
Coding procedure for small group chat 1

Running head: Coding procedure for small group chat

Methodological issues in developing a multi-dimensional coding procedure for small group

chat communication

Jan-Willem Strijbos1

Leiden University, The Netherlands

Gerry Stahl

Drexel University, USA

Cite as: Stijbos, J. W. & Stahl, G. (in press). Methodological issues in developing a multi-

dimensional coding procedure for small group chat communication. Learning &

Instruction.

1 Correspondence can be sent to Jan-Willem Strijbos, Leiden University, Faculty of Social

and Behavioural Sciences, Centre for the Study of Learning in Organisations, P. O. Box

9555, 2300 RB, Leiden, The Netherlands. E-mail: jwstrijbos@fsw.leidenuniv.nl

Coding procedure for small group chat 2

Abstract

In CSCL research, collaboration through chat has primarily been studied in dyadic

settings. This article discusses three issues that emerged during the development of a multi-

dimensional coding procedure for small group chat communication: a) the unit of analysis

and unit fragmentation, b) the reconstruction of the response structure and c) determining

reliability without overestimation. Threading, i.e. connections between analysis units, proved

essential to handle unit fragmentation, to reconstruct the response structure and for reliability

of coding. In addition, a risk for reliability overestimation was illustrated. Implications for

analysis methodology in CSCL are discussed.

Keywords: content analysis, methodology, reliability, threading, coding

Coding procedure for small group chat 3

Coding of communication processes (content analysis) to determine effects of computer-

supported collaborative learning (CSCL) has become a common research practice (Barron,

2003; Webb & Mastergeorge, 2003; Fischer & Mandl, 2005). In the past decade, research on

CSCL has opened new theoretical, technical and pedagogical avenues of research.

Comparatively less attention has, however, been directed to methodological issues associated

with coding (Strijbos, Kirschner, & Martens, 2004).

Early attempts to analyse communication in computer-supported environments focused on

counting messages to determine students’ participation and on mean number of words as an

indicator for the quality of messages. Later, methods like ‘thread-length’ analysis and ‘social

network analysis’ expanded this surface-level repertoire. Now the CSCL research community

agrees that surface methods can provide a useful initial orientation, but believes that more

detailed analysis is needed to understand the underlying mechanisms of group interaction.

Content analysis is widely applied in collaborative learning research (see Barron 2003;

Gunawardena, Lowe, & Anderson, 1997; Strijbos, Martens, Prins, & Jochems, 2006;

Schellens & Valcke, 2005; Weinberger & Fischer, 2006). Communication is segmented into

analysis units (utterances), coded and their frequencies used for comparisons and/ or

statistical testing. Increasingly, collaborative learning studies are moving to a mixed-method

strategy (Barron, 2003; Hmelo-Silver, 2003; Strijbos, 2004) and new techniques are being

combined with known ones, such as multilevel modelling of content analysis data (Chiu &

Khoo, 2003).

At present, however, the number of studies reporting on the specifics of an analysis

method in detail is limited. With respect to content analysis this is highlighted by how many

citations still reference Chi (1997), whose article was until recently the most cited article

regarding the methodological issues involved. Within the CSCL community an academic

discourse is gradually developing on issues such as analysis scheme construction,

Coding procedure for small group chat 4

comparability and re-use (De Wever, Schellens, Valcke, & Van Keer, 2006), unit of analysis

(Strijbos et al., 2006) and specific processes like argumentative knowledge construction

(Weinberger & Fischer, 2006) – but many issues remain.

1. Background

This article reports on an attempt to use coding under circumstances that may be typical in

CSCL research, but where coding has not generally been applied. The theory behind our

research focuses on group processes and the meaning making that takes place in them. It is

elaborated in Stahl (2006a) and Stahl, Koschmann and Suthers (2006). The theory there

recommends ethnomethodologically-informed conversation analysis as the most appropriate

analysis methodology, but we wanted to try to apply a coding approach as well.

Coding is most frequently used to compare research groups under controlled experimental

conditions with well-defined dependent variables; we wanted to use coding to help us explore

initial data where we did not yet have explicit hypotheses. Coding is often used in cases of

face-to-face talk (e.g., in a classroom) or between communicating dyads; we were interested

in online text-based synchronous interaction within small groups of three to five students.

Educational and psychological research using coding generally takes utterances or actions of

individuals as the unit of analysis; we wanted to focus on the small group as the unit of

agency and identify group processes. In undertaking our inquiry into the use of coding under

these circumstances, we strove for both reliability and validity. In this article, we take a close

look at reliability and address issues of validity in our discussion.

Our test site, the VMT project (http://mathforum.org/vmt/), is developing an online service

for students to engage in math discourse at a distance. This project takes a design-based

research approach (Stahl, 2006b). It started very simply with a well-known technology (AOL

IM®) and the established Math Forum Problem of the Week (PoW) service. The PoW

service targets students in grades three through twelve. It provides ‘creative, non-routine

Coding procedure for small group chat 5

challenges’ for volunteers around the globe. The service is divided into four separate

branches: algebra, geometry, pre-algebra and math fundamentals. The reported work with the

coding scheme was conducted at the end of the first year of the five-year research project (for

examples of the problems see http://mathforum.org/pow/vmt/allproblems0304.html).

We wanted to understand what was happening in the chats along a number of dimensions.

We wanted insights that would help us to develop the environment and the pedagogical

approach. In particular, we were interested in how the students communicated, interacted and

collaborated. We were also interested in how they engaged in math problem solving as a

group. So we drew upon coding schemes from the research literature that addressed these

dimensions while developing the VMT coding scheme.

2. VMT coding scheme

Multi-dimensional coding schemes are not a novelty in CSCL research, but they are often

not explicitly defined. Henri (1992) distinguishes five dimensions: participation, social,

interactive, cognitive, and metacognitive. Fischer, Bruhn, Gräsel, and Mandl (2002) define

two dimensions: the ‘content’ and ‘function’ of utterances (speech acts). Finally, Weinberger

and Fischer (2006) use four dimensions: participation, epistemic, argument, and social. These

studies assign a single code to an utterance, or they code multiple dimensions that differ in

the unitisation grain size (i.e., message, theme, utterance, sentence, etc.).

The first step in the development of the coding scheme was to determine the unit of

analysis; its granularity can affect accuracy of coding (Strijbos et al., 2006). We decided to

use the chat line as the unit of analysis mainly because it is defined by the user. It allowed us

to avoid segmentation issues based on our (researcher) view. We empirically saw that the

chat users tended to only ‘do’ one thing in a given chat line. Exceptions requiring a separate

segmentation procedure were rare and too insubstantial to affect coding. We decided to code

the entire log, including automatic system entries. In contrast to other multi-dimensional

Coding procedure for small group chat 6

coding schemes unitisation is the same for all dimensions: a chat line receives either a code or

no code in each dimension—this allows for combinations of dimensions and expands the

analytical scope.

We decided to separate communicative and problem-solving processes and conceptualised

these as independent dimensions. Our initial scheme consisted of the conversational thread

(who replies to whom), the conversation dimension (based on Beers, Boshuizen, Kirschner,

& Gijselaers 2005; Fischer et al., 2002; Hmelo-Silver, 2003), the social dimension (based on

Renninger & Farra, 2003; Strijbos, Martens, Jochems, & Broers, 2004), the problem-solving

dimension (based on Jonassen & Kwon, 2001; Polya, 1985), the math-move dimension

(based on Sfard & McClain, 2003) and the support dimension (system entries and moderator

utterances).

Then we spent the summer trying to apply these codes to ten chats that we had logged in

Spring 2004. Naturally, we wanted our coding to be reliable, so we checked on our inter-rater

reliability as we went along. Problems in capturing what was taking place of interest in the

chats and in reaching reliability led us to gradually evolve our categories. As the dimensions

became more complicated with sub-categories, it became clear that some of them should be

split into new dimensions. We ended with the categories in Appendix A, and the additions

during calibration trials have been italicised (the math move and support dimension are not

discussed in the remainder of this article and therefore not shown).

It turned out that it was important to conduct the coding of the different dimensions in a

certain order, and to agree on the coding of one dimension before moving on to consider

others. In particular, determining the threading of chat in small groups is fundamental to

understanding the interaction. For the participants, confusion about the threading of responses

by other participants can be a significant task and source of problems (Fuks, Pimentel, & De

Lucena, 2006; O’Neill & Martin, 2003). For researchers, the determination of conversational

Coding procedure for small group chat 7

threading is the first step necessary for analysis (Cakir, Xhafa, Zhou, & Stahl, 2005).

Agreement on the threading by the coders establishes a basic interpretation of the interaction.

Then, individual utterances can be assigned to codes in a reliable way. In addition, we were

interested in the math problem solving. So we also determined the threading of math

argumentation, which sometimes diverged from the conversational threading, often by

referring further back to previous statements of math resources that were now being made

relevant. Determining the problem-solving threading required an understanding of the math

being done by the students, and often involved bringing math expertise into the coding

process.

In this article, we focus on three issues that emerged in our attempt to apply a coding

scheme in preliminary stages of CSCL research:

(a) We tried to use the natural unit of the chat posting as our unit for coding. This rarely

led to problems with multiple contents being incorporated in a single posting, but

rather with a single expressive act being spread over multiple postings.

(b) The reconstruction of the chat’s response structure was an important step in

analysing a chat. We developed a conversation thread and a problem-solving thread

to represent the response structure.

(c) The goal of acceptable reliability drove the evolution of the coding scheme. The

calculation of reliability itself had to be adjusted to avoid over-estimation for

sparsely coded dimensions.

3. Unit fragmentation and response structure reconstruction

We started with the calibration of the conversation dimension and combined this with

threading in a single analysis step, but quickly discovered that ‘threading’ actually consisted

of two issues namely ‘unit fragmentation’ and ‘reconstruction of the response structure’. Unit

fragmentation refers to fragmented utterances by a single author spanning multiple chat lines.

Coding procedure for small group chat 8

These fragments make sense only if considered together as a single utterance. Usually, one of

these fragments is assigned a conversational code revealing the conversational action of the

whole statement, and the remaining fragments are tied to the special fragment by using

‘setup’ and ‘extension’ codes. This reduces double coding. Table 1 provides an example of

both codes: line 155 is an extension to 154 and together they are a ‘request’ and line 156 is a

setup to line 158 forming a ‘regulation’.

CSCL research on chat technology previously focused on dyadic interaction (e.g., research

on argumentation; Andriessen, Baker, & Suthers, 2003), which poses few difficulties to

determine who responds to whom. In contrast, the VMT’s small group chat transcripts

revealed that the chain of utterances was problematic. A discussion forum uses a threaded

format that automatically inserts a response to a message as a subordinate object in a tree

structure, and in a similar vein, a prefix is added to the subject header of an e-mail reply.

Current chat technology has no such indicators identifying the chain of utterances. Moreover,

while there is no confusion about the intended recipient in a dyadic setting (the other actor),

students in small groups often communicate simultaneously, making it easy to loose track of

to whom they should respond. Coding small group conversation in a chat required the

reconstruction of the response structure as shown in Table 1.

Insert Table 1 about here

Delay between utterances proved to be important. For example, lines 157 and 158 fully

overlap (no delay) and the delay between lines 166 and 167 of 16 seconds reveals that the

short utterance of 167 is more likely to be connected to 166 than 164. Our reasoning is that it

takes only a few seconds to type and submit this utterance, and if line 167 was intended as a

response to line 164 this utterance would have appeared before or simultaneous with line 166.

Coding procedure for small group chat 9

Connecting utterances to handle unit fragmentation and to reconstruct the response

structure is performed simultaneously, and referred to as ‘threading’. The threading is

performed separately from the conversational coding, including assignment of extension and

setup, because not all spanned utterance connections concern fragmentation. There is one

infrequent exception of a spanned utterance in the shape of three fragments coded as

‘explain/critique’ + ‘elaborate’ + ‘extension’, but this emphasises that coding of extend and

setup should be performed separately. In other words, threading only reconstructs

connections between the user-defined chat lines that form a) a fragment of a spanned

utterance or b) a response to a previous utterance, but the nature of the chat line is decided

during coding and not during threading. It also highlights that a coder should be familiar with

the codes to ensure that s/he knows which lines should be considered for threading because

the conversational code depends on whether or not a thread is assigned.

Calibration trials for the problem solving dimension revealed a similar need for the

reconstruction of a problem-solving thread – to follow the co-construction of ideas and flow

of problem-solving acts (e.g., proposing a strategy or performing a solution step) – prior to

the coding of problem solving.

Calibration trials showed that threading is of utmost importance for the analysis of chat-

based small group problem solving and should be assigned prior to the (conversational)

coding. In the next section we will discuss the reliability for threading and coding of three

dimensions in detail, as their calculation presented additional methodological issues – more

specifically the risk for reliability overestimation. In line with Strijbos et al. (2006) we

address reliability stability by presenting two trials, each covering about 10% of the data.

4. Reliability of threading, coding and reliability over-estimation

4.1. Reliability of threading

Threading is already a deep interpretation of the data and therefore a reliability statistic

Coding procedure for small group chat 10

should be determined. The calculation of ‘threading reconstruction’ reliability proved

complicated, because coders can assign a thread indicator to a chat line or not, assign an

indicator to the same chat line or to a different chat line. As a result, only a proportion

agreement can be computed. We used three coders (first author and two research assistants)

and computed two indices for all possible dyads:

• for the assignment of a thread or not by both coders (% thread);

• for the assignment of the same thread whenever both assigned a thread (% same).

Table 2 presents the results for both reliability trials for each pair of coders. The first trial

(R1) consisted of 500 chat lines and the second trial (R2) consisted of 449 chat lines. The top

of table 2 presents the results for the conversational thread and the bottom the results for the

problem-solving thread.

Insert Table 2 about here

A threshold for the proportion agreement reliability of segmentation does not exist in

CSCL research (De Wever et al., 2006; Rourke, Anderson, Garrison, & Archer, 2001), nor in

the field of content analysis (Neuendorf, 2002; Riffe, Lacy, & Fico, 1998). Given the various

perspectives in the literature, a range of .70 to .80 for proportion agreement can serve as the

criterion value. Combined results for the conversational thread reveal that, on average, both

coders assign a thread in 80.7% of all cases. Overall, 72.2% of the thread assignments are the

same. These combined results show that the reliability of conversational threading is actually

quite stable and fits the .70 to .80 range.

 The results of both reliability trials reveal for the problem-solving thread that, on average,

in 87% of all the instances both coders assigned a thread. Of all threading assignments by

either coder 91.5% are the same. These results show that the reliability of problem-solving

Coding procedure for small group chat 11

threading exceeds the .70 to .80 range. It should be noted that the problem-solving thread is

often the same as the conversation thread, so the reliability indices are automatically higher.

The R2 selection also contained fewer problem-solving utterances than R1, so the problem-

solving thread is more similar to the conversational thread and thus reliability higher. Since

the reliability of problem-solving threading depends on the number of utterances that actually

contain problem-solving content, it will fluctuate between transcripts. Therefore, the first trial

should be regarded as a satisfactory lower bound: 77.1% for thread assignment and 89.9% for

same thread assignment.

4.2. Reliability of three coding dimensions and reliability overestimation

Given the impact of the conversational and problem-solving threads during the calibration

sessions, codes were added or changed, definitions adjusted, prototypical examples added,

and rules to handle exceptions established. Nine calibration trials were conducted prior to the

reliability trials. We used three coders (first author and two research assistants) and adopted a

stratified coding approach for each reliability trial: the coders first individually assigned the

conversation threads, followed by a discussion to construct an agreed upon conversational

thread, after which each coder independently coded the conversational and social dimension.

Next, coders first individually assigned the problem-solving thread before a discussion was

held to construct an agreed upon problem-solving thread, followed by assigning the problem-

solving codes. Between both reliability trials, minor changes were made in the wording of a

definition or adjusting a rule. Mastery of the coding procedure is laborious. Per dimension, it

takes about twenty hours of training and discussion with an experienced coder.

In contrast to our initial conceptualisation of the dimensions as being independent we have

been thus far unable to avoid ties between some of the conversational codes and the problem-

solving dimension. Coding qualitatively different processes, social versus problem-solving,

using the same data corpus was problematic – foremost regarding ‘elaborate’, ‘explain’ and

Coding procedure for small group chat 12

‘critique’ categories. The implications of ties for the validity of the coding scheme should be

determined, but this is beyond the scope of the current article.

Calculating the reliability for the conversation, social, and problem-solving dimensions

proved to be less straightforward than expected. Each chat line receives a conversation code

and can have either one or no code for any other dimension, but not all chat lines are eligible

to receive a particular code. The social and problem-solving dimensions only apply to a

portion of all of the chat lines, and the pool of valid units will fluctuate between different

pairs of coders. When not all units are eligible to receive a code we should decide how we

handle units coded by only one coder and the units not coded both coders in the reliability

computation:

a) include only units coded by both coders (exclude units with missing values)

b) categorise missing values as ‘no code’ and include this category;

c) categorise missing values and non-coded units as ‘no code’ and include this category.

For possibilities a) and c) we calculated three reliabilities indices as suggested by De

Wever et al. (2006): proportion agreement (%), Cohen’s kappa (κ) and Krippendorffs alpha

(α) (the latter two correct for chance agreement) for each dimension and pair of coders.

Option b) was only computed for kappa and alpha. To determine whether the reliability is

sufficient the .70 to .80 range is mostly used as criterion for proportion agreement.

Perspectives in the literature on a criterion value for kappa differ, but in our opinion these

criteria—intermediate, strict and lenient—apply best: below .45 ‘poor’, .45 to .59 ‘fair’, .60

to .74 ‘good’, and .75 and above ‘excellent’ (De Wever et al., 2006; Landis & Koch, 1977;

Neuendorf, 2002). We apply the same criteria to alpha. Table 3 shows the reliability results

for the conversation, social and problem-solving dimension.

Insert Table 3 about here

Coding procedure for small group chat 13

Although proportion agreement is still often used, it is insufficient to serve as an indicator

for reliability because it does not correct for chance agreement, and we report this solely for

comparison. Kappa is computed because this is the most widely used statistic that corrects for

agreement by chance. However, recent publications revealed that kappa behaves strange, i.e.

the kappa for two coders with a radically different distribution of frequencies over categories

will be higher than coders with a similar distribution (Artstein & Poesio, 2005; Krippendorff,

2004). Alpha does not suffer from this statistical artefact, so it should be preferred. We retain

kappa for comparison because alpha is not widely used in CSCL or educational research. We

will first discuss the pair-wise comparisons for the social and problem-solving dimension.

When only those units coded by both coders are included in the computation – κ1 and α1 –

the reliability is consistently higher than proportion agreement, which is expected because κ1

and α1 do not treat all units coded by only one coder as disagreement. It should be noted that

alpha affords to ‘include’ missing values in the data matrix, however, units coded by only one

coder are ignored in the final computation. So, although it seems that more units are included

there is computationally no difference with the case where these units are excluded (Table 3

shows the number of units that ‘appear’ to be used for the computation for α1 but they are in

reality the same as for κ1).

When the missing values for units that were coded by only one coder are categorised ‘no

code’ and this ‘extra’ category is included in the computation – κ2 and α2 – reliability drops.

This is stronger for the social dimension as compared to the problem-solving dimension, and

is caused by the number of missing values; more missing values lead to a stronger downward

correction when these are treated as disagreement. Alpha and kappa have similar values, but

differ slightly (caused by the different distribution of frequencies over categories).

When the missing values and all units that were not coded by both coders are included and

Coding procedure for small group chat 14

categorised as ‘no code’ – %A, κA and αA – proportion agreement is consistently higher, αA is

higher than α2 for the social and problem-solving dimension but is lower than α1 for the social

dimension and equal to α1 for the problem-solving dimension. The same pattern is visible for

the three kappa indices.

Since proportion agreement does not correct for chance agreement and kappa suffers from

a statistical artefact, alpha is preferred. Excluding missing values in the computation neglects

a source of disagreement and inflates reliability, so α1 is not adequate. Including all units that

were not coded by both coders appears appealing and consistent but treats those units that are

conceptually not eligible to receive a code as agreement. So, αA also inflates reliability and is

not adequate. Including only those units coded by either coder, categorising missing values as

‘no code’, is the most strict computation. Thus, α2 should be preferred although this statistic

is a slight underestimation of the possible ‘eligible’ units – because it ignores the ambiguous

units that both coders considered but did not code – but this is favoured given the substantial

overestimation if missing values are excluded or all non-coded units are included.

The pair-wise comparisons provide insight into the performance of particular coders, but if

more than two coders are available this should be preferred. We had three coders and alpha is

suited to compute reliability for more than two coders (although Fleiss kappa can also correct

for multiple coders it applies only to nominal data, alpha can also be used for ordinal, interval

and ratio data). Again, α2 is preferred over α1 and αA for the case of three coders, and appears

the best approximation for the reliability for the social and problem-solving dimension.

Considering the reliability statistics for three coders, alpha for the conversation dimension

can be considered ‘good’ for both trails, .653 for R1 and .689 for R2. The alpha for the social

dimension can be considered ‘fair’ for both trials, .462 for R1 and .480 for R2. The alpha for

the problem solving dimension is ‘poor’ for R1 (.370) and ‘fair’ for R2 (.523).

5. Discussion

Coding procedure for small group chat 15

CSCL research using chat technology has focused primarily on dyads. The VMT project

investigates chat-based small-group problem solving. During the development of a multi-

dimensional coding scheme to analyse interactions in these groups, three new issues emerged

that have strong implications for content analysis methodology and practice in general and

chat communication in particular.

The first methodological issue concerns unit fragmentation. We chose the chat line as the

unit of analysis because this is defined by the user, but frequently an utterance spanned across

several chat lines makes sense only when considered as a whole. Consequently, connections

between these units were required prior to coding, and two codes were added to the

conversation dimension to mark these fragments (setup and extension).

The second issue concerns the need to reconstruct the response structure. Whereas in a

dyadic chat the intended recipient is always the other partner, it is not easy to determine this

in a small group. Similarly to fragmentation, the connection between chat lines forming a

chain of responses needs to be reconstructed prior to coding of the conversation dimension.

Furthermore, the delay between chat line postings proved to be relevant to determining the

response structure. Also, a coder must be familiar with the conversational codes. Assignment

of both types of connections is performed simultaneously and termed ‘threading’ and a deep

interpretation of what is going on in the chat. Aggregating all coding divergence would result

in very low reliabilities, so agreement on threading prior to coding is necessary.

The third methodological issue concerns reliability calculation. We conducted two trials

and computed the reliability for both types of threading. Reliability for the conversation and

problem-solving threading could only be expressed as a proportion agreement, but this

proved to be sufficiently reliable. Calculation of reliability for the social and problem-solving

dimension was problematic: not all chat lines are valid analysis units for these dimensions

and can lead to overestimation of their reliability. The extent of overestimation was shown by

Coding procedure for small group chat 16

calculating reliability for the case where a) only units coded by both coders are included

(missing values are excluded), b) missing values are categorised as ‘no code’ and included in

the computation, and c) missing values and non-coded units are categorised as ‘no code’ and

included in the computation. We computed and compared three reliability indices and

concluded that excluding missing values and including all non-coded units lead to over-

estimation. Including missing values as a ‘no code’ category is the most strict computation

and a slight underestimation of the reliability. In our opinion a slight underestimation should

be favoured given a substantial overestimation if units with missing values are excluded or all

non-coded units are included. If available the use of more than two coder is preferred, and the

valid pool of units should be reported (see for example Hurme & Järvelä, 2005, p. 6).

We included proportion agreement and Cohen’s kappa for comparison, although both

statistics are problematic. Overall, coding reliability – Krippendorff’s alpha for three coders –

ranged ‘poor’ to ‘good’ in the first trial and ‘fair’ to ‘good’ in the second trail. Nevertheless,

reliability is only one aspect of a coding scheme—addressing the extent to which the coding

can be reproduced—and it should not be mistaken for validity. We conclude with some

reflections on validity.Once we had reliable coding of ten chat logs, we looked for statistical

patterns. It turned out that the chats almost fell into two sets depending upon whether the

students had seen the math problems in advance of their chats or not. However, there were

two anomalous chats that fell into the wrong sets. The use of codes brought this anomaly to

our attention, but could not explain it. Using conversation analysis, we could see a difference

in interaction patterns that we termed expository versus exploratory (Mercer & Wegerif,

1999; Zemel, Xhafa, & Stahl, 2005). Subsequently, we found that students working in our

chat environment developed methods of interacting that were not adequately captured—let

alone explained—by codes adopted from the work of researchers investigating other media or

from a priori theories of interaction. For instance, we determined that ‘math proposal

Coding procedure for small group chat 17

adjacency pairs’ often play a distinctive driving role in our math chats (Stahl, 2006c).

Ethnomethodologically-informed design-based research needs to grasp the methods that

participants creatively invent in response to innovative learning situations and technologies;

they cannot simply reduce everything to instances of categories of actions generalised from

past studies.

Also, we are particularly interested in group cognition (Stahl, 2006a) that takes place at

the group unit of analysis, while coding schemes generally focus on the individual. For

instance, we look at problem solving by the group as a whole (Stahl, 2006d). Our coding

scheme tried to capture group phenomena like proposal bid-and-uptake or interaction

question-and-answer by coding these as sequences of individual contributions (e.g., offer

followed by response). The format of chat logs and the traditions of coding practice misled us

to fragment group interactions into individual contributions. We now want to look at paired

interactions and longer sequences as atomic elements of chats.

As the VMT environment evolved and incorporated a shared whiteboard, graphical

referencing, math symbols and other functionality, even our multi-dimensional coding of

utterances could not capture the increasingly complex and innovative interactions (Stahl,

2006e). To understand the unique behaviors as students adapt to the new environment—

custom technology, pedagogical guidance, open-ended math worlds—we need to look closely

at the design of unique group interactions, and not simply code them with pre-existing

categories, no matter how multi-dimensional and reliable. While general codes can be applied

to many of these phenomena, they do not capture what is new, as required for design-based

research. Reducing the chat to a sequence of codes that are general enough to be applied

reliably, can eliminate the content and details that are of particular interest (Stahl, 2002). This

is a paradox of reliable and valid coding efforts in exploratory CSCL research.

Coding procedure for small group chat 18

Acknowledgements

The authors express thanks to Murat Cakir, Nan Zhou, Ramon Toledo and Johann

Sarmiento for their hard work in developing, testing and using the coding system in the

reliability trials. The reported research was funded by NSF grants 0325447 and 0333493.

Coding procedure for small group chat 19

References

Andriessen, J., Baker, M., & Suthers, D. (Eds.) (2003). Arguing to learn: Confronting

cognitions in computer-supported collaborative learning. Dordrecht: Kluwer Academic/

Springer Verlag.

Artstein, R., & Poesio, M. (2005). Kappa3 = alpha (or beta) (NLE Technical Note 05-1).

University of Essex: Natural Language Engineering and Web Applications Group.

Barron, B. (2003). When smart groups fail. The Journal of the Learning Sciences, 12, 307-

359.

Beers, P. J., Boshuizen, H. P. A., Kirschner, P. A., & Gijselaers, W. (2005). Computer

support for knowledge construction in collaborative learning environments. Computers in

Human Behavior, 21, 623-643.

Cakir, M., Xhafa, F., Zhou, N., & Stahl, G. (2005, July). Thread-based analysis of patterns of

collaborative interaction in chat. Paper presented at the 12th international conference on

artificial intelligence in education, Amsterdam, The Netherlands.

Chi, M. T. H. (1997). Quantifying qualitative analysis of verbal data: A practical guide. The

Journal of the Learning Sciences, 6, 271-315.

Chiu, M. M., & Khoo, L. (2003). Rudeness and status effects during group problem solving:

Do they bias evaluations and reduce the likelihood of correct solutions? Journal of

Educational Psychology, 95, 506-523.

De Wever, B., Schellens, T., Valcke, M., & Van Keer, H. (2006). Content analysis schemes

to analyze transcripts of online asynchronous discussion groups: A review. Computers &

Education, 46, 6-28.

Fischer, F., Bruhn, J., Gräsel, C., & Mandl, H. (2002). Fostering collaborative knowledge

construction with visualization tools. Learning and Instruction, 12, 213-232.

Coding procedure for small group chat 20

Fischer, F., & Mandl, H. (2005). Knowledge convergence in computer-supported

collaborative learning: The role of external representation tools. The Journal of the

Learning Sciences, 14, 405-441.

Gunawardena, C. N., Lowe, C. A., & Anderson, T. (1997). Analysis of a global online debate

and the development of an interaction analysis model for examining social construction of

knowledge in computer conferencing. Journal of Educational Computing Research, 17,

397-431.

Fuks, H., Pimentel, M., & De Lucena, C. J. P. (2006). R-U-Typing-2-Me? Evolving a chat

tool to increase understanding in learning activities. International Journal of Computer-

Supported Collaborative Learning, 1, 117-142.

Henri, F. (1992). Computer conferencing and content analysis. In A. Kaye (Ed.),

Collaborative learning through computer conferencing: The Najaden papers (pp. 117-

136). London: Spinger Verlag.

Hmelo-Silver, C. E. (2003). Analyzing collaborative knowledge construction: Multiple

methods for integrated understanding. Computers & Education, 41, 397-420.

Hurme, T. R., & Järvelä, S. (2005). Students’ activity in computer-supported collaborative

problem solving in mathematics. International Journal of Computers for Mathematical

Learning, 10, 49-73.

Jonassen, D. H., & Kwon, H. I. (2001). Communication patterns in computer mediated and

face-to-face group problem solving. Educational Technology Research & Development,

49, 35-51.

Krippendorff, K. (2004). Reliability in content analysis: Some common misconceptions and

recommendations. Human Communication Research, 30, 411-433.

Landis, J., & Koch, G. (1977). The measurement of observer agreement for categorical data.

Biometrics, 33, 159-174.

Coding procedure for small group chat 21

Mercer, N., & Wegerif, R. (1999). Is “exploratory talk” productive talk? In K. Littleton & P.

Light (Eds.), Learning with computers: Analyzing productive interaction (79-101). New

York, NY: Routledge.

Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks, CA: Sage

publications.

O’Neill, J., & Martin, D. (2003). Text chat in action. Paper presented at the ACM Conference

on Groupware (GROUP 2003), Sanibel Island, FL.

Polya, G. (1985). How to solve it. Princeton: Princeton University Press.

Renninger, K. A., & Farra, L. (2003). Mentor-participant exchange in the Ask Dr. Math

service: Design and implementation considerations. In M. Mardis (Ed.), Digital libraries

as complement to K-12 teaching and learning (pp. 159-173). ERIC Monograph Series.

Riffe, D., Lacy, S., & Fico, F. G. (1998). Analyzing media messages: Using quantitative

content analysis in research. Mahwah, NJ: Lawrence Erlbaum Associates.

Rourke, L., Anderson, T., Garrison, D. R., & Archer, W. (2001). Methodological issues in the

content analysis of computer conference transcripts. International Journal of Artificial

Intelligence in Education, 12, 8-22.

Schellens, T., & Valcke, M. (2005). Collaborative learning in asynchronous discussion

groups: What about the impact on cognitive processing? Computers in Human Behavior,

21, 957-975.

Sfard, A., & McClain, K. (2003). Analyzing tools: Perspectives on the role of designed

artifacts in mathematics learning: Special issue. Journal of the Learning Sciences, 11(2 &

3).

Stahl, G. (2002). Rediscovering CSCL. In T. Koschmann, R. Hall & N. Miyake (Eds.), CSCL

2: Carrying forward the conversation (pp. 169-181). Hillsdale, NJ: Lawrence Erlbaum

Associates.

Coding procedure for small group chat 22

Stahl, G. (2006a). Group cognition: Computer support for building collaborative knowledge.

Cambridge, MA: MIT Press.

Stahl, G. (2006b). Virtual Math Teams project: An overview of VMT. Retrieved January 23,

2007, from http://www.mathforum.org/vmt/researchers/orientation.html

Stahl, G. (2006c). Sustaining group cognition in a math chat environment. Research and

Practice in Technology Enhanced Learning (RPTEL), 1(2).

Stahl, G. (2006d). Analyzing and designing the group cognitive experience. International

Journal of Cooperative Information Systems (IJCIS), 15, 157-178.

Stahl, G. (2006e). Supporting group cognitions in an online math community: A cognitive

tool for small-group text referencing in chat. Journal of Educational Computing Research,

35, 103-122.

Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning:

An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook of the learning

sciences (pp. 409-426). Cambridge, UK: Cambridge University Press.

Strijbos, J. W. (2004). The effect of roles on computer-supported collaborative learning.

Unpublished doctoral dissertation, Open University of The Netherlands, Heerlen, The

Netherlands.

Strijbos, J. W., Kirschner, P. A., & Martens, R. L. (2004). (Eds.) What we know about CSCL:

And implementing it in higher education. Boston, MA: Kluwer Academic/Springer Verlag.

Strijbos, J. W., Martens, R. L., Jochems, W. M. G., & Broers, N. J. (2004). The effect of

functional roles on perceived group efficiency: Using multilevel modeling and content

analysis to investigate computer-supported collaboration in small groups. Small Group

Research, 35, 195-229.

Strijbos, J. W., Martens, R. L., Prins, F. J., & Jochems, W. M. G. (2006). Content analysis :

What are they talking about ? Computers & Education, 46, 29-48.

Coding procedure for small group chat 23

Webb, N. M., & Mastergeorge, A. M. (2003). The development of students’ helping

behaviour and learning in peer-directed small groups. Cognition & Instruction, 21, 361-

428.

Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge

construction in computer-supported collaborative learning. Computers & Education, 46,

71-95.

Zemel, A., Xhafa, F., & Stahl, G. (2005, September). Analyzing the organization of

collaborative math problem-solving in online chats using statistics and conversation

analysis. Paper presented at CRIWG 2005 conference, Recipe, Brazil.

Coding procedure for small group chat 24

Appendix A. VMT coding scheme example (italic signals addition during calibration)

C-thread Conversation Social PS-thread Problem

Solving

Reply to Ui No code Identity self Connect to

Ui

Orientation

 State Identity other Strategy

 Offer Interest Tactic

 Request Risk-taking Perform

 Regulate Resource Result

 Repair typing Norms Check

 Respond, more general

than the codes below that

are tied to problem solving:

Home Corroborate/

counter

 Follow School Clarify

 Elaborate Collaborate group Reflect

 Extend Collaborate individual Restate

 Setup Sustain climate Summarise

 Agree Greet

 Disagree

 Critique

 Explain

Coding procedure for small group chat 25

Table 1

Threading reconstruction (derived from reliability trial R1)

Line Name Utterance Time Delay T1 T2 T3 TA

154 AME How about you fir 7:28:03 0:15

155 AME Do you agree 7:28:35 0:32 154 154 154

156 AME nvm 7:28:50 0:15

157 MCP I used cos(22.5) instead of .924.
Got 4.2498ish

7:28:55 0:05 151 153 153 153

158 AME lets go on 7:28:55 0:00 156 156 156 156

159 AME Its close enough 7:29:16 0:21 157 157 157 157

160 AME How about 4.25? 7:29:22 0:06 157 157

161 MCP I guess use 4.6^ - 4.25^ to get
BV^2

7:29:53 0:31 160 160 160

162 AME ya 7:30:03 0:10 161 161 161 161

163 MCP Then 16 * that, again 7:30:05 0:02 161 161 161

164 AME I got 1.76 or so 7:31:03 0:58 161

165 MCP yes 7:31:09 0:06 164 164 164 164

166 AME So the perimeter should be 28.16 7:31:28 0:19 164 164 164

167 FIR ye! 7:31:44 0:16 166 164 166 166

168 FIR *YES! 7:31:51 0:07 167 167 167 167

T1 = Thread coder 1, T2 = Thread coder 2, T3 = Thread coder 3, TA = Agreed after

discussion.

Coding procedure for small group chat 26

Table 2

The proportion agreement indices for the conversational and problem-solving thread by coder

pair and reliability trial

 Conversational thread

 R1 R2

Pair % thread % same % thread % same

1 – 2 .832 .731 .835 .712

1 – 3 .778 .727 .824 .749

2 – 3 .750 .687 .832 .730

 Problem-solving thread

 R1 R2

Pair % thread % same % thread % same

1 – 2 .756 .928 .942 .983

1 – 3 .805 .879 .909 .967

2 – 3 .753 .890 .880 .935

Coding procedure for small group chat 27

Table 3. Proportion agreement, kappa and alpha by coder for the conversational, social and problem-solving dimension

 Conversation dimension

 R1 (U = 500) R2 (U = 449)

Pair % κ α % κ α

1 – 2 .750 .723 .704 .735 .703 .702

1 – 3 .644 .583 .600 .724 .687 .686

2 – 3 .692 .663 .654 .724 .689 .681

3 coders .653 .689

 Social dimension

 R1 R2

 Missing
excluded

Missing as
‘no code’

Missing and no-code
units included (U = 500)

 Missing
excluded

Missing as
‘no code’

Missing and no-code
units included (U = 449)

Pair % κ1 α1 κ2 α2 %A κA αA % κ1 α1 κ2 α2 %A κA αA

1 – 2

.550

208

.835

127

.850

208

.464

208

.430

208

.812 .651 .641 .646

176

.748

140

.733

176

.565

176

.550

176

.857 .755 .733

1 – 3

.495

218

.793

129

.771

218

.382

218

.372

218

.788

.594

.593 .543

163

.737

107

.733

163

.444

163

.412

163

.835

.669

.649

2 – 3

.529

185

.798

115

.831

185

.413

185

.439

185

.824 .637 .656 .506

174

.730

106

.739

174

.407

174

.367

174

.820 .634 .609

3 coders .787

225

 .462

225

 .629 .735

182

 .480

182

 .668

Coding procedure for small group chat 28

Table 3. Proportion agreement, kappa and alpha by coder for the conversational, social and problem-solving dimension (continued)

 Problem-solving dimension

 R1 R2

 Missing
excluded

Missing

‘no code’

Missing and no-code
units included (U = 500)

 Missing
excluded

Missing as

‘no code’

Missing and no-code
units included (U = 449)

Pair % κ1 α1 κ2 α2 %A κA αA % κ1 α1 κ2 α2 %A κA αA

1 – 2

.469

178

.631

127

.628

178

.382

178

.385

178

.821 .622 .613 .657

178

.674

158

.666

178

.588

178

.576

178

.864 .766 .762

1 – 3

.351

172

.564

97

.543

172

.229

172

.242

172

.782

.514

.504 .553

195

.649

147

.662

195

.484

195

.464

195

.804

.675

.665

2 – 3

.439

148

.542

106

.520

148

.339

148

.340

148

.834 .618 .608 .556

190

.576

146

.654

190

.485

190

.469

190

.815 .688 .667

3 coders .563

181

 .370

181

 .576 .650

196

 .523

196

 .699

% = percentage agreement, κ = Cohen’s kappa, α = Krippendorff’s alpha, κ1 = kappa with missing excluded, α1 = alpha with missing

excluded, κ2 = kappa with missing as disagreement, α2 = alpha with missing as disagreement, analysis units in italics, %A, κA, and αA =

percentage, kappa and alpha when all units are included.

