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Symposium overview
The mathematics education research community has considerably evolved during the two last decades 
towards and within a socio-cultural approach (e.g., Cobb & Bauersfeld, 1995). This approach has first led 
to fine-grained descriptions in which they could identify specific entities that are central to learning 
processes in classroom contexts. For example, they identified socio-mathematical norms (Yackel & Cobb, 
1996) and important practices such as collective argumentation (Krummheuer, 1995) or collective 
reflection (Cobb & Yackel, 1996) that are central for understanding learning in classroom contexts. These 
theoretical tools have helped in describing learning processes in specific social settings (Hershkowitz & 
Schwarz, 1999). Also, anthropologists have elaborated methodological tools for describing mathematical 
activities in a succession of activities (see for example, Saxe et al., 2009 for a methodology for describing 
the 'travel of ideas' through observation of the transformation of form and function of artifacts).
Finally, researchers in mathematics education have adopted a design research approach to elaborate 

successions of activities in which they used the methodological tools developed to envisage desirable 
outcomes and values (Cobb, Sophian, et al., 2001; Hershkowitz et al., 2002). Among the central desirable 
practices, talk practices (e.g., Sfard, 2008) and collaborative practices (e.g., Hoyles & Healey, 1995). In
another tradition, scientists from the Computer Supported Collaborative Learning (CSCL) community also 
shares talk and collaboration practices as settings that promote learning. CSCL scientists have recognized 
that these practices are not easy to trigger and have subsequently elaborated computerized tools that afford 
desirable practices (Stahl, Koschman & Suthers, 2006). For example, Suthers (2003) has shown that 
computerized tools provide representational guidance that deeply affects collaborative practices. The 
CSCL community has developed an impressive number of environments for triggering collaborative and 
argumentative practices. 
This symposium is intended to present perspectives from the two communities in order to understand in 
depth some key issues in mathematics education. The three contributions of the symposium focus on
successive activities that include collaborative and argumentative practices. This kind of focus invites in-
depth analyses of learning processes that involve meaningful changes. The following themes emerge from 
the three contributions:

1. The transformational character of argumentation/collaboration in successive activities
2. Novel ways to mediate the social production of meaning: In Stahl's contribution, these 

are the multiples channels and mathematical representations that enable the synchronous 
coordination of actions among dyads; For Rasmussen, Zandieh and Wawro, these are the 
brokering moves of the teacher; For Hershkowitz, Schwarz & Azmon, these are 
distinctive talk patterns that propagate in individual and unguided activities.

3. The central role of the design of the learning unit towards productive interactions.
Each of the contributions provides a methodology for a fine-grained follow-up of the unfolding of 
production of mathematical meaning. Stahl extends discourse analysis methods to synchronous multi-
channel communication; Rasmussen, Zandieh and Wawro adopt a cultural-historical activity theory 
approach to study the transformations of boundary objects between activity systems; Hershkowitz, Schwarz 
and Atzmon integrate between interactional analyses with inferential statistics to study the effects of kinds 
of structuring adopted by teachers during their interactions with students on the ways students engage in 
these interactions and on their argumentative ability in the collective discourse and individual tasks. 
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Computer Mediation of Collaborative Mathematical Exploration

Gerry Stahl

Two central principles of contemporary learning science theory (Stahl, Koschmann & Suthers, 2006)
are:
1. Student learning involves construction of meaning by the learners.
2. Learning often takes place originally inter-subjectively.

For learning in the discipline of mathematics, these principles imply: 
 Student exploration of mathematical issues should play a significant role in math education.
 Collaborative approaches should be incorporated, in which small groups of students build 

mathematical understanding together. 
The field of computer-supported collaborative learning (CSCL) proposes that these aims could 
be furthered through the use of networked computers. Online collaboration environments can 
mediate activities designed to promote math learning in multiple ways. They can provide a 
workspace, representations of math objects and tools for manipulating the representations, to 
provide stimulating experiences of math exploration, discovery and meaning making. They 
can also provide communication media to support productive collaboration and the sharing of 
knowledge by individuals, small groups and larger communities, such as classrooms and 
communities of people interested in math.

The Virtual Math Teams (VMT) Project (Stahl, 2009c) is developing an online environment 
for small groups of students to explore mathematics together. As a result of a design-based 
research effort at Drexel University since 2003, our software system has evolved to integrate 
synchronous text chat, shared whiteboard, asynchronous portal and community wiki. Analysis 
of student interactions in this environment have documented processes of group cognition 
(Stahl, 2006), which move between graphical, narrative and symbolic modes of collaborative 
mathematical meaning making (Çakır, Zemel & Stahl, 2009). 



We have found that mathematics can be accomplished collaboratively, even by small groups 
of novice math students helping each other, building sequentially on each other’s moves and 
exploring together, even across sessions (Sarmiento & Stahl, 2008). Virtual math teams can 
engage in graphical constructions, verbal accounts and symbolic derivation, using 
conventional methods of interaction adapted to online media, such as methods of social 
acknowledgment, proposal offerings, deictic references, questioning and agreement. Issues of 
presence, orientation and embodiment—so important in face-to-face mathematical 
discourse—remain critical in virtual media, although in transformed ways.

Our approach to computer-supported collaborative mathematics learning is based on the 
theory that math cognition is at base a matter of math exploration (Livingston, 1999; 
Lockhart, 2009) and math discourse (Sfard, 2008; Stahl, 2008). Of course, math discourse 
involves drawings and symbolic expressions as well as terms, propositions and arguments in 
natural language. According to (Netz, 1999), the origin of mathematical deduction in ancient 
Greece was a function of the development of labeled diagrams and a specialized math dialect 
used for asynchronous collaboration. Consider the flowering of Western mathematics through 
the exchange of text and diagrams on clay tablets and papyrus documents among Euclid’s 
colleagues around the Mediterranean; now imagine analogous digital versions of this within 
online global communities equipped with specialized computer media and tools.

Based on theories of embodied cognition, distributed cognition, discursive cognition and 
mediated cognition, we are currently extending the VMT virtual learning environment to 
support dynamic mathematics. We are integrating the first multi-user dynamic geometry 
system into VMT. This is a port of the single-user GeoGebra system, which provides 
coordinated symbolic, graphical and spreadsheet representations of geometric constructions. 
This will allow online teams of math students to propose, explore and solve problems from 
algebra, geometry, matrices, trigonometry, conics and elementary calculus. The VMT system 
is instrumented to capture the entire interaction of these groups for replay and analysis by 
students, teachers and researchers—allowing the students themselves, their teachers and 
educational researchers to observe and reflect on actual collaborative math processes.

The design of the VMT software supports scripting of educational activities integrating 
individual, small-group and community meaning making (Stahl, 2009a). The synchronous 
textual chat and graphical workspaces are associated with asynchronous wiki pages and web 
browsers. Curriculum units (Powell, Lai & O’Hara, 2009)—which can be tuned by teachers to 
classroom circumstances—guide students to explore sequences of open-ended mathematical 
topics, to pose their own questions, to reflect on multiple problem-solving paths, to bring in 
mathematical terminology and principles, to summarize their argumentation and to post 
accounts of their work for other student groups.

As learning-science researchers, we are interested in the details of how math learners make 
meaning within various learning environments. The VMT system, with its logging and replay 
facilities, makes visible and persistent the details of the interactions by means of which small 
online groups co-construct their understandings of mathematical problems and situations. In 
this symposium presentation, we will take a more detailed and comprehensive look at the 
interaction data that we began to analyze in CSCL 2007, CSCL 2009 and ICCE 2009 
(Koschmann, Stahl & Zemel, 2009; Stahl, 2007; Stahl, Zemel & Koschmann, 2009). This is 
data from Team B during VMT Spring Fest 2006. Three students spent four hours online 
together discussing, exploring and reflecting upon a number of related pattern problems. We 
approach this data with a form of interaction analysis based on conversation analysis (Stahl, 
2009d). Our new look at the data will extend sequential analysis to consider longer sequences 
than adjacency pairs—including group-cognitive moves and larger-scale thematic work. It 
will also look at a more detailed scale to identify different kinds of references—indexical, 
temporal, semantic and deictic, for instance—that link a given utterance to multiple past 
postings, drawings, events, resources and future potentialities.

Although chat postings often appear to be chaotic and inscrutable (Stahl, 2009b), it is possible 
to reconstruct their implicit response structure and to recreate the indexical relations that 
underlie their ubiquitous deictic references. We can then build up an explicit analysis of the 
semantic and linguistic structure that was implicit in the student collaboration. (This 
corresponds to the tacit understanding that participants maintain of the on-going interaction.) 
From the detailed relationships among lexical elements of the chat postings, we can identify 
pairs of initiating proposals and responses to them. These can be seen as communicative 



methods by which the students achieve group-cognitive moves that advance their larger 
discussion themes. In this way, among others, we analyze the mediation (within computer-
based media) of collaborative mathematical exploration. By observing at this unprecedented 
level of detail the methods by which students actually coordinate their mathematical work and 
their shared understandings, we can see how collaborative mathematics can take place in a 
setting like VMT. We observe and analyze how: students co-construct, communicate, 
negotiate and make shared sense of math representations (graphical, narrative and symbolic); 
decide as a group what to do next; inquire about things they do not understand; agree on their 
joint findings. An understanding of student methods for doing such things deepens our sense 
of how to design technology to support collaborative math exploration and how to guide, 
script or scaffold it pedagogically. It also advances our understanding of collaboration as 
sequential interaction, math exploration as discourse and learning as a social process. 
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Brokering as a Mechanism for the Social Production of 
Meaning

Chris Rasmussen, Michelle Zandieh, Megan Wawro
           

A pressing concern in mathematics education is to reveal processes by which inquiry-oriented 
classrooms enable learners to explore and develop their own reasoning powers while simultaneously 
connecting them with the collected wisdom and conventions of the discipline (Cobb & Bauersfeld, 
1995; Lampert, 2001). A teacher’s role in this process is one that often comes with considerable 
tension. For example, in her work with elementary school students, Ball (1993) posed the tension in the 
following way: “How do I create experiences for my students that connect with what they now know 
and care about but that also transcend their present? How do I value their interests and also connect 
them to ideas and traditions growing out of centuries of mathematical exploration and invention?” (p. 
375). Research in inquiry-oriented undergraduate mathematics classroom reveals similar tensions 
regarding the role of the teacher and other students in the social production and uptake of ideas (e.g., 
Wagner, Speer, & Rossa, 2007).

In this report we address the aforementioned pressing concern by identifying the brokering 
moves of the teacher and some students in an undergraduate mathematics class that functioned as a 
mechanism for the social production of meaning. From an individual cognitive point of view, there are 
well-established mechanisms that describe how individuals build ideas. From a social point of view, 
however, mechanisms that describe how ideas are interactively constituted are less developed. Such 
mechanisms are significant because they address the complex job of teaching and specific teacher 
moves that promote the social construction of meaning (Rasmussen & Marrongelle, 2008).  

In his seminal work on communities of practice, Wenger (1998) highlights how brokering 
requires the ability to “cause learning” by introducing into one community elements of practice from a 
different community (Wenger, 1998, p. 109). We adapt Wenger’s work to the classroom and consider 
three different communities: the broader mathematical community, the local classroom community, 
and the various small groups that make up the local classroom community. The brokers in these 
communities are the teacher and specific students in the class. A broker, by definition, is someone who 
has membership status in more than one community. For example, in our case the teacher is a member 
of the broader mathematics community, the classroom community, and a peripheral member of each of 
the small groups that make up the classroom community.  

Data for the analysis is drawn from classroom videorecordings collected during a 15-week 
classroom teaching experiment (Cobb, 2000) conducted in an undergraduate differential equations 
course. Focusing on a one week sequence that led to the reinvention of a sophisticated inscription 
known by experts as a bifurcation diagram (Rasmussen, Zandieh, & Wawro, 2009), we identified 
different types of brokering moves that contributed to the social production of meaning. Each of these 
brokering moves highlight the view that teaching and learning mathematics is a cultural practice, one 
that is mediated by and coordinated with the broader mathematics community, the local classroom 
community, and the small groups that comprise the classroom community. 

Close analysis of the function of students’ and the teacher’s discursive contributions resulted 
in the identification the following three broad categories of broker moves: creating a boundary 
encounter, bringing participants to the periphery, and interpreting between communities. In the first 



brokering move category, creating a boundary encounter, a boundary encounter refers to direct as well 
as indirect encounters between communities. Moreover, boundary encounters involve boundary objects 
that serve as an interface between different communities. A broker, by virtue of his or her membership 
in more than one community, is in a position to bring forth boundary objects that can facilitate 
encounters between communities. For example, we identified instances when the teacher functioned as 
a broker between the classroom community and the mathematical community by introducing and 
constituting tasks that engaged learners in indirectly encountering the mathematical community via 
their participation in mathematizing (Rasmussen, Zandieh, King, & Teppo, 2005; Schwarz, Dreyfus, & 
Hershkowitz, 2009). The task, as it was constituted, functioned as a boundary object. Creating a 
boundary encounter was not limited to the teacher, however. The presentation will detail how one small 
group’s presentation of their work on a task resulted in their creation of an inscription that was new to 
other students in the class and mathematically quite sophisticated. As such, this inscription functioned 
as a boundary object between the small group community who created it and the classroom 
community.

We refer to the second brokering category as bringing participants to the periphery. We follow 
Wenger (1998) in distinguishing between the terms boundary and periphery. The term boundary is 
more closely aligned with possible discontinuities between communities, whereas the term periphery is 
more closely aligned with possible continuities between communities. As such, the brokering move of 
bringing participants to the periphery is one in which the broker helps members of one community 
move along a continuum toward another community. For example, brokers are able to draw specific 
ideas out from a small group community so that these ideas become more accessible to the classroom 
community. Conversely, brokers are in a position to encourage and promote engagement and reflection 
by the whole class community in ideas that were put forth by a particular small group community. Our 
analysis revealed that the teacher was more likely than students to function as broker in this capacity.

The third brokering category we identified, interpreting communities, is one in which the 
broker makes explicit connections between two communities with respect to how ideas are construed, 
notated, related, or labeled. In comparison to the first brokering category, creating boundary 
encounters, this third type of brokering move occurs when a broker takes specific steps to fulfill or 
realize the opportunities that the creating boundary encounter moves offered. Our examples of this type 
of brokering move involve both the teacher and specific students as brokers as they interpret between 
the mathematical community and the whole class community and between the whole class community 
and various small group communities. 

The presentation will illustrate and further clarify each of these types of brokering moves. 
Implications of these brokering moves for teaching and professional development will also be 
discussed. 
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Distinctiveness of teachers' discourse patterns and their 
impact on students' emergent and subsequent argumentative 

activities
Rina Hershkowitz, Baruch Schwarz, and Shirly Azmon

Although many researchers have recommended guidance practices involved with intensive
interactions, argumentation and collaboration as effective ways to foster learning gains in classroom
(e.g., Webb, 2009), systematic research on influencing student interaction and learning gains through 
teacher discourse is under-represented. The goal of this research is twofold. We first aim at uncovering 
patterns of teacher-led talk in the course of a learning unit. We then aim at investigating whether those 
patterns impinge on the students' commitment to argumentation that emerged in the talk itself, as well 
as on characteristics of their individual arguments in a consolidation phase, at the end of the learning 
unit.

Four teachers, in four different schools, and their Grade 8 students participated in the study. 
The teachers were invited to teach a learning unit in probability carefully designed to encourage 
productive argumentation. The teachers were left free to choose the way to manage their lessons: we 
did not stipulate social settings (individual work, [un]guided small group problem-solving, teacher-led 
discussions, etc.) and did not provide scripts for teachers' structuring of interactions with learners. All 
lessons were observed, video documented and transcribed. Three episodes in three different lessons 
where chosen for each teacher for micro-analysis. Each episode was similar for all four teachers. This
similarity between the four teachers concerned not only the problem situations involved but 
comparable length of time of the analyzed episode. Another criterion for the choice of the episodes was 
episodes that focused on content whose mastery was checked in an individual activity at the end of the 
learning unit.

A major finding of this study – supported by qualitative and quantitative analysis, is that 
teacher-students interactions were governed by patterns: These patterns were distinctive and relatively 
stable, for each teacher, beyond the different tasks and lessons that constituted the learning unit. The 
distinctiveness of each pattern was characterized as follows:

The kinds of challenges initiated by the teacher. For example, the first teacher generally 
initiated challenges through open questions that invite the expression of elaborated explanations and 
dialectical moves. In contrast, the second teacher did not challenge students but rather asked closed 
questions whose answers were clear and expectable. 

The patterns identified at a micro-level conveyed socio-mathematical norms at a meso-level: 
For example, the first teacher adopted a dialogic-dialectical talk (similar to the exploratory talk 
identified by Mercer, 1987) in which the diverse claims which were raised, were supported by 
examples or/and explanations and at the same time, were also challenged by examples or explanations
in a rich social context. The construction of knowledge emerged from this tension. In the second class,
the talk is closer to a cumulative "traditional" talk governed by IRE patterns (Cazden, 2001) in which 
initiative is almost exclusively in the teacher's hands. This difference between the two teachers is 
exemplified in following data; while Teacher 1 dedicates 63% of her utterances, in all three episodes, 
to encourage argumentation (explanation of claims, arguing, raising dialectical dialog, etc…) and 11% 
to ask for claims only (short answers, declaring facts), Teacher 2 dedicates only 14% of her utterances 
to encourage argumentation and 49% to ask for claims. Beyond these data, we identified distinctive 



patterns involving teachers and students across all teacher-led discussions. These patterns and their 
validation will be presented in the symposium.

Delegation of responsibilities. The socio-mathematical norms that developed in each class 
impinged at a macro-level concerning the responsibility of students to their knowledge constructing. 
For example in the class of the first teacher, the challenges of the teacher led students to feel 
responsibility to provide elaborated explanations. 90%) of the claims expressed by the students in the 
three episodes were reasoned and eventually turned to full-fledged arguments. In the second class, the 
elaboration of explanations was not under the responsibility of the students but of the teacher. Only 
18% of the students' claims, in the three episodes in class 2, were reasoned. Interactions appeared as 
chains of short questions and short claims as answers (70% of the students utterances in class 2, were 
claims and 46% in class 1) punctuated by social validation of correctness. Quite naturally, correctness 
was valorized rather than processes that led to the (correct) result.

The transformatory character of argumentation. The enactment of dialogic-dialectical talk
(like for the first teacher) in a succession of tasks designed to encourage knowledge construction, led
students to discuss mathematical principles under the orchestration of the teacher and to co-construct 
them with the teacher and when left alone in small groups. It turns then that there are strong bonds 
between teacher-led dialectic argumentative talk and subsequent co-construction of mathematical 
principles/concepts.

Adaptive planning as an expression of dialogic-dialectic norms. When the teacher aims at the 
construction of mathematical principles, it impinges on the structure of the lesson. The order of tasks, 
within the learning sequence, is only a suggestion that the teacher adopts or does not adopt according to 
her pedagogical considerations. The more confident the teacher is in her contents' knowledge and 
pedagogical knowledge, the more flexible she is in planning the activities of her students. In contrast, 
sticking in an orthodox way to a sequence of tasks and to proposed social settings (like for the second 
and third teachers) suggests that some teachers view educational goals in a bureaucratic way that 
preserves the authoritative status of the teacher in the class.

A second major finding suggests that the impact of teacher-led argumentative talk in the 
classroom, on subsequent individual argument elaboration is deep and subtle. We checked the quality, 
frequency and correctness of the explanations which were given by her students to support their claims
at the end of the learning unit. In this posttest a high percent of students in all classrooms answered to 
the questions on a claim level, and gave explanations as required in the test. While more than half of 
students in the first class (in which the patterns of interaction between the teacher and the students were 
dialogical/dialectical) constructed right arguments (including right reasons), less than third does it in 
the other classes. In addition, in another test item it appeared that answers that interacted with the first 
teacher, arguments were richer as they contained more idea units per argument.

In the presentation we will present quantitative data and conclusions will be drawn.

The present research suggests the importance of the mediation of the teacher. This mediation 
seems to be more productive when the teacher acts as an agent that negotiates meanings with students 
(Hershkowitz & Schwarz, 1999). The argumentative patterns that characterize talk can either give birth 
to meaningful constructions or to senseless artifacts. Our findings suggest the importance of in-service 
teachers' programs focusing on the animation of classroom discussions for the sake of the promotion of 
mathematical reasoning and for delegating responsibility to students on their learning.
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