterns of interaction, which are not precisely predictable. It is often not possible 
for people to know the ultimate consequences of their actions based on simple causal relationships; 
broader dependencies may have to be taken into account. 

Dynamic geometry provides a workshop for exploring systems of interdependent objects, where the 
dependencies can be designed into constructions of multiple objects by students and then consequences of 
the dependencies can be observed through manipulation of the objects. This can offer a playground for 
groups of students to learn about the kinds of mathematical relationships that are important for 
understanding the contemporary world. Such cognitive models are needed in a world in which simplistic 
common sense is inadequate to understand our dynamic world systems. 

Proposition ι: Collaborative Learning 

The meaning of geometry propositions is a matter of shared understanding within the communities 
and traditions of mathematicians, articulated and preserved in their documents. Learning geometry 
involves acquiring the practices of discussing geometry with others, following their constructions and 
agreeing upon each step in deductions. Mathematics education should incorporate small-group 
collaborative learning, exploration, discussion and reflection, organized around the cultural artifacts 
of the domain.  

The design of computer software to support online collaborative learning is explored through a 
number of systems and experiments in Group Cognition (Stahl, 2006). One major concern is that the 
notion of “meaning making” or the “negotiation of meaning” needs to be better understood. Most earlier 
analyses of this notion were based on theories of individual cognition, perhaps coordinated by efforts of 
“common grounding” (Clark & Brennan, 1991). In this volume, alternative analyses are provided of small 
groups adopting shared meanings of charts or mathematical problems through discourse, explicit 
agreement and subsequent tacit usage. The groups are shown to construct shared knowledge through 
interaction, much as the mother and infant built their shared meaning of the pointing gesture. 

The book’s demonstration of a need for more detailed analysis of collaborative learning led to a 
decade-long research effort: the Virtual Math Teams Project (VMT). This project involved designing and 
iteratively improving an online environment for small groups of students to explore and discuss 
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mathematics together. Functionality was provided for both textual dialog (chat) and diagrams 
(whiteboard). Teams of students were recruited through teachers and were provided with challenging 
mathematical problems, mainly from middle-school combinatorics and geometry curriculum. 

Like the infant’s pointing gesture, meanings, artifacts, actions and knowledge can be created as the 
group cognition of online small groups in the VMT setting. The project’s collaboration software, 
dynamic-geometry app and sequenced curriculum provides a setting in which the interaction of the group 
can evolve mathematical practices. Just as the mother and infant subsequently take frequent advantage of 
the intersubjectively understood pointing gesture, the students can apply their shared geometry habits 
together and eventually even use them in individual cognition. Geometric knowledge developed in the 
small group is aligned with the standards of the larger mathematical community through the automated 
constraints and feedback of the dynamic-geometry app, questioning by other students, the embedded 
curriculum and teacher guidance in the encompassing classroom. 

Proposition κ: Computer-Supported Teaching 

Hosting education on networked computer devices not only allows the use of dynamic geometry apps, 
but can also support collaborative learning beyond face-to-face settings. This can permit many forms 
of automated support, such as access to online information sources and archiving of activities. 
Computer support must be designed to enhance individual and group cognition by people, rather than 
reducing their intellectual roles. 

Unfortunately, most commercial collaboration software and social media are only designed to 
support the expression of individual thinking and hierarchical management. They reinforce individual 
opinion rather than stimulating collaborative thinking. The VMT Project experimented with systems of 
flexible computational support for collaborative interaction, negotiation of meaning, intersubjective 
consensus building. Studying Virtual Math Teams (Stahl, 2009) includes reports of this research by about 
40 academics from several countries. It motivates the project, analyzes the data of student interactions and 
draws implications for the science of Computer-Supported Collaborative Learning (CSCL).  

An important aspect of this research is that learning is analyzed at the group level of analysis. It is 
studied as group cognition. There are no surveys or questions concerning individuals’ ideas, reflections, 
representations or memories. Rather, the data for analysis of learning and knowledge building consists of 
automated transcripts of the small-group interactions. The VMT system is instrumented to capture all the 
discourse and construction that took place. The collection of reports includes examples of many 
approaches that were developed for analyzing this group-level data. The data of group cognition includes 
discourse sequences consisting of proposals, responses, questions, answers, interpretations, acceptances 
and other chat postings or interjections that work together to anticipate, expand upon, accept or reject 
each other.  

The effort reported here began to define a science of group cognition and to identify the 
characteristics and mechanisms of small-group-level cognitive phenomena which can, for instance, 
contribute to the teaching and learning of mathematics. The computer technology involved in the project 
not only supports interaction and exploration by student groups, but also facilitates experimentation and 
analysis by researchers. 

Proposition λ: Sedimentation of Geometric Concepts 

The historical effectiveness of mathematical cognition requires a subtle interweaving of processes at 
the individual, small-group and community levels of analysis. Even a phenomenological analysis of 
mathematical cognition in terms of individual subjectivity stresses the centrality of intersubjective 
concepts and associated shared inscriptions. Conversely, the functioning of cultural traditions like 
Euclidean geometry requires reactivation of insight by individuals.  
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In considering the “crisis of the European sciences,” Husserl (1936/1989) felt impelled to investigate 
“the origin of geometry.” As a phenomenologist, Husserl started from introspection on the experience of 
understanding a geometric proof and asked how an object of individual cognition like a geometric 
concept could become an ideal object with universally recognized meaning. He described a multi-step 
process of group cognition in which people collaborated using geometric inscriptions (p.164). The 
insights into the necessity of proofs were “reactivated” by the individual participants as they shared the 
intersubjective meanings “sedimented” in their adopted mathematical language. 

The VMT Project represented a systematic attempt to “translate” Euclidean geometry into a form 
appropriate for the Anthropocene by reactivating its meanings in settings of collaborative learning and by 
emphasizing the functioning of dependencies. A description of this research in Translating Euclid (Stahl, 
2013) includes chapters detailing multiple aspects of this effort, including: the project vision, history of 
geometry, guiding philosophy, covered mathematics, developed technology, approach to collaboration, 
educational research, social theory, curricular pedagogy, analysis of practice and design-based-research 
methodology. 

At this point, the VMT Project developed a unique multiuser version of GeoGebra and integrated it 
into the online collaboration environment. It also iteratively tested curricula scaffolding student groups to 
explore the basic concepts, propositions and dependencies of Euclidean geometry. Researchers analyzed 
the group cognition in which meanings were negotiated, sedimented and tacitly reactivated in their group 
language and understanding. 

Although the VMT software is designed for use by small groups of students collaborating online in 
real time, the research project stresses the importance of integrating support for the individual students as 
well as for classroom efforts in addition to the collaborative learning. Group cognition necessarily 
includes interpretation and contributions from individual cognitive perspectives. It also benefits from a 
supportive classroom context. The theory of group cognition emphasizes this integration. It recommends 
that small-group collaborative learning be adopted in coordination with phases of individual and 
classroom learning. This provides multiple opportunities, formats and processes for the sedimentation of 
key concepts, the reactivation of mathematical insight and the sharing of knowledge and procedures. 

Proposition μ: Group Practices 

Because learning involves a mix of tacit understanding and explicit interpretation, it is perhaps best to 
conceive it in terms of practices rather than mental representations. In particular, collaborative 
learning can be analyzed as the adoption of group practices by the small group. These practices may be 
derived from pre-existing society-wide cultural practices, and they may be subsequently personalized as 
individual practices, but they must be adopted by the small group and integrated into its activity and 
discourse. 

Constructing Dynamic Triangles Together (Stahl, 2016) analyzes every chat posting by a particular 
small group of students who engaged in eight hour-long online sessions in the VMT Project using the 
collaborative version of dynamic geometry. Through the close analysis of their chat discourse and 
geometric manipulations, it becomes clear that they were collaboratively negotiating shared meanings and 
adopting these as group practices. About 60 distinct practices are highlighted in the analysis. Each of 
these is explicitly discussed in the group discourse and analyzed in the book. The variety of practices 
reviewed covers needs of collaborative learning, dynamic geometry, computer support, design of 
dependencies and online interaction, including: 

• Group collaboration practices 
• Group dragging practices 
• Group construction practices 
• Group tool-usage practices 
• Group dependency-related practices 
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• Group practices using chat and GeoGebra actions 

For each practice, the group went through a process of confronting a problem, discussing action 
options, agreeing on a path for going forward and then proceeding with putting the practice into action. 
While this initial response to a problem required explicit discussion and group agreement, subsequently 
the group could tacitly proceed with the adopted solution without any discussion. The practice was 
thereby adopted by the group and integrated into its behavior. The practice could have been derived from 
the larger social context, such as a teacher recommendation based on mathematical tradition or it could 
have been a suggestion from an individual student, but it had to go through the negotiation process by the 
group in order to become part of the group’s effective behavior or group cognition. 

While the cognitive behavior observed in the VMT Project was a mix of individual, small-group and 
classroom interactions, it is possible to distinguish phenomena at each of these levels of analysis, such as 
individual habits, group practices and classroom traditions. While it may be possible to define various 
other levels of analysis, these three are typical of school settings, in which individual students are graded, 
small groups of students may interact, and teachers orchestrate classroom activities. 

Proposition ν: Group Cognition 

Human cognition is not a simple process of rational deduction that operates like the well-defined 
sequential operation of a computer program executing within a person’s head. Rather, it often takes 
place in group discourse – individual abilities contribute to shared cognitions from multiple 
perspectives and backgrounds, within complex shared situations. Especially in instances where 
fundamental learning takes place, there is a mix of individual, small-group and community processes, 
mediated by a complex historical world of influencing factors and mediating artifacts. Articulated 
statements aim for future responses by building on the past context in the present situation. The 
analysis of group cognition in geometry education attempts to reconceptualize the nature of 
mathematics in minds. 

Cognition takes place expressed in explicit dialog, hidden within tacit practices and preserved in 
persistent inscriptions. Knowledge building is mediated by and stored in physical knowledge artifacts. 
These can be internalized or personalized in mental abilities and representations through memory and 
imagination, but they are not originally purely mental phenomena. Euclid’s propositions exist in 
contemporary texts. Their meaning is not dependent upon the minds of Thales or Euclid, but upon the 
current texts and accompanying figures, as well as upon the meanings and practices of the mathematical 
community today. 

When a group of students collaborates on a dynamic-geometry problem in a system like VMT, their 
group cognition resides primarily in the shared software interface, which displays their group work, 
including both chat discourse and constructed figures. From observation of these traces of shared work 
and interaction, researchers, teachers and the participants themselves can infer negotiation of meaning and 
mathematical reasoning without having to appeal to assumptions about individual mental events behind 
the scenes. Group cognition can be persistent and observable within physical knowledge artifacts such as 
textual inscriptions and computer transcripts. The learning of mathematics can be studied by analysis of 
the development of mathematical group cognition, such as occurred by teams of students using VMT.  

Group cognition is a conceptualization  appropriate to the Anthropocene. Sciences and theories of the 
Anthropocene no longer support notions of independent organisms in environments, such as 
methodological individualism or even man-in-nature. They conceptualize agents as defined by intricate 
links, interactions and interdependencies. They focus on “complex nonlinear couplings between processes 
that compose and sustain entwined but nonadditive subsystems as a partially cohering systemic whole… 
self-forming, boundary maintaining, contingent, dynamic, and stable under some conditions but not 
others… not reducible to the sum of its parts, but achieves finite systemic coherence in the face of 
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perturbations within parameters that are themselves responsive to dynamic systemic processes” (Haraway, 
2016, p.36). 

Analyses of group cognition do not consider the isolated thinker, but look at interactions among 
multiple agents embedded in rich worlds, especially technological systems. They unfold over time and are 
subject to the ambiguities of interpreting meanings in shifting historical contexts. The analysis of group 
cognition is a multidisciplinary undertaking; it often involves forms of conversation analysis, statistical 
analysis, educational psychology, semantics, video analysis, communication theory, software design, etc.  

Theoretical Investigations (Stahl, 2021b) brings together two dozen papers on various aspects of 
philosophic foundations of computer-supported collaborative learning (CSCL). Starting with a meso-level 
analysis of software design that looks beyond a single app to its whole technological, digital 
infrastructure, the book goes on to consider technology in terms of its interaction with and adoption by 
students. This begins to shift CSCL to the kind of science appropriate to the Anthropocene, where minds 
and technologies increasingly work together. Other papers reprinted from the CSCL journal consider 
semantic, visual, sequential, temporal and interactional aspects. A pair of studies reflects on transforming 
whole educational systems in Hong Kong and Singapore to feature collaborative learning.  

The second half of the book presents micro-analyses of interaction data from small groups learning 
mathematics. It includes a wealth of examples of specific aspects of how group cognition unfolds. This 
includes detailed illustrations of groups constituting themselves as involved in intersubjective 
understanding, negotiating meaning, solving problems, adopting practices, building knowledge, crafting 
knowledge objects, refining terminology and learning mathematics. Case studies of problem solving show 
how teams conduct reconceptualization, visualization, deduction, etc. similar to that commonly performed 
by individuals, but now accomplished by groups. The analyses reflect the situated nature of such group 
cognition within shared worlds of embodied and virtual existence – structured and defined by the ongoing 
interaction. Both successes and limitations of group learning are showcased and evaluated. 

The book includes investigations of VMT data that explicate core concepts of group cognition, such 
as: intersubjectivity, knowledge building, shared meaning making, negotiation of meaning, adoption of 
group practices, cognitive evolution, knowledge objects, referential resources, instrumental genesis and 
the co-experienced world. It looks at how words and digital utterances in excerpts from VMT data weave 
together references to terms, objects and events in the past, present and future to create intersubjective 
meaning and shared knowledge. Elements of the theory of group cognition emerge from these empirical 
analyses. Considered as a whole, the volume of investigations points toward a multi-disciplinary science 
that considers educational issues within a complex environment of interdependencies. 

Proposition ξ: Virtual Math Teams 

The Virtual Math Teams project provides an educational model for fostering group cognition of digital 
geometry in the Anthropocene. It developed and tested a dynamic-geometry curriculum for 
collaborative learning by small groups of teenage students, emphasizing the role of dependencies. This 
can be used as one educational component of mathematical teaching and learning, to be adapted to 
diverse educational settings and integrated with individual and community learning.  

The VMT Project pursued a vision of students around the world learning mathematics 
collaboratively by communicating and exploring problems online within virtual math teams. However, it 
was a research effort, not scaled up for widespread classroom usage. The Covid Pandemic inspired 
hurried efforts around the world to provide educational resources for online pods (virtual small groups) of 
students in place of shuttered classrooms. Unfortunately, these transformations rarely took advantage of 
recent research in the learning sciences or in computer-supported collaborative learning, instead simply 
using business software (like Zoom) and retaining teacher-centric pedagogy carried over from the 
physical classroom.  
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To suggest how to fill the glaring educational gap, the latest version of the curriculum for the VMT 
Project was made publicly available on the GeoGebra website and as a free e-book: Dynamic Geometry 
Game for Pods (Stahl, 2020). It includes a sequence of 50 challenges at increasing levels of expertise. The 
challenges are designed to stimulate the adoption of many of the group practices required by online 
collaborative learning of dynamic geometry and for the development of mathematical cognition generally. 
Each level is demanding enough to benefit from collaboration, as most students would likely get stuck 
without partners to figure out what was required. 

The Game’s curriculum is initially targeted to specific practices needed for successful online 
collaboration and for effective use of dynamic geometry. However, it also includes open-ended challenges 
where the group has to define a problem, negotiate their approach as well as evaluate their solution. Some 
later challenges set up open-ended themes for inquiry learning (Dewey, 1938/1991; Papert, 1980). Then, 
appendices offer several suggestions of related math domains to explore (sequences of transformations; 
taxicab geometry, etc.).  

For students who do not have access to VMT or working relations with appropriate pod-mates, 
options are outlined for individual study, for home schooling and for online pick-up teams. In addition, an 
associated article delineates a proposal for blended learning (Stahl, 2021a). It proposes integrating 
individual, small-group and classroom activities around the game challenges. That paper is included as an 
appendix to the Game e-book. 

The VMT Project developed a model CSCL approach to introducing dynamic geometry to groups of 
students. Extensive trials supported a design-based research effort to develop effective technology, 
curriculum, pedagogy, analysis and theory. The extensive reporting referenced above characterizes the 
development of group cognition that took place in many instances. 

Conclusion 

The Game for Pods and the VMT Project leading up to it may offer a glimpse of what could foster the 
development of group cognition related to dynamic geometry, including an understanding of 
dependencies. This can provide a CSCL model for learning and teaching mathematics in the 
Anthropocene.  

Geometry has been a training ground for comprehending the world since Plato and Euclid. The VMT 
Project explored ways of adapting computer technologies to a CSCL approach to teaching geometry. The 
pedagogical focus was on the development of group cognition related to analyzing and designing 
dependencies. 

Our new epoch presents multiple challenges to mathematics education. As we have already seen with 
the impact of the Pandemic on schooling and the influence of climate denial on public acceptance of 
science, the need for and the urgency of appropriate innovations are rising rapidly. The mathematics 
education research community should consider how best to support learning and living in the 
Anthropocene. 
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