INTERPRETATION IN DESIGN:
THE PROBLEM OF
TACIT AND EXPLICIT UNDERSTANDING
IN COMPUTER SUPPORT OF COOPERATIVE DESIGN

by
GERRY STAHL

B.S., Massachusetts Institute of Technology, 1967
University of Heidelberg, Germany, 1968
M.A., Northwestern University, 1971
University of Frankfurt, Germany, 1973
Ph.D., Northwestern University, 1975
M.S., University of Colorado, 1990

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirement for the degree of
Doctor of Philosophy
Department of Computer Science

1993

This dissertation for the Doctor of Philosophy degree by
Gerry Stahl
has been approved for the
Department of
Computer Science

by

Gerhard Fischer

Raymond J. McCall, Jr.

Date: August 5, 1993

Dissertation Committee:

Gerhard Fischer, Computer Science (co-chair)
Raymond McCall, Environmental Design (co-chair)
Clayton Lewis Computer Science

Mark Gross Environmental Design

Michael Eisenberg Computer Science

Wayne Citrin Electrical and Computer Engineering

Stahl, Gerry (Ph.D., Computer Science)

INTERPRETATION IN DESIGN:
THE PROBLEM OF TACIT AND EXPLICIT UNDERSTANDING
IN COMPUTER SUPPORT OF COOPERATIVE DESIGN

Thesis directed by Professors Gerhard Fischer and Raymond McCall

Abstract

This work analyzes the central role of interpretation in non-routine design.
Based on this analysis, a theory of computer support for interpretation in cooperative
design is constructed. The theory is grounded in studies of design and interpretation.
It is illustrated by mechanisms provided by a software substrate for computer-based
design environments, applied to a sample task of lunar habitat design.

Computer support of innovative design must overcome the problem that
designers necessarily make extensive use of situated tacit understanding while
computers can only store and display explicit representations of information. The
automation techniques used for routine design are not applicable: techniques are
needed to support creative, tacit human understanding with explicit computer
representations.

The process by which designers transform their tacit preunderstanding into
explicit knowledge is termed “interpretation”. Interpretation is necessary for solving
design problems and collaborating with other designers. Considerable explicit
knowledge is thereby generated in the natural course of designing. Often this
knowledge includes the most valuable information that can be presented to designers

who revisit these design projects or undertake similar projects in the future. If

representations of this knowledge have been defined using computer-based design
support systems, then the representations can be captured by these systems for the
support of subsequent design work.

A theory of computer support for interpretation in design is presented in three
stages. First, the role of interpretation in design is explored by reviewing descriptions
of design by Alexander, Rittel, and Schon; by conducting a protocol analysis of lunar
habitat design; and by applying Heidegger’s philosophy of situated interpretation.
Second, this analysis of interpretation is extended to define a theory of computer
support. The features of this theory—support for the situated, perspectival, and
linguistic characteristics of interpretation—are used to evaluate previous work on
software design rationale systems. Third, design principles are discussed for
HERMES, a prototype hypermedia substrate for building computer-based design
environments to support interpretation in tasks like lunar habitat design. The
hypermedia integrates a perspectives mechanism and an end-user language to capture
and modify representations of the design situation, alternative perspectives on design

tasks, and terminology for conceptualizing design issues.

ACKNOWLEDGMENTS

The perspective on design methodology and the approach to computer
support for design presented here grew out of the research of Raymond McCall of the
School of Environmental Design, Gerhard Fischer of the Department of Computer
Science, and other members of the Human-Computer Communication (HCC) group
at the University of Colorado at Boulder. I have been privileged to work closely with
Ray for three years as his graduate research assistant. My HERMES prototype began as
a rewrite of his PHIDIAS project, and incorporated much of its approach. Even where
my ideas have gone off in new directions, they have been helped along by Ray's
unbounded interest and unstinting assistance. For the same three years I have
participated in the HCC research group led by Gerhard, particularly the weekly
seminars on computers and design. Gerhard guided me from vague interests in
theoretical issues to a coherent view and a concrete dissertation project, using his
characteristic style that provides a model of non-directive critiquing at its most
effective.

Clayton Lewis' courses on Al and interface design raised many of the
concerns I have tried to address in my dissertation. The HERMES language benefited
not only from Clayton's programming language evaluation methodology, but more
from his personal perceptive analysis. Michael Eisenberg also contributed to my
understanding of the language, bringing his understanding of (and support for) the
role of languages in programmable applications. Each member of my committee
contributed his own strong perspective to my work. However, I was able to rely on
Mark Gross for balanced reality checks. Mark placed each draft I gave him in the

broader view of Al and design practice, and wondered in a friendly but insistent way

vi

what these esoteric notions really had to do with making better habitats. Although I
have tried to address many concerns of my professors and fellow graduate students, I
have used Mark to represent my target audience: skeptical but informed and
interested. Wayne Citrin played a similar role as reader of this dissertation.

While individual professors had specific effects on my work, the most
pervasive influence was that of the HCC research group as a whole, which included
about twenty graduate students during my stay. They built the systems, gave the
presentations, and made fun of my ideas. A series of student reading groups on
situated cognition was particularly important in helping me start to grapple with the
ideas of Schon, Suchman, Winograd, Ehn, and Dreyfus. Research groups like this
where people's very different perspectives are brought together under the constraints
of shared work and common vocabularies exert pervasive influences that are
impossible to acknowledge in detail. Nevertheless, I must single out my beta-testers,
Tamara Sumner, Jonathan Ostwald, and Kumiyo Nakakoji, who relentlessly critiqued
drafts of every chapter. Many of the ideas and formulations in the dissertation arose
during reviews of those drafts with them and with Ray McCall. Special note should
also be made of the dissertation work of Brent Reeves, Kumiyo Nakakoji, and Frank
Shipman, which is closely related to the themes of this dissertation.

Implicit in this dissertation is the question about the relationship of Al to
philosophy, which has intrigued me since my undergraduate days at MIT. In 1966 1
attended a debate between my teachers, Marvin Minsky and Herbert Dreyfus.
Convinced by Dreyfus' arguments that the approaches of Al were fundamentally
flawed, I wondered what an Al based on Heidegger's philosophy would be like. What
I am proposing now is a partial answer to that question, although one quite different
from anything I could have imagined 25 years ago. For my understanding of
Heidegger and hermeneutics I am indebted to Sam Todes, Ted Kiesel, Hans-Georg

Gadamer, and members of the Frankfurt School of critical social theory.

Vi

Writing a dissertation is part of living a life. Accordingly, this dissertation
owes its existence to Carol Bliss, my wife, without whom I would never have moved
West to pursue this study. She both tolerated my long hours at the computer and
enriched the remaining times.

Johnson Engineering (JE) of Boulder contributed generously the time and
expertise of Designer Mike Pogue and Vice President John Ciciora. They provided
the primary source of information about lunar habitat design, its needs, and its
methods.

The research in providing computer support for the task of lunar habitat
design was supported in part by grants to Ray McCall from the Colorado Advanced
Software Institute (CASI) for 1990-91, 1991-92, and 1992-93 in collaboration with
IBM and JE. CASI is sponsored in part by the Colorado Advanced Technology
Institute (CATI), an agency of the State of Colorado. CATI promotes advanced
technology education and research at universities in Colorado for the purpose of
economic development.

Material from the following chapters has been previously published in
different formats: Chapter 1 (Stahl, 1993a), Chapter 8 (Stahl, 1993b), Chapter 9
(Fischer, et al., 1993a, 1993b), Chapter 10 (Stahl, et al., 1992).

CONTENTS

ACKNOWLEDGMENTS ...ttt sttt A%
CONTENTS .ttt bttt et et s ettt e sbe st e be b enes viii
LIST OF FIGURES. ..ottt sttt s xi
LIST OF TABLES ...ttt ettt Xiv
INTRODUCTION. ...ttt sttt ettt et tesbestesbesaeeseeseeneensenaensensenes 1
CHAPTER 1. OVERVIEW ..ottt 8
1.1. Understanding Interpretation.............ceccueevveerieeiiienienieeie e 9
1.2. The Methodology of DeSigncccccueeeiieriieiiieiiieiiecie et 18
1.3. The Example of Lunar Habitat Designcccceevuerieniinenienenieneenns 21
1.4. The Analysis of Situated Interpretationcoceeververeenenieneniennns 24
1.5. Tacit and Explicit Knowledge in Designccceeeevvieniienieeniienieenen. 31
1.6. Consequences for a Theory of Computer Support.........cceeevvereveeieennnn. 34
1.7. Previous Software Systems for Designcccecueevieriienienieeniienieenen. 41
1.8. Hypermedia in the Hermes SyStemcccoocveeiieriiieriienieeiieieeieeens 44
1.9. Perspectives in HEImEScccueevuiieiieiieeieeiiesie et 48
1.10. The Hermes Languagecccceeveeriieniieniieiieeie et 50
L. 11, CONCIUSION vttt ettt et ettt s 53
PART [. INTERPRETATION IN DESIGN....cccctttiiiieiiiieeieeeeieeeeite et 35
CHAPTER 2. THREE METHODOLOGIES OF DESIGN.......ccccoceiiiininininiieennns 57
2.1. Alexander: the Structure of a Design Situation............cccceeeevierierveennnn. 59

2.2. Rittel: Deliberating from Perspectives.........ccceevueveeneeienienensieneeneenne. 66

2.3. Schon: Tacit Knowing and Explicit Languagecccoccvvvevvenieeneennen. 71
CHAPTER 3. INTERPRETATION IN LUNAR HABITAT DESIGN....................... 88
3.1. Situations of Privacy and the Problem of Representation...................... 90
3.2, Perspectives 0N PriVACY......c.ccccieriiiiiieniieeiieie ettt 99
3.3. Capturing the Language of Privacy.........cccoeveevvieniieiienieeiieieeeene 114
CHAPTER 4. HEIDEGGER’S PHILOSOPHY OF INTERPRETATION 127
4.1. Definition of the Situation as Basis for Tacit Understanding 133
4.2. The Role of Shared Traditions and Personal Perspectives................... 145
4.3. Interpretation as Explication in Language..........cccccceevverieenieneeenenne. 153

PART II. THE PROBLEM OF TACIT AND EXPLICIT UNDERSTANDING 169

CHAPTER 5. GROUNDING EXPLICIT DESIGN KNOWLEDGE....................... 170
5.1. Applying Heidegger’s Philosophy to Design........c.ccceveevienienennenee. 171
5.2. The Social and Human Grounding of Interpretation................ccco....... 182
5.3. Transformations of Tacit to Explicit Understandingcc......... 193
CHAPTER 6. A THEORY OF COMPUTER SUPPORTcceeieviiiiiinirierienene. 201
6.1. A People-Centered Approachccceccveeviieniieciiinienieeieese e 203
6.2. Supporting Situated, Perspectival, Linguistic Interpretation 205
6.3. A Model of Computer SUPPOTtceeviieiiiiiiieiienie et 214
CHAPTER 7. RELATED COMPUTER SYSTEMS FOR DESIGN........................ 219
7.1. External Media for Design........ccceevuieriiiiiiieniienieeieeeee et 223
7.2. Perspectives for Deliberationccccueveveerierieenienieeieesie e 235

7.3. Languages for Human Problem-Domain Communication................... 244

PART II. COMPUTER SUPPORT OF COOPERATIVE DESIGN.........ccccoueunnee 261
CHAPTER 8. REPRESENTING THE DESIGN SITUATIONcccccvevviiiiiienee. 264
8.1. A Computationally Active Medium for Designersc.cceceveenennee. 265
8.2. Knowledge Representation in the Hermes Substrate..........c.cccoceeuennee. 274
8.3. Lunar Habitat Design Environments............cccecceeveeevieeneeniiieneeeneennen. 278
CHAPTER 9. INTERPRETIVE PERSPECTIVES FOR COLLABORATION....... 288
9.1. A Scenario of COOPETratioN.........cc.eevueerieeriienieeiienieereenieeeiee e ereenens 290
9.2. A Hypermedia Implementation of Perspectives..........cccceveeruereennennee 305
0.3, EvOlVING PerSpeCtiVescccvieeuiieiieriieeiieniie ettt 313
CHAPTER 10. A LANGUAGE FOR SUPPORTING INTERPRETATION 325
10.1. An Approach to Language Designcccceeevueivieiiienieniieiieeeeeieene 329
10.2 Encapsulating Explicit Mechanisms in Tacit Forms............cccccccueneee. 351
10.3 Defining Interpretive CIitiCSc.eeveerieeiiienieeieeriieeieeieesee e 359
CONCLUSTON ...ttt sttt ettt ettt et sttt eseest et estensessesbeseeeseeneensensensensens 372
CHAPTER 11. CONTRIBUTIONS ...ttt 373
11.1 Contributions to a Philosophy of Interpretation.............ccccccvevveenenee. 376
11.2 Contributions to a Theory of Computer Supportccceeevevveeneenee. 377
11.3 Contributions to a System for Innovative Designccccoceeveeiennnenne. 379
BIBLIOGRAPHY ..ottt 381
APPENDIX ...ttt ettt ettt sttt ettt ettt nne it 392
A. Programming Walkthrough of the Hermes Languagec..cccccecuenneee. 393
B. Tacit Usage of the Hermes Languagecccoeevvevieeiieniienieciieieee, 415

C. Explicit Structure of the Hermes Languagecccceecvvevivenieeiieenneennee. 435

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 6-1.

LIST OF FIGURES

Transformations of tacit to explicit information.ccceeerienennennnnn 33
The theory of computer support for interpretation in design.................... 38
Arranging sleep compartment bunks using Hermes.ccccceervenennnene 46
A view of an issue-based information system in Hermes. 70
Four interpretations of the library.........c.cccceeeiieviiniiiiiiineeeeeee 73
Initial design of a lunar habitat layout.c..ccceviiiiiinniiniinee 91
A layout for living and WOrking.c.ccceceeverieniniiniinineneeeeeee 100
A Private dresSSING Area.evueervereerieeiereenieeiienieeiesee e seesee e e eae 103
A Privacy SradiCNt. c..coeevuieriieiiniieieriiee ettt 106
Relative adjacencies based on functional relationships..........c.ccecueeneeee. 111
Required volume per crewmember as a function of mission duration... 119
Hermeneutic versus natural science approaches to design. 129
The two mainstreams of contemporary philosophy...........cccceecvieriennnnne 130
The network of references for tacit understanding of hammering. 134
The network of references that define Clara’s situation............cc..c........ 141
The network of references in lunar habitat design.cccceevierieennene 143
Two similar theories of breakdown.cccccoceeviiiiniinniinee, 156
Two different theories of breakdown.cccevveviniininiiiniiiceee, 175
The model of interpretation in deSign.ccceeceeeeiierieeiiienieeiierie e 176
Successive transformations of knowledge............ccoeeveviiiciiiniiniiieenne. 195
A taxonomy of classes of information.............ccceveeiiniieniniincnncnnenne. 197
Successive transformations of information.cecceeceeveevienierienennene 198

Computer support for interpretation in design.cccceveveveevuereenneenne. 215

Xii

Figure 6-2. A model of cooperative interpretation and its computer support............ 217
Figure 7-1. The multi-faceted architecture of Janus.ccccooceeviniiiiniincncnnnnn. 226
Figure 7-2. A layered archit€Cture..........cocuevueeieiieniiiienieieceeeeeeeeee e 230
Figure 7-3. Growth in total and formalized information............ccccceceeveeriinenieneenne. 238
Figure 8-1. Layered architecture of HEermes..........cccceceveenierieneiiieniencnieneceeeeenen 268
Figure 8-2. The Hermes substrate object hierarchy.cccovvieviiiiiiniiiniiiie, 275
Figure 8-3. A screen view of the Lhde interface.ccccooeeviniencniininiiniicee, 280
Figure 9-1. Desi’s lunar habitat design.cccceverierienienieneiieeeeceeeeeeeeeen 292
Figure 9-2. The hierarchy of perspectives inherited by Archie............cccoeeieenennnnn. 294
Figure 9-3. Archie’s lunar habitat design..........cccceouevievinieniineniieceee, 295
Figure 9-4. Archie’s lunar habitat with its privacy ratings...........cccceeveeevierieervennnnns 297
Figure 9-5. Output from the privacy check CritiC.coceveriiinieniniiniiiinieienee, 298
Figure 9-6. Output from the privacy display CritiC........cccceervureviierieeiiierienieeieeeieans 299
Figure 9-7. The privacy check critic applied to a list of all lunar habitats................ 300
Figure 9-8. Output from the privacy gradient catalog eXpression..........c..ecveereveennenn. 302
Figure 9-9. Creating a NEW PEISPECLIVE.ccueeuiirrieriiriierieriiesieeie ettt 303
Figure 9-10. Hierarchy of perspectives inherited by the team.c.ccoceveeiennennne. 304
Figure 9-11. The result of modifying the virtual copy of a node.cccvveirenenn. 309
Figure 9-12. An illustrative perspectives hierarchy.cccccoverveniiiiniininicneenn. 311
Figure 9-13. Switching contexts to traverse a subnetwork.ccccceceeveevereennennne. 312

Figure 9-14. Interface for merging existing information into a new perspective...... 315

Figure 9-15. Three perspectives on a segment of design rationale.c..cccueneee. 316

Figure 9-16. Interface for demoting or promoting a node or subnetwork of nodes.. 318

Figure 9-17. The layered architecture of design environments and Hermes............. 321
Figure 10-1. A database of design rationale.............coceveriieriinenieneniienieeneeeeen 330
Figure 10-2. An example of hypermedia navigation...........ccccecevveveriienernieneenennne. 344

Figure 10-3. Dialog boxes for defining DataList eXpressions.c..cccceeeeevvervenneenne. 347

Xiii

Figure 10-4. Phrase structure of a Hermes critic rule.ccccoveevieniiieniincnienenen. 363
Figure A-1. Family relations.cccooieiiiniiiiniiniiieeeeeeeeeeee e 417
Figure A-2. Output from the academic advising application.ccceceeevueerrennnnnn. 420

Figure A-3. A decision tree as virtual NOdes.cc.eecveveerierieneenenienieeieeeeeceee 428

Table 1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 4-1.
Table 4-2.
Table 4-3.

LIST OF TABLES

The structure of human interpretation.cceeeeeeveerieeiieenienieeeeeeens 11
Computer-based mechanisms to support interpretation in design. 13
Correspondences among the chapters.ccoeceevierieeriienieeciieeee e, 18
Syntactic classes of the Hermes language.cccoceevveiiieiienieciieenne, 52
The three aspects of INtErPretation.ocueeveeeieeriienieeiieeieeie e 158
The three aspects 0f @SSErtion.cccueeevierieeiiienieeieeeese e 163
Increasing abstraction of the preconditions of understanding. 165

Table 10-1. Correspondence of language uses, operations and classes of terms. 339

Table 10-2. Major syntactic classes of the Hermes language.cccccoceeverienennee. 341

Table 10-3. Examples of syntactic options for the Hermes language. 343

INTRODUCTION

“Not angels, not humans,

and already the knowing animals are aware

that we are not really at home in

our interpreted world.”
Rainer Maria Rilke
Duino Elegies
(1912, p.10)

A few words from the author’s perspective may help to orient the reader for
the task of interpreting the discussions that follow.

The focus of this dissertation is interpretation in design. This theme is
motivated by the desire to provide computer support for the work of designers. The
initial impetus for thinking about the support of design as the support of an
interpretive process came from two sources (one theoretical and one empirical):

(1) I felt that a new theoretical perspective was needed on computer support of
professional work, or more broadly human-computer interaction and
computer supported cooperative work. The old view that thought was a form
of computation—or that mind was functionally equivalent to software—has
outlived its usefulness as a theoretical foundation for the design of software. I
suspected that ideas from Heidegger’s philosophy could help here. Readings
of situated cognition theorists reinforced this suspicion.

(i1) After videotaping an initial session of lunar habitat designers at work, I was
struck by how involved they were in processes of interpretation. In particular,
issues of privacy in the habitat dominated their thinking and they
concentrated on working out an interpretation of what privacy meant under
lunar mission conditions and what implications that interpretation had for the
habitat layout.

These ideas were only tacitly understood by me as I worked on the
programming of the HERMES system, a software substrate for design environments to
support the work of lunar habitat designers. I would have been hard pressed to state
why I thought Heidegger was relevant or how design was a matter of interpretation.
Above all, I could not articulate what implications this all had for the HERMES
software. When my programming was done, I proceeded to try to put my implicit
commitments into words and provide supporting evidence for them. I did this by

writing the chapters of this dissertation, basically in their current order:

Chapter 1. Because HERMES was actually programmed before the issues
about supporting interpretation were explicitly clear to me, the writing of the
dissertation as a process of articulating my formerly tacit understandings in language
has been a journey of gradual discovery. The HERMES system has served in this
journey as an artifact to stimulate interpretation. The resultant dissertation is, to a
large extent, a research document, sharing with the reader a contact with the raw
phenomena that make its claims understandable. To some extent, I have attempted
retrospectively to impose an argumentative structure on the text. So, for instance,
Chapter 1 provides a road map through the other chapters, so the reader has a clearer
sense of where the journey is going than the author originally did. Undoubtedly, I
have failed to provide sufficient direction to make the long journey comfortable. I
rationalize this by reminding myself that in order to accept new ideas each reader
must have some contact with the phenomena themselves (hence the level of detail
and proliferation of quotations), and that each reader will construct his or her own
conclusions from the material I have offered (hence the lack of parsimony with
respect to related thoughts and side paths).

Chapter 2. I turned first to three writers who I felt shed the most insight into
the nature of the design process. As 1 tried to pinpoint their central ideas I was struck
by the correspondence between these ideas and the three features of preunderstanding
in Heidegger’s theory. While Alexander, Rittel, and Schon discussed these three
features in very different ways, they each paid special attention to one of them, and
discussed the other two secondarily. I decided that these three writers could be taken
as spokespeople for the three features of preunderstanding: its (a) situated, (b)
perspectival, and (c) linguistic characteristics.

Chapter 3. In turning to the videotapes of the lunar habitat designers, 1
focused on a pivotal passage in which the direction of the rest of the designing was

determined. Here the three features of interpretation could be seen at work: The

designers were trying to design a situation for astronauts to live in where there would
be a comfortable balance of private and public space. The emphasis on privacy
defined a forceful perspective that determined their design work. Lengthy discussions
among the designers articulated in /anguage their tacit understandings of privacy and
raised the question of how such understandings could be represented in design
guidelines, including NASA’s design standards.

Chapter 4. Heidegger’s philosophy provided an analysis of interpretation
that clarified many of the issues raised by the design methodologists and the video
protocol analysis. It also offered a basis for a theory of computer support. For
Heidegger, interpretation is the process of transforming tacit preunderstanding into
progressively more explicit forms. In this process, the understanding is significantly
altered; for instance, surprise discoveries may be made and the interpretive
framework may require revision. The three features that are already present in tacit
preunderstanding are each carried along and transformed in the more explicit forms
of understanding: The situation 1is the tacitly preunderstood network of
interrelationships, which may need to be revised as interpretation proceeds and
discoveries are made that do not fit in. Interpretation always focuses on something as
viewed from a particular perspective. As understanding becomes increasingly
explicit, it can be communicated in language.

Chapter 5. Applying Heidegger’s analysis of being-in-the-world to the
imaginative realm of design clarified the structure of the successive transformations
of understanding that Heidegger eludes to. Like a designed artifact, reality is socially
constructed. Human intentionality grounds the interpretive construction of reality in
tacit preunderstanding. Transformations of initially tacit preunderstandings can
eventually be explicated and formalized so that knowledge can be reflected upon,

communicated, documented, and stored in computer representations.

Chapter 6. Building on this analysis of interpretation in design, I sketched
my theory of computer support. 1 argued that Heidegger provides theoretical grounds
for requiring that computer systems for innovative tasks (like lunar habitat design) be
subservient supports for the people who use them and who must make the critical
decisions and judgments based on intentionality and understanding that computers
cannot have. Such systems to support interpretation should support the three features
of understanding discussed above: representing the situation, offering choices of
perspectives, and providing linguistic expressions. Of course, software design
environments could provide many other features, but these are the ones I focused on
as illustrative of a people-centered approach to supporting interpretation in design. |
extended the model of successive transformations of understanding to include a
model of computer support for this process of interpretation.

Chapter 7. Previous software systems have suggested how to support
particular points along the continuum between tacit and explicit understanding. At
the other extreme, domain-oriented design environments provide direct manipulation
representations of the tacit situation. Domain-independent design rationale systems
propose explicit systems of perspectives, query languages, or explicit programming
languages. Each of these ideas from related work have had their influence on the
HERMES system. But none of them have tried to support interpretation in design in a
theoretically motivated way. I explored a number of suggestions in the literature for
providing external media for designers to work in, several mechanisms for
perspectives to organize viewpoints, and some end-user language approaches. These
led to ideas for ways HERMES could provide a proper mix of support for tacit and
explicit understanding, and for the transformation of one into the other.

Chapter 8. Three key features of HERMES are discussed in the dissertation.
They correspond to the features of human interpretation, which they are intended to

support. (a) The hypermedia structure provides an integrated knowledge

representation structure that incorporates (b) a perspectives mechanism and (c)
expressions in an end-user language. It is intended to support tacit understanding of a
design situation by representing that situation with multimedia elements that can be
tacitly reused and modified. To the extent necessary, a designer using the system can
make the representation structure more explicit in order to modify it to meet the
needs of innovation. The hypermedia substrate provides functionality for a
computationally active medium, on which design environments can be built for tasks
like lunar habitat design.

Chapter 9. Design is generally a cooperative endeavor, involving the
deliberation of multiple individual design perspectives and the construction of a
shared perspective. HERMES supports this by organizing all knowledge in the system
with a hierarchy of perspectives. While a designer is working, all knowledge
retrieval and display by the system is done within a selected perspective, without the
designer needing to be aware of this filtering of knowledge. However, designers can
also use the perspective mechanism explicitly in order to incorporate knowledge
from other perspectives or to create new perspectives that inherit information from
existing ones. I described a scenario of how designers using HERMES could capture
the knowledge that arose in the videotaped design session. The scenario included
creation and merging of perspectives to support the evolution of knowledge. A
discussion of the scenario presents the details of the hypermedia implementation of
perspectives.

Chapter 10. The HERMES language supports tacit expression by providing a
vocabulary of domain-oriented terminology that can be reused without concern for
the (potentially quite complex) underlying definitions. At the same time, the interface
to the language allows a designer to explore the definitions of particular terms and
modify them in accordance with innovative needs, personal perspectives, or

collaborative agreements. While the HERMES language serves as a programming

language for communicating algorithmic definitions to the computer, many of the
concerns that programmers must keep explicitly in mind when using conventional
general-purpose programming languages are encapsulated in tacit forms and
implicitly taken care of by the HERMES language. To test the power of the language, I
worked out the definition of complex interpretive critics for privacy issues in detail.

Chapter 11. What has been accomplished here? I set out to define a new
theoretical perspective for the computer support of professional work, taking lunar
habitat design as my concrete example. I proceeded by trying to rethink recent
attempts that were around me, notably the PHIDIAS and JANUS design environments
developed at the University of Colorado. First, I programmed my own design
environment substrate in order to work out implementation details for myself. Then I
studied the design methodologists and situated cognitionists who had influenced the
development of these systems. I also took time to familiarize myself with a particular
design domain, that of lunar habitat design. Guided by Heidegger’s analysis of
interpretation, I tried to question as radically as I could the rationale given for the
approach of PHIDIAS and JANUS. The theory of computer support I arrived at is,
however, not so different. I concluded that the general approach of those systems was
consistent with my theory.

What I feel I have achieved is not a recipe for a new kind of software, but a
more carefully articulated way of thinking about the design of software for
innovative, collaborative design as epitomized by lunar habitat design. Previous
rationale for design environments did not explicitly recognize the centrality of
interpretation in human-computer interaction or analyze the transformations from
tacit human understanding to explicit computer representations. Not only does this
dissertation work out these themes and their related issues in considerable detail, but
it also provides technical descriptions of software mechanisms that extend previous

design environment techniques in order to support interpretation in design.

CHAPTER 1. OVERVIEW

The following chapters present a theory of computer support for innovative
(non-routine), cooperative design based on an analysis of interpretation in design.
They will argue that the central impediment to computer support of innovative design
is that designers make extensive use of situated tacit understanding while computers
can only store and display explicit representations of information.

The process by which designers transform their tacit preunderstanding into
explicit knowledge is termed interpretation. (See Part 1 for an analysis of
interpretation in design.) Interpretation is central to the process of solving design
problems and is part of the process of collaborating with other designers; the explicit
knowledge that is generated by this interpretation is therefore a natural by-product of
innovative, cooperative design. (See Part II for a theory of computer support based
on this generated knowledge.) Representations of this knowledge defined using
computer-based design support systems can be captured by these systems for the
support of subsequent design work, including the maintenance and modification of
the designed artifacts. (See Part III for details of a computer system for supporting
interpretation in design.)

Chapter 1 provides a chapter-by-chapter overview of the dissertation. It
discusses the claims, arguments, and themes that arise in each of the subsequent
chapters, without going into the detail necessary to defend the claims, support the
arguments, or work out the themes. Its purpose is to provide a readers’ guide to the
flow of the dissertation, motivating how one discussion leads into or provides the
background for another. Section 1.1 offers a preliminary presentation of the central

concept of interpretation, anticipating the analysis of this concept from various

10

approaches in the dissertation. Each of the other sections provides an overview of a

specific chapter.

1.1. UNDERSTANDING INTERPRETATION

To say that interpretation is central to innovative design is to stress that in
order to design the designer must to some degree understand and be able to articulate
the significance of the artifact being designed. This may include, for instance,
understanding what is desired in a task specification, how possible composite parts of
the artifact will function and interact, or how people can use the designed artifact.
According to the analysis presented below, such understanding is possible for people
but not for computers. People understand things because they are actively involved
with them in the world. The significance of artifacts for a person is determined by the
artifacts’ relationships to other artifacts, activities, and people whose significance is
already understood as part of the person’s situation. Understanding combines
personal and socially shared perspectives on the world. All of this takes place
primarily in facit ways, i.e., unverbalized. However, one’s tacit understanding of
something can be partially articulated or expressed explicitly in spoken, written, or
graphical language—either to deepen one’s own understanding or to communicate
with others.

Two aspects of the process of interpretation can be distinguished.

(1) There is a tacit preunderstanding based on previous background knowledge;
items from this preunderstanding can be articulated explicitly.
(2) There is the possibility of revising that preunderstanding based on discoveries
that are opened up by it.
That is, one can interpret something as something that one already knows about, or

as a variation that differs from that in ways that are discovered as a result of the

11

breaking of one’s tacit expectations. Accordingly, interpretation in innovative design
involves both human understanding of extensive background and a creative ability to
revise one’s understandings iteratively.

The analysis of interpretation developed below distinguishes three
characteristics of interpretation: being situated, having a perspective, and using
language.!

(a) Being situated means that what is to be interpreted is tacitly understood by
virtue of its associations within an open-ended network of related artifacts,
people, human purposes, and other concerns. All of these associations are
themselves understood as part of one’s background understanding of one’s
involvements.

(b) Having a perspective means that there is a focus on a certain aspect or that a
specific approach is taken in interpreting something.

(c) Using language means that a particular vocabulary is available as part of a
tradition that provides a conceptual framework for the interpretive task.

Each of these characteristics of interpretation is grounded in a form of
preunderstanding that can be transformed through a corresponding phase of

discovery. This two-dimensional structure is presented in Table 1-1.

1 Note that the numbering scheme of 1, 2 and a, b, ¢ is used consistently in this chapter as an
organizing structure for the dissertation. It indicates correspondences among items listed; in particular,
it indexes the way in which computer support features correspond to the characteristics of
interpretation. Subsequent chapters are also organized around discussions of these characteristics and
features, as emphasized in this Overview. Frequently, the numbering system is dropped and key terms
are italicized as reminders that the discussion is focusing on (1) preunderstanding and (2) discovery, or
on the (a) situated, (b) perspectival, and (c) linguistic character of understanding.

Table 1-1. The structure of human interpretation.

12

(a) situated (b) perspectival (c) linguistic
(1)preunderstanding expectations focus conceptualization
(2) discovery surprises deliberations refinements

In articulating tacit understanding, interpretation both discloses inherent
implications and discovers unanticipated consequences in the situation. Through
interpretation, designers might (a) try to externalize their expectations about a design
situation by drawing a sketch and then discover surprises when they explore the
sketch. Similarly, they might need to revise their understanding as a result of (b)
shifting their focus on a problem and deliberating from alternative perspectives or (c)
changing the way they conceptualize an issue and refining the definitions of terms in
their language.

The structure of human interpretation carries over to design. The design
process is a cycle or spiral of interpretation: (1) some item of the initial
preunderstanding—the grasp of the design situation, the perspective for viewing, the
language for conceptualizing—is made explicit, reflected upon, and further
articulated in new design decisions. (2) This leads to the discovery of unanticipated
consequences or contingencies and a new understanding that requires revisions to the
understanding of the design problem, its viewpoint, or terminology. (1”) The new
understanding then becomes re-submerged into a modified tacit understanding that
forms the starting-point for the next iteration of interpretation and design.

The analysis of interpretation in design motivates a theory of computer
support. According to this theory, computer support for interpretation in innovative
design differs from autonomous software systems for routine design by focusing on
supporting or augmenting human activities rather than automating them, because

only people have the understanding and creativity required for interpretation. This

13

computer support takes two general forms in order to support the two phases of
interpretation:

1. It provides access to a wealth of information that might be useful as a basis
for interpreting new design tasks. This information for reuse is culled
primarily from previous design experience, and includes (a) partial
representations? of design situations, (b) alternative ways of considering
tasks, and (c) terminology helpful for conceptualizing problems.

2. It facilitates the revision of stored information so designers can tailor existing
representations to novel problems and can capture innovative designs to
extend the computerized knowledge-base and to communicate ideas to
collaborators. This plasticity of representation—the ability to mold, form,
adapt, alter, or modify the representations—applies to all design knowledge,
including (a), (b), and (c) of point (1).

The proposed theory of computer support suggests an approach to building
software systems that has been prototyped in a system named HERMES. HERMES is a
substrate for building design environments to support interpretation in innovative
design. Motivated by the analysis of interpretation, HERMES provides the following
features to support reuse and plasticity of representations of each of the three
characteristics of interpretation, being situated, having perspectives, and using
language (see Table 1-2):

a-1. A persistent hypermedia network for storing partial representations of design

situations and for browsing among them.

2 Note that the computer manipulates symbolic representations of things in the situation,
whereas the designer has a situated understanding of the things. According to Heidegger’s philosophy,
representations are explicit forms of information that only arise under certain conditions and on the
basis of people’s normally tacit understanding of things within the context of meaningful
involvements. In Chapter 4, the situation is defined as this context of meaningful involvements, which
provides a precondition for meaningful representations.

14

a-2. Efficient mechanisms for revising the representations (multimedia nodes)
and modifying their associations (links).

b-1. A perspectives mechanism that organizes specialized or personal ways of
filtering out information of interest

b-2. Procedures for switching perspectives or for creating new ones by merging
existing perspectives and modifying their inherited contents in the new one.

c-1. An end-user language that provides useful domain terms, rules for critiquing
designs, and queries for displaying stored information.

c-2. The ability to modify or generate new terms, critic rules, and queries or to

use the language for defining computations.

Table 1-2. Computer-based mechanisms to support interpretation in design.

(a) situated (b) perspectival (c) linguistic
(1) reuse hypermedia network perspectives mechanism end-user language
(2) plasticity revising representations | merging multiple defining new
perspectives expressions

Although computers cannot understand things the way people do, they can
serve as a computational medium to support people’s interpretive processes. The
computer support mechanisms listed in Table 1-2 can augment cooperative design in
a number of ways, including:

a-1 As a long-term memory or repository for information that was created in past
designing and is now available to be shared by designers using the repository.

a-2 As an external memory for representing and revising designs to see how
alternative variations appear.

b-1 As a retrieval mechanism for organizing and managing design knowledge and
filtering through just what is relevant.

b-2 As a display mechanism to define new personal and shared views of designs.

15

c-1 As a linguistic medium for expressing knowledge in a canonical form that
can be used for computations by the software.

c-2 As a communication medium to generate new knowledge to be shared with
others.

A comparison of Table 1-1 and Table 1-2 shows that the mechanisms of
computer support are based on the structure of unaided human interpretation. The
computer support is intended to extend the power of designers to operate under
conditions of “information overload,” in which it is becoming increasingly difficult
to work effectively without the use of computers.

Computer support will inevitably change the practices of collaborative
design. This need not be considered harmful—particularly in cases where traditional
procedures have become inadequate—if important factors like the characteristics of
interpretation are preserved and adequately supported. Computational media have the
potential for changing the activities of professionals even more than the media of
written language did in the past, because of significant opportunities for the computer
to play a computationally active role in organizing, analyzing, displaying, and
communicating the information. The ways in which design tasks are accomplished
will change dramatically as the computer augments and supports designers to do
many of the same tasks they have done unaided in the past, like designing and
modifying artifacts.

The proposed theory of computer support for interpretation in design goes to
the root of the problem of tacit and explicit understanding. Designers approach their
task with a background of skills, know-how, and experience that they are generally
not aware of as they design but that is a necessary precondition of their work as
trained professionals. For instance, architects have the ability to understand the
situations people might face in the buildings they design, they know how to sketch

and visualize relationships from the perspectives of different concerns, and they

16

move freely between various frameworks or traditions that provide meaningful
languages or metaphors for expressing their insights. Computers have no such tacit
preunderstanding; they can only retrieve and manipulate what people have already
formulated in explicit propositions or drawings. People and computers are not
analogous processors of information. If computers are to support human cognition
effectively, then these differences must be understood and taken into account.

By describing the transformation of tacit to explicit human understanding, the
analysis of interpretation not only clarifies how human cognition differs from
computer information processing, but also suggests how computers can support the
way people think. Philosophically, the analysis of interpretation provides the key to a
theory of people-centered computer support. Technically, the analysis enumerates the
functionality needed for computer support of interpretation in design. Practically, it
points out that the process of innovative design and the requirements of collaboration
generate both the need for computer support and the sources of explicit knowledge
that make it possible. For instance, large, multi-person design projects often confront
the problem of information overload, where computers are required to manage
volumes of technical knowledge. At the same time, these cooperative design
processes naturally articulate much explicit knowledge that could prove useful in
subsequent computer-supported design work.

The theory of computer support for interpretation in design is presented in
three Parts: in Part I, Chapters 2, 3, and 4 develop the analysis of interpretation in
design. In Part II, Chapters 5, 6, and 7 draw the consequences of the problem of tacit
and explicit understanding for computer support. In Part III, Chapters 8, 9, and 10
describe how the technical features of the HERMES substrate support interpretation in
collaborative design.

The analysis of interpretation is developed by reviewing insightful

descriptions of design by design methodologists Alexander, Rittel, and Schon

17

(Chapter 2). Characteristics of design enumerated in that review are then used to
guide a study of transcripts of a design session involving a task of lunar habitat
design (Chapter 3). The design process—as characterized by design methodology and
as illustrated with lunar habitat design—is then conceptualized as a process of
interpretation by using Heidegger’s philosophy of interpretation (Chapter 4).

The consequences for computer-based design systems are drawn by further
developing the analysis of tacit and explicit understanding in design (Chapter 5), and
extending it to include a theory of the computer support of interpretation (Chapter 6).
This theory is applied to evaluate traditions of software design environments and
design rationale systems; useful techniques in these previous systems are explored
and their limitations noted (Chapter 7).

The technical description of computer support for cooperative design
describes the central functionality of HERMES. It has a hypermedia knowledge-base to
support (a) the representation of design situations (Chapter 8). A virtual copying
mechanism provides (b) perspectives on design knowledge (Chapter 9). An end-user
language is used for (c) articulating formerly tacit understandings in explicit
language (Chapter 10)

The order of presentation in the dissertation corresponds to the process of
interpretation. First, in the Introduction and Part I a preunderstanding is sketched to
provide a starting point for interpreting the problem of computer support for
innovative design. A review of design methodology provides a perspective from
which to understand design, formed by merging the perspectives of the three design
methodologists. A lunar habitat design project provides a concrete design situation
for grounding the developing understanding of design. Heidegger’s philosophy
provides a language and conceptual framework for talking about interpretation in
design. Second, in Part II this preunderstanding is used to explore possibilities for

computer support that are opened up by the preunderstanding. This is accomplished

18

partially by drawing out the theoretical consequences in order to extend the analysis
of interpretation in design to include a theory of its computer support. It is further
accomplished by discovering the achievements and the limitations of previous
software systems in providing the kind of support for design that is called for. Third,
in Part III the arrived at understanding allows for a discussion of the HERMES system
as an explicit illustration of possible responses to the problem of supporting
interpretation in design .

Predecessor systems to HERMES (principally JANUS and PHIDIAS) were
already headed in the direction that HERMES adopts. Discussions of these earlier
design environments made frequent reference to Alexander, Rittel, and Schon, for
instance, and insisted on supporting rather than automating design. The theory of
computer support for interpretation in design presented in this dissertation extends
this approach theoretically and practically. Its focus on interpretation situates its
people-centered approach unambiguously in an analysis of human understanding. By
providing a coherent perspective for viewing systems to support design, the theory
suggests principled extensions to the functionality of design environments, such as
those incorporated in the HERMES substrate. It provides an explicit language as a
basis for a coherent conceptual framework.

Each section in the remainder of Chapter 1 provides an overview of a chapter
of the dissertation. The first three sections each provide an argument for interpreting
design as a process of interpretation. The other sections draw the implications of this
argument for the computer support of design. The three characteristics of
interpretation run through all the chapters. Table 1-3 shows the correspondences
between the central themes in the different chapters. These correspondences link the
theoretical analysis of interpretation to the operational mechanisms that provide
computer support for these characteristics. For the sake of simplicity, the table does

not indicate that each of the entries involves both reuse of past information and

19

creative modification, however this is true both for the three characteristics of
interpretation and for their corresponding software mechanisms, as already shown in

Tables 1-1 and 1-2.

Table 1-3. Correspondences among the chapters.
Note that the three mechanisms of HERMES in Chapters 8, 9, and 10 correspond to the three
characteristics of interpretation that permeate and structure the dissertation.

Chapter Theme (a) (b) ()

1 interpretation situated perspectival linguistic

2 methodology Alexander Rittel Schon

3 lunar habitat privacy conflict privacy concern privacy gradient

4 preunderstanding prepossession preview preconception

5,6 computer support represent have perspectives | make use of

situation language

7 previous systems JANUS PIE PHIDIAS

8,9,10 HERMES software hypermedia perspectives end-user
substrate network mechanism language

1.2. THE METHODOLOGY OF DESIGN

A central claim of this dissertation is that design can be viewed as
fundamentally a process of interpretation. In this interpretive process, elements of the
designer’s tacit background preunderstanding are made explicit. The first evidence in
support of this claim is a review of the writings of three influential design
methodologists. It is argued that their diverse but complementary descriptions of the
design process highlight characteristics of what is here called interpretation. They
recognize the importance of both tacit understanding and explicit representations, as
well as the iterative movement between them. Among the three writers, the
dimensions of (a) the situation, (b) perspectives, and (c) language are all stressed.
Furthermore, each of these dimensions is recognized to entail both (1) traditions of
past knowledge to start from and (2) an ability to revise that knowledge to promote

and grasp innovation.

20

Alexander (1964) pioneered the use of computers for designing. He used
them to compute diagrams or patterns that decomposed the structural dependencies
of a given problem into relatively independent substructures. In this way, he
developed understandings of the design situation for solving a task based on an
analysis of the unique design situation.

Later, Alexander (1977) assembled 253 patterns that he considered useful for
architectural design, based on an extensive study of successful past designs. These
patterns were to be reused and modified to form personal pattern languages for
expressing the individual perspectives of different designers. They were schematic
enough to be adapted to a broad range of specific design situations.

Alexander felt that the design profession necessarily made explicit the
understanding that was “unselfconscious” in traditional cultures in which everyone
designed their own artifacts. His structures and patterns were meant to be tools for
explicitly representing design situations for “self-conscious” design. However, he
always also recognized the need for facit or intuitive understanding as a basis for
good design.

For Rittel (1973), the heart of design was the deliberation of issues from
multiple perspectives. In a collaborative effort, each participant may bring different
personal interests, value systems, and political commitments to the task. Also, people
with different technical specialties or professional skills may contribute to a design.
These are actually different kinds of “perspectives.” The theory of computer support
in Chapter 6 distinguishes three classes of perspectives that need to be supported:

* personal or group perspectives
* technical specialties (e.g., plumbing)
* domain traditions (e.g., residential kitchens)
However, they all provide the same function of determining what issues will be

addressed, what alternatives will be considered, and what criteria will be applied.

21

Because they all determine the organization or relevance of information in a similar
way, they can be discussed as one kind of determinant of interpretation and can be
operationalized and supported with one software mechanism (a perspectives
mechanism).

The important thing for Rittel was not the subjective character of
interpretation deriving from its basis in personal perspectives, but the way in which
deliberation among perspectives can lead to innovative solutions that would not have
arisen without such interaction. Deliberation is an interpretive process in which
understanding of the problem situation and of the design solution emerges gradually
as a product of iterative revisions subject to critical argument from the various
perspectives. This can take place for an individual designer as well if the designer
consecutively adopts different perspectives on the issues. Rittel foresaw computer
support for this. His idea of using computers to keep track of the various issues at
stake and alternative positions on those issues led to the creation of issue-based
information systems.

Schon (1983) argued that designers constantly shift perspectives on a problem
by bringing various professionally trained tacit skills to bear, such as visual
perception, graphical sketching, and vicarious simulation. The designer’s intuitive
appreciations shape the problem by forming a subsidiary background awareness of
the design task’s patterns, materials, and relationships. By then experimenting with
tentative design moves within this tacitly understood situation, the designer discovers
consequences and makes aspects of the problem explicit. As this is done, certain
features of the situation come into focus and can be named or characterized in a
language. When focus subsequently shifts, what has been made explicit may slip
back into an understanding that is again tacit, but is now more developed.

Schon (1992) provided empirical evidence for the roles of the situation,

perspectives for viewing, and conceptual frameworks in the iterative process of

22

interpretation in design. His experiments showed how the designer uses tacit skills
and preunderstandings to uncover unanticipated discoveries, to reflect upon them,
and to develop new understandings, new perspectives, and new articulations of the

evolving design situation.

1.3. THE EXAMPLE OF LUNAR HABITAT DESIGN

A second argument for understanding design as a process of interpretation is
presented in Chapter 3. Here, a protocol analysis of designers collaborating shows
that most of what went on was interpretation.

As part of the research for this dissertation, a study was undertaken of lunar
habitat design. Lunar habitat design is a task that is not well understood compared to
many other, more mundane design tasks. It is not a routine matter that can be done
according to well-formulated rules or by applying available template solutions.
Furthermore, it is representative of a broad range of high-tech design tasks. Such
tasks typically involve extensive technical knowledge. They seem to call for
computer support.

The volume of information available to people is increasing rapidly. For
many professionals this “information overload” means that the execution of their
jobs requires taking into account far more information than they can possibly keep in
mind. The lunar habitat designers here provide a prime illustration of such
professionals. In working on their high-tech design tasks, they must take into account
architectural knowledge, ergonomics, space science, NASA regulations, and lessons
learned in past lunar missions. These designers turn to computers for help with their
complex, technical problems. That is why a group of lunar habitat designers initiated

the software development effort that led to this dissertation.

23

Providing the computer support needed by lunar habitat designers is not
straight-forward. Designers need to be able to consider wide varieties of experience,
professional know-how, technical concerns, and previous solutions that are relevant
to their current tasks. However, the problem is not so much one of storing large
amounts of information as one of deciding what information to retain that might be
relevant to novel future tasks and how to present it to designers in formats that
support their mode of work. It is a problem of how to manage the information and
present it so that it can usefully serve the design process. The necessary decisions
must be made by the designers who are involved with these tasks. Computer
techniques for capture and display of information must be under the control of people
engaged in the interpretation of the information.

As part of the effort at developing computer support for lunar habitat
designers, thirty hours of design sessions were videotaped and analyzed. The
designers were asked to design a 23 foot long by 14 foot wide cylindrical habitat to
accommodate four astronauts for 45 days on the moon. A protocol analysis of
segments of the video recording was conducted.

The analysis of the videotape of the designers’ activities shows that design
time is dominated by processes of interpretation, i.e., the explication of previously
tacit knowledge in response to discoveries of surprises. As part of the interpreting by
the designers, graphical representations were developed for describing pivotal
features of the design situation that had not been included in the original
specification; perspectives were created for looking at the task in different ways; and
language terminology was defined for explicitly naming, describing, and
communicating formerly tacit understandings. The definitions of the situated
understanding, perspectives, and language continually evolved as part of the design
process in an effort to achieve an adequate understanding of the design task and the

evolving artifact.

24

The nature of interpretation and the three dimensions of preunderstanding are
illustrated in Chapter 3 with an example from the lunar habitat design sessions. This
designing primarily consisted of sketching and discussion that explicated visual and
conceptual expressions used for understanding, explaining, and guiding the emerging
design. The example analyzed has to do with the tacit notion of privacy and a default
perspective on bathroom design related to this notion. The following paragraph
briefly summarizes the example.

The designers felt that a careful balance of public and private space would be
essential given the long-term isolation in the habitat. This is an important concern
that receives limited treatment in official NASA design guidelines. An early design
decision proposed that there be private crew compartments for each astronaut. An
initial sketch revealed problems with adjacencies of public and private areas, leading
to an interpretation of privacy as determining a “gradient” along the habitat from
quiet sleep quarters to a public activity area. In the process, the conventional
American idea of a bathroom was subjected to critical reflection when it was realized
that the placement of the toilet and that of the shower were subject to different sets of
constraints based on life in the habitat. The tacit American assumption of the location
of the toilet and shower together was made explicit by comparing it to alternative
European perspectives. The revised conception permitting a separation of the toilet
from the shower facilitated a major design reorganization.

In this way, a traditional conception of “private space” as a place for one
person to get away was made explicit and explored within graphical representations
of the design situation. As part of the designing process, this concept was revised
into a notion of “degrees of privacy”, which facilitated the design process. The
failure of the NASA guidelines to provide significant guidance despite a clear
recognition by NASA of the importance of habitability and privacy considerations

raises the problem of how to represent effectively notions like privacy that are

25

ordinarily tacit. This problem provides the central test case for this dissertation. In
Chapter 9, a scenario shows how designers using HERMES can define interpretive
critics to evaluate the distribution of public and private spaces in a lunar habitat. A
detailed analysis of how these critics are defined in the HERMES language is then
presented in Chapter 10.

In this and other examples, the designers needed to revise their
representations to enhance their understanding of the problem situation. They went
from looking at privacy as a matter of individual space to reconceptualizing the
whole interior space as a continuum of private to public areas. The conventional
American notion of a bathroom was compared with other cultural models and broken
down into separable functions that related differently to habitat usage patterns. The
new views resulted from argumentative discussions motivated by design
constraints—primarily spatial limitations and psychological factors of confinement.
In these discussions, various perspectives were applied to the problem, suggesting
new possibilities and considerations. Through discussion, the individual perspectives
merged and novel solutions emerged. In the process, previously tacit features of the
design became explicit by being named and described in the language that developed.
For instance, the fact that quiet activities were being grouped toward one end of the
habitat design and interactive ones at the other became a topic of conversation at one
point and the terminology of a “privacy gradient” was proposed to clarify this

emergent pattern.

1.4. THE ANALYSIS OF SITUATED INTERPRETATION

Chapter 4 presents a third argument for focusing on interpretation in design:
computer support of innovative design should be based primarily on an analysis of

human understanding. As Norman (1993) puts it, “Without someone to interpret

26

them, cognitive artifacts [like computer support systems] have no function. That
means that if they are to work properly, they must be designed with consideration of
the workings of human cognition.” The philosophy of interpretation provides just
such a consideration.

This contrasts with many previous approaches to computerization of design
and to artificial intelligence, which lean toward theories on the natural science model
(e.g., mathematical physics), like information theory and predicate logic formalisms.
Human sciences (e.g., cultural anthropology or non-behaviorist psychology),
however, necessarily center on human interpretation because their subject matter is
defined by what people consider to be important and by how people construe things.
As one moves from routine design to highly innovative tasks, the distribution of roles
in the human-computer relationship shifts more onto the people involved, and it
becomes increasingly important to take into account their cognitive functioning.

An initial framework for clarifying the respective roles for computers and
people in tasks like lunar habitat design is suggested by theories of situated
cognition. Several influential recent books? argue that human cognition is very
different from computer manipulations of formal symbol systems. The differences
imply that people need to retain control of the processes of non-routine design
because these processes rely heavily upon what might be called situated
interpretation. Computers can provide valuable computational, visualization, and
external memory aids for the designers by supporting such interpretation in design.

Situated interpretation, as used here, refers to a view of human understanding

as taking place within tacit contexts of background skills, human concerns, and

3 A series of publications in the last decade has, in effect, defined an approach to cognitive
science and to the theory of computer support for design that goes by the name “situated cognition.”
These include Schon (1983), Winograd & Flores (1986), Suchman (1987), Ehn (1988), and Dreyfus
(1991).

27

linguistic traditions that provide its grounding. Interpretation is not just a function of
a disinterested rational mind, but relies on the interpreting person or people being
actively involved with the situation, which includes the artifact being interpreted and
supplies the basis for that artifact’s significance. (See Heidegger’s fuller definition of
situation below and in Chapter 4.)

Situated cognition theory disputes the prevalent view based on the natural
sciences model that all human cognition is based on explicit mental representations
such as goals and plans. Winograd and Flores (1986) hold that “experts do not need
to have formalized representations in order to act” (p.99). Although manipulation of
such representations is often useful, there is a background of preunderstanding that
cannot be fully formalized as explicit symbolic representations subject to rule-
governed manipulation. This tacit preunderstanding even underlies people’s ability to
understand representations when they do make use of them. Suchman (1987) concurs
that goals and plans are secondary phenomena in human behavior, usually arising
only after action has been initiated: “When situated action becomes in some way
problematic, rules and procedures are explicated for purposes of deliberation and the
action, which is otherwise neither rule-based nor procedural, is then made
accountable to them” (p.54).

This is not to denigrate conceptual reasoning and rational planning. Rather, it
is to point out that the manipulation of formal representations alone cannot provide a
complete model of human understanding. Rational thought is an advanced form of
cognition that distinguishes humans from other life forms. Accordingly, an
evolutionary theorist of consciousness like Donald (1991) traces the development of
symbolic thought from earlier developmental stages of tacit knowing (e.g., episodic
and mimetic memory-based cognition). He shows how these earlier levels persist in
rational human thought as the necessary foundation for advanced developments,

including language, writing, and computer usage.

28

Philosophers like Wittgenstein (1953), Polanyi (1962), Searle (1980), and
Dreyfus (1991) suggest a variety of reasons why tacit preunderstanding cannot be
fully formalized as data for computation. It is too vast: background knowledge
includes bodily skills and social practices that result from immense histories of life
experience. We are unaware of much of it: these skills and practices are generally
transparent to us. It must be tacit to function: the examples of biking, swimming or
playing a musical instrument suggest that procedural knowledge at least gets in the
way of skilled action if it is explicit. More generally, tacit knowledge is a
precondition for explicit knowing: we cannot formulate, understand, or use explicit
knowledge except on the basis of necessarily tacit preunderstandings.

The philosophical foundations of situated cognition theory were laid out by
Heidegger (1927), the first to point out the role of tacit preunderstanding and to
elaborate its implications. For Heidegger, we are always knowledgeably embedded in
our world; things of concern in our situations are already meaningful before we
engage in explicit cognitive activity. We know how to behave without having to
think about it. For instance, an architect designing a lunar habitat knows how to lift a
pencil and sketch a line or how to look at a drawing and see the rough relationships
of various spaces pictured there. The architect understands what it is to be a designer,
to critique a drawing, to imagine being a person walking through the spaces of a floor
plan. Such tacit, background skills or preunderstandings of the design situation are
necessary prerequisites for being able to design an artifact.

Heidegger defines the situation as a person’s interpretive context—including
the physical surroundings, the available tools, the circumstances surrounding the task
at hand, the person’s own personal or professional aims, and social or cultural
relations. The situation constitutes a network of significance in terms of which each
part of the situation is already meaningful. That is, the person has tacit knowledge of

the situation as a whole; if something becomes a focus, it is perceived as already

29

understood and its meaning is defined by its relations within the situation. Everything
is tacitly understood in its relations to other things and to the whole.

According to situated cognition in contrast to rationalist views, to an architect
a rectangular arrangement of lines on a piece of paper is not first perceived as
meaningless lines that need defining attributes (to be determined by subsequent
rational thought). Rather, given the design situation, it is already understood as (say)
a sleep compartment for astronauts. The sleep compartment is implicitly defined as
such by the design task, the shared intentions of the design team, the other elements
of the design, the availability of tools for revising the drawing, the sense of space
conveyed by the design, the prevailing NASA terminology. This network of
significance is background knowledge that allows the architect to think about
features of the design, to make plans for changes, and to discover problems or
opportunities in the evolving design. At any given moment, the background is
already tacitly understood and does not need to be an object of rational thought
manipulating symbolic representations.

At some point the architect might realize that the sleep compartment is too
close to some source of potential noise, like the flushing of the toilet. This physical
adjacency would come into focus as an explicit concern against the background of
relationships of the preunderstood situation. Whereas a common sense view might
claim that the sleep compartment and toilet were already immediately and objectively
present, and that therefore their adjacency was always there by logical implication,
Heidegger proposes a more complex reality in which things are ordinarily hidden
from explicit concern. In various ways, they can become uncovered and discovered,
only to re-submerge soon into the background as our focus moves on.

In this way, our knowledge of the world primarily consists neither in mental
models that represent reality nor in an unmediated and objective access to objects.

Rather, our understanding of things presupposes a tacit preunderstanding of our

30

situation. This is analogous to the view of Kuhn (1962), who argues that scientists’
experimental observations presuppose their tacit ability to use their experimental
equipment and to apply their frameworks of hypotheses and theory. Only by being
already situated in our world can we discover things and construct meaningful
representations of them by building upon, explicating, and exploring our tacit
preunderstanding. Situated cognition is not a simplistic theory that claims our
knowledge lies in our physical environment like words on a sign post: it is a
sophisticated philosophy of interpretation.

According to the philosophy of situated interpretation, human understanding
develops through interpretive explication involving both (1) preunderstanding and
(2) explorative discovery of the situation. In Heidegger’s analysis, interpretation
provides the path from tacit, uncritical preunderstandings to reflection, refinement,
and creativity. The structure of this process of interpretation reflects the inextricable
coupling of the interpreter with the situation, i.e., of people with their worlds. One’s
situation is not reducible to one’s preunderstanding of it; it offers untold surprises,
which may call for reflection, but which can only be discovered and comprehended
thanks to one’s preunderstanding. Often, these surprise occasions signal breakdowns
in a person’s skillful, transparent behavior, although one can also make unexpected
discoveries in the situation through conversation, exploration, or external events.

A discovery breaks out of the preunderstood situation because it violates or
goes beyond the network of tacit meanings that make up the preunderstanding of the
situation. To understand what one has discovered, one must explicitly interpret it as
something, as having a certain significance, as somehow fitting into an understood
background. Then it can merge into one’s comprehension of the meaningful situation
and become part of the new background. Interpretation of “something as something”
requires a reinterpretation of the situated context if the discovery does not fit into the

previously understood situation.

31

For instance, the lunar habitat designers discovered problems in their early
sketches (their representations of the design situation) that they interpreted as issues
of privacy. Although they had created the sketches themselves, they were completely
surprised to discover certain conflicts among the functions of adjacent components,
like the sleep compartments and the toilet. The discoveries could only occur because
of their situated understanding represented in the drawings. The designers paused in
their sketching to discuss the new issues. First they debated the matter from various
perspectives: experiences of previous space missions, cultural variations in bathroom
designs, technical acoustical considerations. Then they considered alternative
conceptions of privacy, gradually developing a shared vocabulary that guided their
revisions and became part of their interpretation of their task. They reinterpreted their
understanding of privacy and articulated their new view using the terminology of a
privacy gradient.

These themes of being situated, having perspectives, and using explicit
language correspond to the three-fold structure of preunderstanding in Heidegger’s
philosophy. He articulates the pre-conditions of interpretation as: (a) pre-possession
of the situation as a network of preunderstood significance; (b) pre-view or
expectations that things in the world are structured in certain ways; and (c) pre-
conception, a preliminary language for expressing and communicating. In other
words, interpretation never starts from scratch or from an arbitrary assignment of
representations, but is an evolving of tentative prejudices and anticipations. (1) One
necessarily starts with a preunderstanding that has been handed down from one’s past
experiences and inherited traditions. (2) The interpretive process allows one to reflect
upon this preunderstanding methodically and to refine new meanings, viewpoints,
and terminologies for understanding things more appropriately.

The analysis of interpretation based on Heidegger’s philosophy stresses the

role of tacit preunderstanding as the basis for all understanding. Preunderstanding

32

consists primarily of the characteristics of prepossession, preview, and
preconception. It also implicitly incorporates the structure of “something as
something.” Through interpretation, this preunderstanding is articulated. The
resultant explicit understanding can be externalized in discourse. This can be taken
further through the methodologies of science to codify knowledge. Each stage in this
process preserves the original structure of the preunderstanding. It is because of this
structure that metaphors, speech acts, and scientific propositions have the structure
they do of something as something, something is some predicate, or something has
some attribute.

The process of explication through interpretation forms the basis for
computer support by transforming tacit understanding into increasingly explicit

forms that can eventually be captured in computer-based systems.

1.5. TACIT AND EXPLICIT KNOWLEDGE IN DESIGN

Heidegger’s analysis of interpretation must be applied to the realm of design
before it can be used as the basis for a theory of computer support of design. Three
general problems must be considered:

* First, although his philosophy is presented in a very general way, Heidegger’s
examples come primarily from people’s relations to physical things in the
world, rather than to imagined artifacts that they are designing.

* Second, he stresses that things are always understood on the basis of
preunderstandings we already have, which makes it hard to say how
innovative design ideas are understood.

* Third, of course, Heidegger (writing in the mid-1920’s) did not address the

issue of computer representations as a form of explicit knowledge.

33

Chapter 5 accomplishes the application of Heidegger’s analysis to design in three
steps.

* First, it shows that Heidegger’s philosophy can be extended naturally to
design.

* Second, it discusses the problem of application, which addresses the issue of
how previously captured knowledge can be adapted to innovative new
designs.

* Third, it spells out a taxonomy of transformations of tacit understanding to
explicit knowledge adequate for providing a basis for computer
representations of normally tacit design knowledge.

Heidegger’s concept of the situation transfers well to design. As the network
of relationships in the understood world, the situation corresponds closely to the set
of constraints and adjacencies that are of concern in design and that are sometimes
even represented explicitly in design documents. Heidegger’s definition of
interpretation as the explication of tacit understanding, involving discoveries, is also
applicable to the process of design, in which relationships are explored and
discoveries made. Consideration of interpretation in the design context clarifies how
breakdowns in action require repair to the tacit underlying understanding of the
situation. Although Heidegger’s examples focus on the individual, his recognition of
the social dimension and the importance of shared understanding allows his analysis
to be extended to design, which is largely collaborative.

Heidegger’s philosophy occupies an important position in the twentieth
century recognition that reality is socially constructed. People have access to their
world (intentionality) because the world is in many ways a human, social creation. Of
course, reality also has an immanence which can contradict our expectations and
present surprises, just as we can make discoveries in designs of our own creating.

The point is that an understanding of the world or of innovative designs requires the

34

situated interpretation of a person: it cannot be reduced to a set of rules or a computer
algorithm. The same goes for knowledge, which encapsulates understanding. To
apply knowledge from past cases to a new design, one must apply it within a situated,
perspectival, linguistic understanding. That means that computer software for
designing should be people-centered and should support the situated, perspectival,
linguistic character of human understanding.

Chapter 5 defines tacit as being expressed without words or speech, and
explicit as being fully revealed or verbally expressed. It defines a taxonomy of forms
of information along the continuum between these extremes and describes the
transformations from one form to the next based on Heidegger’s analysis. These
transformations are summarized in Figure 1-1. Each transformation involves a
reinterpretation of the informational content in a new medium. With that comes a
gain in precision balanced by a loss of grounding. As a result of the increased clarity
and the change of form, new discoveries are made about the content of the

information.

tacit preunderstanding

) discourse
explicit understanding

é) assertion

externalized expression

) predication
codified knowledge

) capture
stored representation

) evolution
computer model

Figure 1-1. Transformations of tacit to explicit information.

The lefi-hand column lists consecutive forms of information. The right-hand column names
the transformation processes from one form to another.

35

Heidegger uses the term discourse for the fundamental shift to putting one’s
understanding into words, even if the words are not yet asserted in speech to be
shared with someone. After tacit preunderstanding is articulated in discourse as
explicit understanding, this understanding can then be asserted and externalized in
spoken or written language (such as documented design rationale). Such knowledge
can be further codified in accordance with formal procedures (e.g., scientific
methods). These are important transformations for creating widely shared
knowledge. The movement from externalized to codified information can go from
informal to formal (i.e., capable of being processed by computer). Shipman (1993)
discusses this stage of formalization and methods for supporting it within computer-
based design environments. This is relevant to the further stages of articulation,
which involve computers: capture of the information in computer representations and
modification of these representations to adapt them to new requirements. The theory
of computer support for design proposed in Chapter 6 suggests that all stages of
information articulation can take advantage of computer support. If designing takes
place within a computer-based design environment, then designers can use and
modify computer representations to support the design process from the start. As
Reeves (1993) recommends, the design environment can serve as a medium of
communication to support collaboration. In the process, design information can be

captured automatically without becoming a burdensome task to be done in retrospect.

1.6. CONSEQUENCES FOR A THEORY OF COMPUTER SUPPORT

The ideas of situated cognition and Heidegger’s philosophy of interpretation
stress how different human understanding is from computer manipulations of
symbols. These analyses suggest a people-centered approach of augmenting, rather

than automating, human intelligence. According to this view, software can at best

36

provide computer representations for people to interpret based on their tacit
understanding of what is being represented. Representations used in computer
programs must be carefully structured by people who understand the task being
handled thoroughly, because the computer itself simply follows the rules it has been
given for manipulating symbols, with no notion of what they represent. People (e.g.,
software designers or software users) who understand the domain must codify their
knowledge into software rules sufficiently to make the computer algorithms generate
results that, when interpreted by people, will be the desired results. Only if a domain
can be strictly delimited and its associated knowledge exhaustively reduced to rules,
can it be completely represented in advance (by the software designers) so that tasks
in the domain can be automated.

Many tasks like lunar habitat design that call for computer support do not
belong to well-defined domains with fully catalogued and formalized knowledge
bases. These tasks may require (a) exploration of possibilities never before
considered, (b) assumption of creative viewpoints, or (c) formulation of innovative
concepts. Software to support designers in such tasks should provide facilities for the
designers themselves (as the software users) to create new representations and to
flexibly modify old representations. As the discussion of Alexander emphasizes, the
ability to develop appropriate understandings of the situation dynamically is critical
to innovative design. Because they capture understandings that evolve through
processes of interpretation, representations need to be modifiable during the design
process itself and cannot adequately be anticipated in advance or provided once and
for all. Lunar habitat design is an example of an exploratory domain in two senses:
(1) it is a new domain with relatively little in the way of accepted conventional
knowledge, and (2) it involves continual innovation to meet novel, over-constrained,

politically sensitive mission specifications.

37

The assumption of the existence (even in principle) of an objective, coherent
body of domain knowledge that can be used without being reinterpreted in new
situations and from different perspectives is misleading. As Rittel says, non-routine
design is an argumentative process involving the interplay of unlimited perspectives,
reflecting differing and potentially conflicting technical concerns, personal
idiosyncrasies, and political interests. Rather than trying to supply all knowledge in
advance, software to support this type of design should capture alternative
deliberations on important issues as they arise and document specific solutions.
Then, these can be available to support interpretive deliberations. Furthermore,
because all design knowledge is relative to perspectives, the computer should be used
to define a network of over-lapping perspectives with which to organize issues,
rationale, sketches, component parts, and terminology to reflect the different
viewpoints designers adopt. That will facilitate the retrieval of information relevant
to a particular interpretive stance.

As Schon emphasizes, design relies on moving from tacit skills to explicit
conceptualizations, and on the ability to reformulate the implications in linguistic
expressions. Additionally, design work is inherently communicative and increasingly
collaborative, with high-tech designs requiring successive teams of designers,
implementors, and maintainers. Software to support collaborative design should
provide a language facility for designers to develop a sharable vocabulary for
expressing their ideas, for communicating them to future collaborators, and for
formally representing them within computer-executable software. An end-user
language that provides an extensible domain vocabulary, is usable by non-
programmers, and encourages reuse and modification could help provide support for
designers trying to express their interpretations..

Heidegger’s analysis of interpretation says that new interpretations are based

on preunderstandings developed in the past or handed down by tradition. In this

38

sense, it is likely that the information designers need most when they reflect on
problems may have previously been made explicit at some moment of interpretation
during past designing. Accordingly, one promising strategy for accumulating a useful
knowledge base is to have the software capture knowledge that becomes explicit
while the software is being used. As successive lunar habitats are designed on a
system, issues and alternative deliberations can accumulate in its repository of design
rationale; new perspectives can be defined with their own modified representations,
terminology, and critic rules; and the language can be expanded to include more
domain vocabulary, conditional expressions, and query formulations.

This is an evolutionary, bootstrap approach, where the software can not only
support individual design projects, but simultaneously facilitate the accumulation of
expertise and viewpoints in open-ended, exploratory domains. This means that the
software should support designers in formalizing their knowledge when it becomes
explicit. The software should reward its users for increasing the computer knowledge
base by performing useful tasks with the new information, like providing
documentation, communicating rationale, and facilitating reuse and modification of
relevant knowledge.

The theory suggested by the analysis of interpretation in design is
diagrammed in Figure 1-2. As the cycle of interpretation proceeds, driven by the
needs of designing and collaboration, explicit knowledge that is generated can be
captured by the computer support system. The computer system relies on a
combination of stored representations (for representing situations, defining
perspectives, and articulating language expressions) and plasticity (for tailoring the
existing representations to the requirements of the specific design process). This
combination makes support of interpretation in design possible and simultaneously

drives an evolution of the stored knowledge base.

39

The theory proposed in Chapter 6 views the computer as a design medium. It
is a multimedia device capable of representing the diverse forms of information used
in design: text, graphics, pictures, pen sketches, numbers, voice, animation, and even
video. It can use all these media to externalize design concepts and to store them for
future use, serving as a medium of externalization and long-term memory. This
means it can be used as a medium of communication among team members and a
medium for embedding an artifact’s design history within the design of the artifact
itself—Reeves (1993) argues for the role of such a medium in supporting

collaborative work.

collaboration

designing
tacit pre- interpretation explicit communication J shared
understanding understanding knowledge

captur

representations reuse stored

of knowledge representations
plasticity

Ficure 1-2. The theory of computer support for interpretation in design.

The cycle of human interpretation (illustrated on the top) is mirrorved by a cycle of evolution
of the computer knowledge base (below), that uses captured explicit knowledge to support
future interpretation.
The uses of the computer as designing medium mentioned in the preceding
paragraph are primarily passive uses. The impact of written language on civilization

shows that even passive media can be powerful. However, the computational power

of the computer suggests using it as an active medium as well. Certainly, numerical

40

computations can be left to the computer: calculate square footage of designs or total
their costs. But information can also be made dynamic, with representations modified
on the basis of the state of other parts of a design. Furthermore, the information
stored in the computer can be managed by it, perhaps organizing and displaying
information based on a structure of defined perspectives. A language can make the
system programmable by designers, so they can adjust displays to their changing
needs. Part III will show how HERMES accomplishes this by means of a
computationally active form of hypermedia, that integrates a perspectives mechanism
and an end-user programming language.

One of the most powerful consequences of designing in a computational
medium is the possibility of integrating all the relevant information. An example of
this is the mechanism of interpretive critics (see Fischer, et al., 1993a). It is an
extension of specific critics (Nakakoji, 1993). Specific critics are critiquing rules that
analyze the representation of a design situation and optionally display a message
depending on the results of the analysis. For instance, if two appliances are closer
than they should be in the design of a habitat, a critic might display a warning,
suggest looking at related design rationale issues, and show similar stored designs
that avoid the problem. The specific critics are dynamically computed based on the
design specification that has been entered into the design rationale. The critic thus
integrates information about the graphical design, the textual rationale, the
computational critic rules, and other designs. It does this in a way that supports the
needs of the designer without providing overwhelming amounts of information.
Interpretive critics are even further embedded in the contexts of design because they
can be defined differently in different interpretive perspectives. Their active behavior
depends on the current perspective and the way in which terms in the language are

defined in that perspective. They use the language that is being used for the particular

41

design, they are tied to the currently active perspective, and they analyze the
represented situation.

The view of computer support systems as computationally active
communication media is consonant with a liberatory view of the role of computers in
society. Feenberg (1991) argues that the expert system approach based on technical
rationality philosophy is profoundly anti-democratic and that an alternative approach
to computers as communicative media is needed to give people control over their

lives:

Systems designed for hierarchical control are congruent with rationalistic
assumptions that treat the computer as an automaton intended to command or
replace workers in decision-making roles. Democratically designed systems must
instead respond to the communicative dimension of the computer through which
it facilitates the self-organization of human communities, including those
technical communities the control of which founds modern hegemonies. (p.108)

The theory of computer support presented in this dissertation pursues the democratic
alternative, founding it on a respect for the irreducible nature of human
interpretation.

The key is control. Computer systems are sophisticated tools for exerting
control of information. As powerful as they are, computers have no understanding of
the information they manipulate. Even in autonomous Al systems, all the
interpretation is done by people—typically by the programmers who set up the
system and the users who view the output. Innovative design is an arena in which the
interpretation cannot be done in advance because this design requires understanding
and interpretation at every step. Therefore, the role of computers in non-routine
design must be to support designers. Human designers must retain control over (a)
how things are represented, (b) which things are stored together, and (c) what terms
are used to articulate ideas. Unless this control is vested in people who can use their

interpretive skills, questions concerning what information might be relevant in a

42

given context or in the future remain intractable for all but carefully delimited, well-
understood, completely codified domains. The only heuristics proposed for the
management of design knowledge are those tacitly followed by traditional design
practice: (1) that knowledge represented, organized, and articulated in the past may
be useful in the future, and (2) that designers will need to use their powers of
interpretation to modify and apply reused knowledge in unique situations. (The
problem of application addresses the fact that every situated, perspectival, linguistic
understanding is unique and yet must be interpreted as similar to other cases; it is
discussed in Chapter 5.)

The theory of computer support provides a principled basis for designing a
computer system to support innovative design in such tasks as lunar habitat design.
Before exploring the ideas suggested for such a system, the existing tradition of
design environments is considered. This is a tradition of computer systems
supporting the augmentation of human design efforts. It provides a basis upon which

new ideas can be developed through extensions that are guided by the theory.

1.7. PREVIOUS SOFTWARE SYSTEMS FOR DESIGN

For thirty years now, at least since Alexander (1964), efforts have been
underway to use computers to support design. Much work in the area of computer
support for design has concentrated on two approaches that will not be explored here:

* Providing stand-alone tools for drafting and modeling, where the computer
system has little or no representation of the semantics of what is being
designed—e.g., so-called “computer aided design” (CAD).

* Automating the design process, where the computer is given a specification
of a problem and is expected to produce a design with minimal interaction

with a human user—e.g., an expert system for design.

43

Although these approaches have proven useful for certain tasks or within restricted
domains, in general they have been shown to be quite limited. Winograd & Flores
(1986) and Dreyfus & Dreyfus (1986), for instance, have argued that expert systems
are in principle essentially limited when it comes to tasks like creative design. They
have based their arguments largely on Heidegger’s philosophy and other ideas that
are discussed in this dissertation. Rather than duplicating their line of criticism,
Chapter 7 will draw their positive implications for building software systems that can
support innovative design.

There have always been some researchers who sought ways to use technology
to augment human problem solving (e.g., Bush, 1945; Engelbart, 1963), rather than
to model, simulate, or replace it. More specifically, there is a tradition in design
methodology and design rationale capture efforts, going back to Rittel and his
associates (Rittel & Webber, 1973; Kunz & Rittel, 1984) that advocates the use of
computer-based design systems as cognitive aids for human designers.

Recent work in this tradition is reviewed in Chapter 7 and used as a starting
point for designing a system to support interpretation in design. In particular, the
design environments that will be reviewed (JANUS, MODIFIER, PHIDIAS) are domain-
oriented in the sense that they try to embody generally accepted knowledge of their
specialized design domains. In contrast, the domain-independent design rationale
capture systems (KRL, PIE, DRL) focus on capturing and displaying potentially
opposing perspectives on design issues. By synthesizing ideas from these different
systems, the new approach will extend the notion of domain-orientation to support
multiple interpretations of the domain as well.

The consequences of the theory of computer support for interpretation in
design developed in Chapter 6 motivate and guide the survey of previous software
systems. Established techniques implemented in the computer-based design

assistants are reviewed and their limitations are critiqued on the basis of the theory.

44

While mechanisms for representing situations, defining perspectives, and using
language are found in some of these systems, the plasticity and integration of these
mechanisms are quite limited. In many ways, these systems retain principles from
expert system theory and are not oriented toward supporting interpretation in design
even when they happen to provide some mechanisms that could be used for that.
JANUS (Fischer, et al., 1989) is a design environment combining graphical and
textual representations of the design situation. It introduces a multi-faceted
architecture that includes a palette of design components for building graphical
representations of kitchen layouts, a catalog of stored design cases, an issue-base of
design rationale, and a daemon mechanism for active critics. This system provides an
important model of a design environment. Its lack of support for users to create new
representations is recognized and addressed by a successor system named MODIFIER.
MODIFIER (Girgensohn, 1992) defines all the knowledge representations with
parameterized property sheets. Then it provides a user interface to these system
internals. While it offers extensive support for the user to modify representations,
this still involves the user in modifying LISP expressions, altering hierarchical
inheritance trees, and generally having to be concerned with system internals. Thus,
it supports the user (with extensive help text, examples, checklists, and even critic
rules concerning modifications) to engage in tasks of maintaining a sophisticated
software system rather than supporting the user in interpretive tasks of design.
Another problem with MODIFIER is that it provides no mechanism for organizing
modifications into alternative versions to support personal and shared versions.
Several systems for knowledge representation and design rationale capture
propose the use of multiple perspectives, a mechanism that this dissertation
recommends. KRL (Boborow & Winograd, 1977) presents a sophisticated formal
language for knowledge representation that incorporates a mechanism for

perspectives. PIE (Boborow & Goldstein, 1980; Goldstein & Boborow, 1980a,

45

1980b) develops the ideas of KRL further as the basis for a design environment for
software development. DRL (Lee, 1990; Lee & Lai, 1991) explores issues in design
rationale capture using languages based on Rittel’s IBIS as well as KRL and PIE.
These systems provide invaluable experience in designing languages for knowledge
representation and design rationale, and in using perspectives mechanisms. However,
their implementations lack the generality called for in certain ways. Furthermore,
they are not particularly appropriate to the kind of hypermedia structure that seems
useful for representing a broad diversity of design information. They provide
important examples and recommend useful principles for the kinds of languages and
perspectives mechanisms useful in supporting design. The lessons from these
systems are combined in Chapter 8 with two design criteria: (1) the implementations
should be appropriate to a hypermedia structure of knowledge representation and (2)
end-users should be able to revise and extend the vocabulary of the language and the
structure of the system of perspectives.

PHIDIAS (McCall, et al., 1990) is another design environment like JANUS. It
does not include as many components or a critiquing mechanism, but it does
demonstrate the utility of a query language for users to define displays of design
rationale. The PHIDIAS language has a number of important features: it is designed for
navigation of hypertext and it is based on several syntactic characteristics of English.
Vocabulary in the language can all be defined by users, so it supports adaptability.
PHIDIAS uses a form of hypertext that has a fine granularity; thus textual displays of
design rationale, for instance, may be computed dynamically through the use of
queries defined in the language. The PHIDIAS language provides a good starting point
for the design of a computationally powerful language that is appropriate to
hypermedia and that can support interpretation.

In response to the shortcomings of previous systems, an integrated software

prototype named HERMES is proposed. HERMES is a persistent hypermedia substrate

46

for building design environments to support interpretation in design. Its mechanisms
operationalize the positive design principles of the analysis of interpretation and the

theory of computer support for interpretation in design.

1.8. HYPERMEDIA IN THE HERMES SYSTEM

In Greek mythology, Hermes supported human interpretation by providing
the gift of spoken and written language and by delivering the messages of the gods.
As part of the research for this dissertation, a prototype software system named
HERMES has been designed to support the preconditions of interpretation (a) by
representing the design construction situation to support prepossession, (b) by
providing alternative perspectives to support preview, and (c¢) by including a
language to support preconception.

HERMES supports tacit knowing by encapsulating mechanisms corresponding
to each of the preconditions:

* Interpretive critics (Fischer, et al., 1993b) are used for analyzing the design
situation, which is represented in arbitrarily complex hypermedia data
structures. These critics are expressions in the HERMES language that perform
an analysis of the current state of some representations and then optionally
display a message. The evaluation of the critic expressions or rules is
dependent upon the currently active interpretive perspective, which
determines the versions of the expression, of its constituent terms, and of the
representations being analyzed.

* Named perspectives (Stahl, 1993b) organize and manage alternative sets of
information relevant to different purposes. By switching to a new perspective
by selecting its name from a list, a designer can change how the

representation of the situation appears, what interpretive critics are active, and

47

in general what contents of the hypermedia network are “visible” from the
viewpoint.
* Language terms (Stahl, et al., 1992) define computations across the
knowledge base. While these expressions can be arbitrarily complex if
viewed in complete detail, they are typically constructed in a series of stages.
At every stage, the components of the term’s definition can themselves be
given names.
With each of these mechanisms, complexities are hidden from the user by being
encapsulated in named objects. These complexities can gradually be made explicit
upon demand so the designer can reflect upon the information and modify it.
Together, these and other mechanisms make HERMES a computationally active
medium in which designers can do their work.

HERMES is a knowledge-representation substrate for building computer-based
design assistants like the Lunar Habitat Design Environment (LHDE) shown in Figure
1-3. It provides a hypermedia structure for designers to build representations of

design knowledge.

Hermes Design Environment

File Edit Text Graphics Drawing Tools View Controls Options Window

=| Navigating the HyperText |~]~ = que ndl i =| Sele|
What are the design considerations 4% The private areas are not separated from
for bunks? the public areas. Privacy Pd

+-

Drawing - Lunar habitat layout

[operation
@Navigatenurgninglikq |
O Navigate in-coming [<] Design Rationale BB ﬁl Lunar Habitat -- Plan vie
© Editthe text lelect Hesults \ g - - 4
O Auth or A tat = .
< Cancel Select Query: |
o
_ Out-going Links discussion of issue; Ol
issue What are the design considerations for bunks?
Belect Contexty] Frivacy Perspective Ol
¥hat should be the size of the bunks? * N\l
What should be the access to the bunks? /\l
‘What should be the arrang of the
bunks? 1 |
The bunks should be lined along the outer tﬁl
Predicates walls.
m This arrangement provides easy access Al
issue tree from the central corridor.
subissue_tree This arrangement keeps the central
corridor open.
This arrangement allows bunks and crew .
stations to be aligned vertically. L
The bunks should be oriented one way on

Figure 1-3. Arranging sleep compartment bunks using HERMES.

Windows shown (left to right) include a dialogue box for browsing the hypermedia content, a
selection from the design rationale issue-base, a critic rule’s message, a graphical sketching
area, and a button for changing interpretive perspectives.

The network of knowledge corresponds to the design situation. Multi-media
nodes of the knowledge representation can, for instance, be textual statements for the
issue-base, CAD graphics for sketches, bitmap images to illustrate ideas, or language
expressions for critics and queries. The inter-linked hypermedia structure facilitates
browsing by designers. It can also be used to support associative memory (Hinton &
Anderson, 1989) or case-based dynamic memory (Schank, 1982; Kolodner, 1984).
All displays are defined by queries that dynamically assemble arbitrary collections of
multimedia items. For instance, the Design Rationale window in Figure 1-3 shows
the textual issues, answers, and arguments that resulted from a query that was

executed by a user’s request to see the “discussion” of a previously viewed issue.

49

The hypermedia knowledge representation structure of HERMES is designed to
facilitate the representation of design situations and to encourage their tailorability.
Its generalized node and link structure models the network character of the situation
as a network of inter-related, pre-understood significances and their associations. Its
object-oriented implementation allows for the integration of information in different
media—reflecting the need to bring together many forms of information in design. It
provides graphics for sketching, text for issue-bases or design rationale, and other
media for annotations to support the exploration of represented situations. All the
media and mechanisms are designed to maximize plasticity of representation. The
HERMES hypermedia structure incorporates a perspectives mechanism for managing
and viewing all information and an end-user language for defining queries for
displays, as discussed below.

Special emphasis is placed on the synergistic integration of the hypermedia,
perspectives, and language mechanisms in the HERMES substrate. Definitions of
perspective hierarchies and language expressions are stored in the hypermedia
network so they can be browsed and modified like all other information. By using
nodes of the hypermedia network to define the names of perspectives and links to
determine the inheritance relationships among perspectives, the HERMES system can
support annotation of these nodes to store information related to the purpose or
origination of the perspectives. Similarly, the nodes that define terminology and
expressions in the HERMES language can be linked like a semantic network (Quillian,
1967).

In turn, the definition of the hypermedia structure itself incorporates both
perspectives and language expressions. Instead of having a fixed content in some
medium, nodes can have their content defined by the evaluation of an expression in
the language. Nodes and links can be conditional upon some computation defined in

the language and involving other nodes and links. Furthermore, hypermedia

50

information to be displayed is always dynamically computed in the currently active
perspective—even language expressions can have different effects in different
perspectives. In these ways, node contents can be dependent upon the state of other
data in the hypermedia network. The interactions of the integrated hypermedia,
perspectives, and language provide significant control and malleability for the
designer. Design environments built on this substrate can have many features that
support interpretation in design with consistent abilities to represent knowledge and

to tailor the representations.

1.9. PERSPECTIVES IN HERMES

HERMES includes a perspectives mechanism for organizing all knowledge
represented in the system. This mechanism is general and can be used to define a
variety of different kinds of “perspectives” for categorizing information and for
organizing inheritance of information among perspectives. For instance, hierarchies
of perspectives can be defined for technical specialties (e.g., plumbing, ergonomics),
knowledge domains (kitchen design, partial gravity design), worldviews (Bauhaus,
austere missions), specific designs (i.e., cases), individual preferences, shared team
decisions, and experimental “what-if” versions. New perspectives can merge
information from multiple existing perspectives and then modify the information as
seen through the new perspective without affecting it in the original perspectives.
This can facilitate periodic, non-disruptive reorganizations of the knowledge base as
it evolves.

The perspectives mechanism of HERMES helps to support the collaborative
nature of design by multiple teams. Drawings, definitions of domain terms in the
language, computations for critic rules, and annotations in the issue-base can be

grouped together in a perspective for a project, a technical specialty, an individual, or

51

a team. A new perspective can be defined to archive a version of a design for
historical purposes so it will not change as team members continue to work on new
versions. Every action in HERMES takes place within some defined perspective,
which determines what versions of information are currently being accessed.
Perspectives can collect knowledge according to various categories. For example,
there can be perspectives for individual designers or design teams; for technical or
professional specialties; for traditional or cultural domains; for specific projects; or
for historical versions of projects.

Since information in HERMES is always viewed through a perspective,
switching perspectives can support the deliberation of alternative approaches. By
redefining in different perspectives the same graphic objects or linguistic terms used
in conditionals, queries, and critics, one determines how things will be displayed
(interpreted) differently in different perspectives. Thus, as shown by a scenario in
Chapter 9, critics in a “privacy perspective” might analyze habitat layouts using a
concept of privacy gradient defined in that perspective, whereas the same critics
would in effect have different definitions in other perspectives and would therefore
produce different results. The interpretive critics for privacy that are used in the
scenario are analyzed and explained in detail in Chapter 10 as a case study in use of
the language.

The approach of HERMES supports communication among designers. The
representations of the design situation may include documentation of design rationale
by specifying resolutions of issues in an issue-base. For lunar habitat design, such
documentation is contractually required by NASA. Requirements traceability and
clear communication of rationale are necessary for a design to move from the
original design team to subsequent groups for approval, technical elaboration, mock-
up, and eventual construction. Documentation is notoriously difficult to produce.

Design rationale is most effectively captured when it is an explicit concern.

52

Formulations developed in the HERMES language by designers in the midst of
designing can supplement the situation representations, stating for the benefit of
future designers looking at their work what aspects were originally considered
important and what rules of thumb were developed then. Viewing the design from
the original team’s perspective preserves their interpretation, while subsequent
groups can define their own modified perspectives. Individuals in work teams can
share ideas, viewpoints, and definitions by using group perspectives that inherit from

and modify the contents of their different personal perspectives.

1.10. THE HERMEs LANGUAGE

HERMES features a language for designers to use. The language is defined as a
series of subset languages to facilitate learning by new users. First it should be noted
that previously defined terms and expressions are used most of the time. These are
simply selected from lists of relevant terms. Then there is a beginner’s version of the
language that is very similar to the PHIDIAS language, which proved easy to use for
non-programmer novice users. This level of the language suffices for defining or
modifying most common terms and queries. An intermediate level provides access to
virtually all features of the language except those related to graphics. Finally, an
advanced level can be used for graphics-related tasks, like defining interpretive
critics. Most system displays and component interfaces are defined in the language,
so they can be modified through use of the language.

The HERMES language defines domain vocabulary for referring to represented
objects and their associations (the nodes and links of the hypermedia). It also
provides expressions for stating queries to define displays and for stating rules to
critique designs. The expressions fall into three major syntax categories: (a)

definitions of lists of nodes, (b) expressions for filtering out nodes not meeting stated

53

criteria, and (c) operations to traverse various kinds of associations. These support
the situated, perspectival, and linguistic character of interpretation by naming
representations of things in the design situation, filtering out objects for display
based on viewing criteria, and providing expressions for exploring associations.
Objects in each of these categories can be either (1) reused or (2) refined by
combining expressions in useful ways. This defines the six primary syntactic classes
in the language; four other classes provide auxiliary terms and features. The syntactic
classes are listed with brief descriptions in Table 1-4.

The language provides a tacit form of language usage for non-programmers.
Most of the sequential processing is kept implicit, due partially to the declarative
form of the language structure. Also, expressions that were originally figured out
explicitly are given names in domain terminology. In Figure 1-3, for example, the
user clicked on an issue about sleep compartment bunks and then chose the
“Predicate” (Computed Association), discussion. This predicate was already
defined to produce a hierarchy of issues with