Virtual Math Teams: Studying and Supporting Online Collaborative Problem-solving

Annie Fetter Johann W. Sarmiento
The Math Forum @ Drexel University

College of Information Science \& Technology
The Math Forum

Overview

-Intro: The Math Forum Services and the VMT
-VMT Goals, Questions and Activities up to date.
-Let's try it together!
-Analyzing Student's Online Collaboration
-Research on Cooperative/Collaborative Learning
-Computer-support for Online Collaborative Problem-Solving

- Your students can participate in the VMT project!

The Math Forum's Services

- Ask Dr. Math
- Math Tools digital library and community
- Teacher2Teacher
- Problems of the Week (PoWs)
- And many more!

The Math Forum's Problems of the Week (Pow)

www.mathforum.org/pow/

- Designed to provide creative, non-routine challenges for students in grades three through twelve.
- Problem-solving and mathematical communication are key elements of every problem
- 4 areas: Math Fundamentals, Pre-Algebra Algebra, and Geometry

Virtual Math Teams: Overview

- Promote collaborative problem-solving
- Enable kids to help each other at The Math Forum and make better use of the limited expert mentoring
- Provide an important kind of engaged learning experience for students
- Investigate the nature of online collaboration for math problem-solving
- 5-year NSF-funded project

Driving Questions

- What forms of collaboration are more effective for math learning?
- What types of problems work best for collaborative problem-solving?
- What kind of human and software support are necessary?
- What research methods help us understand online collaboration better?

Some VTM Activities to date

- Invited small groups of students to collaborate online to solve the Math Forum's Problem of the Week
- Investigated 5 different software platforms: AOLIM, Blackboard, WebCT, Open-Source Chat + Shared Whiteboard, ConcertChat
- Offered series of weekly, one-hour "Pow-wow" sessions with Algebra and Geometry PoWs.
- Conducted initial analysis of chat transcripts
- Explored software-support prototypes

Let's try a collaborative PoW: "A Tangent Square and Circle"

Let's Reflect on our Collaborative Problem-solving

- What are possible solution paths?
- How does one come upon those?
- What did you notice in terms of doing it alone or with others?
- How was this experience different than collaborative problem-solving in your classroom?

1. AME how close are you
2. KIL i know that its less than four
3. AME No its more
4. KIL ya thats wut i meant
5. KOH hahaha... typo...
6. KIL anyone else get any closer?
7. AME I solved it
8. KOH I solved it, too!

9. KIL ic
10. KOH hey, AME, tell me about your way first...
11. AME I need my pic
12. KOH I know you got the right answer, but your way is kinda wrong...
13. AME My way is fine
14. AME Its works
15. AME If the answer is right than what gives?
16. KOH well... ok...
17. KOH all goes well that ends well
18. KOH but I need explaination...
19. AME ok...

KOH so AME , please explain your way...
KIL yea please?
AME well I just used some equations
AME equation 1- $x+r=8$
KOH ok... simple equations or complicated ones?
KIL yes
AME Simple
KOH ok...
AME As I was Saying
$\mathrm{KOH} \quad$ where did that 1 came from?

AME The first equation is $\mathbf{x + r}=8$
KOH yes!
KIL i get it...
AME The second is $16+x^{\wedge} 2=r^{\wedge} 2$
AME Now we substitute
KIL ic
AME And we are DONE!!!
KOH thats my way!!!
KIL ic now!
AME My way just makes more sense
KIL ic so 1) $x+r=8$
KOH hey, so where do that x come from and how does it help ya?
KIL
2) $x^{\wedge} 2+r \wedge 2=16$

AME $r+x=8$

1. ALR: Okay, I think we should start with the formula for the area of a triangle
2. SUP: ok
3. ALR: $A=1 / 2 b h \quad$ I believe
4. PIN: yes
5. PIN: i concue (*concur*)
6. ALR : then find the area of each triangle
7. ALR: oh, wait
8. SUP : the base and heigth are 9 and 12 right?
9. ALR: no
10. SUP : 0
11. ALR : that's two separate triangles
12. SUP: 000 ok
13. ALR: right
14. ALR: i think we have to figure out the height by our
15. ALR: if possible
16. PIN: : i know how
17. ALR how?
18. ALR right
19. SUP proportions?
20. ALR this is frustrating
21. ALR I don't have enough paper
22. PIN i think i got it
23. PIN its a 30/60/90 triangle
24. ALR I see
25. PIN so whats the formula

26. PIN
27. PIN
28. PIN
29. AVR
30. AVR
31. PIN
32. SUP if its equilateral its it a 45/45/90 triangle?
33. SUP o wait
34. SUP thats isosceles
35. AVR yeah
36. AVR ...
37. AVR equilateral is 60/60/60 triangle
38. PIN ya
39. AVR not 30/60/90
40. PIN anyone remember formula for 30/60/90 triangle?
41. PIN nooooo
42. PIN but look
43. PIN you drew the triangle
44. PIN here wait
45. AVR no I didn't
46. PIN let me make a pic
47. AVR okay
48. PIN wait a couple min
49. AVR okay
50. SUP so holws it goin
51. AVR I'll try to draw one in the meantime
52. PIN super!
53. AVR equilateral means all sides are equal
54. AVR therefore all angles are equal too
55. SUP yes
56. SUP 60
57. AVR so it can't be 30/60/90
58. AVR it's not a 30/60/90 triangle
59. SUP thats what i was thinking
60. SUP is there a formula for a 60/60/60?
61. AVR I have no idea
62. AVR I think once we find the formula it should be pretty easy
63. AVR I don't think there's a formula, though
64. PIN search google
65. AVR I think we find it some other way
66. AVR that's what I'm doing
67. SUP what does itmeans by edglengths?
68. SUP jone of the 3 sides?
69. AVR edgelength means length of a side
70. SUP ok...
71. AVL: okay, Mod, just a question
72. AVL: basically, he's solving it by trial and error
73. AVL: by like putting random numbers in as sides and seeing if they work out
74. PIN: ya, and im pretty darn close
75. AVL: yeah
76. AVL: but is there any way else to do it
77. AVL: like, using a formula
78. PIN: hey Mod answer me this
79. OFS: thats what i was thinkin ov
10.PIN: is it 21.213 X
11.AVL: because if you submit the solution you're not gonna say "do trial and error"
12.OFS: using a formula
13.PIN: where X is another number
14.PIN: is it or no
15.OFS: howd u get 21.213
16.PIN: trial and error

Research on Cooperative/Collaborative Learning and Achievement (Slavin, R.E.)

- "Research on cooperative learning is one of the greatest success stories in the history of educational research."
- However, There is still a some confusion and disagreement about why cooperative learning methods affect achievement and, even more importantly, under what conditions cooperative learning has these effects.
- A great deal of knowledge about the effects of many types of cooperative interventions and about the mechanisms responsible for these effects.
- Cooperative learning is not only a subject of research and theory; it is used at some level by millions of teachers.

Slavin, R.E. Research on Cooperative Learning and Achievement: What We Know, What We Need to
Know http://www.successforall.com/Resource/research/cooplearn.htm

Cooperative/Collaborative Learning

Students who work together to clarify questions, discuss and select problem-solving strategies, co-construct solutions, and resolve controversies usually demonstrate greater gains in concept development and problem-solving abilities than similar students who work alone.

Davidson, N. (1985). Small group cooperative learning in mathematics: A selective view of the research. In R. Slavin (Ed.), "Learning to cooperate: Cooperating to learn." (pp.211-30) NY: Plenum.
Also: Elizabeth Cohen, Paul Cobb, Mercer \& Wegeriff

Bridging Research and Practice

- How to achieve effective grouping
- How to motivate participation and use appropriate rewards
- How to provide feedback and teach students to collaborate
- What authentic tasks work best for collaborative activities?
- How to align collaobrative activity with curricular goals

Share your experiences...

- Jigsaw?
- Complex instruction / Project-based Learning?
- Student teams-achievement divisions?
- Survivor Algebra anyone?

Some Sources:

- Handbook of cooperative learning methods. Shlomo Sharan, (Ed.). Praeger, 1999.
- Cooperative Learning in Mathematics: A Handbook for Teachers. Davidson, Neil. (Ed.). : AddisonWesley, 1990
- Artzt, Alice F. \& Claire M. Newman. How to Use Cooperative Learning in the Mathematics Classroom. National Council of Teachers of Mathematics, 1990

Software Supports

- Supporting activity awareness and coordination
- Threading
- Opportunistic Group formation
- Full-featured whiteboard
- Math support
- Online Community for sustained participation

ConcertChat

Chat: (233)
Alloc9 (Dec 5, 2004 8:17 AM): komm aber -
nicht mehr mit dem gleichen nick rein, sagt mir immer, dass der nick bereits genutet wird: (
Alloc1 (Dec 6, 2004 2:50 PM): Also, mit Alloc1 scheints jetz sogar zu gehn, gleich ma probiern, ob des auch shcon direkt nach dem schliessen wieder geht;)
Alloc5 (Dec 6, 2004 2:51 PM): ne, also direkt wieder reingehn geht nicht :(martinw (Dec 6, 2004 8:28 PM): Hi merkwürdig... dieses Problem hatten wir noch nie.
martinw (Dec 6, 2004 8:29 PM): welchen Browser, welche Java VM benutzen Sie? gerry (2:00 Ph): I like this diagram of the space
gerry (2:02 PM): Welche Problem ist merkwurdig?
gerry (2:02 PM): where are my links? gerry (2:03 PM): This is Johann gerry (2:06 PM): This is a deictic link!

Message:

Your students can be part of Virtual Math Teams @The Math Forum!

http://mathforum.org/vmt/

Cooperative/Collaborative Learning

- Davidson (1985) reviewed 79 research studies comparing student achievement in small group and traditional whole-class instruction, and found that in more than 40% of these studies students in the classes using small group approaches significantly outscored control students on measures of student performance.
- From a review of 99 studies of cooperative group-learning methods, Slavin (1990) concluded that cooperative methods were effective in improving student achievement. The most effective methods emphasized both group goals and individual accountability.

Davidson, N. (1985). Small group cooperative learning in mathematics: A selective view of the research. In R. Slavin (Ed.), "Learning to cooperate: Cooperating to learn." (pp.211-30) NY: Plenum.
Slavin, R.E. (1990). Student team learning in mathematics. In N. Davidson (Ed.), "Cooperative learning in math: A handbook for teachers". Boston: Allyn \& Bacon, (pp. 69-102).
Cited in the ERIC digest "Improving Student Achievement in Mathematics, Part 1: Research Findings." (2000) Grouws, Douglas A. - Cebulla, Kristin J. ERIC Clearinghouse for Science Mathematics and Environmental Education http://www.ericdigests.org/2003-1/math2.htm

Virtual Math Teams Research

- How to group students for effective online collaboration (opportunistic group formation)
- How to design rich mathematical problems that foster collaboration and deep mathematical reasoning (task scaffolding)
- How to structure the online collaborative experience (interaction design for learning)
- How to study the forms of collaboration and reasoning that take place (multidisciplinary research)

1. Mod: If two equilateral triangles have edgelengths of 9 cubits and ...
2. ALR: hmmm
3. ALR: interesting
4. Mod : If you create a picture that you would like to share...
5. PIN: : very
6. ALR: I think we can crack it, though
7. ALR : **begins to scribble on paper**
8. ALR : or should I not do that?
9. PIN: : doesnt matter
10. ALR : got it
11. ALR : **proceeds with scribbling..**
12. ALR : Okay, I think we should start with the formula for the area of a triangle
13. SUP: ok
14. $A L R$: $A=1 / 2 b h$
15. ALR: I believe
16. PIN: yes
17. PIN: i concue
18. PIN: concur*
19. ALR : then find the area of each triangle
20. ALR: oh, wait
21. SUP : the base and heigth are 9 and 12 right?
22. ALR: no
23. SUP: o
24. ALR : that's two separate triangles
25. SUP: 000
26. SUP : ok
27. ALR : right
28. ALR: i think we have to figure out the height by ourselves
29. ALR: if possible

30. PIN: : i know how
