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Introduction 

he essays in this volume are about the Virtual Math Teams project during its 
later years when it included a multi-user version of GeoGebra, supporting 
collaborative dynamic geometry. These essays supplement the more systematic 

presentations in Translating Euclid and Constructing Dynamic Triangles Together. 
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1. Multi-User GeoGebra for 
Virtual Math Teams  

Gerry Stahl, Jimmy Xiantong Ou, Baba Kofi Weusijana, 
Murat Perit Çakir & Stephen Weimar  

ABSTRACT. The Math Forum is an online resource center for pre-algebra, 
algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service 
provides an integrated web-based environment for small teams to discuss 
mathematics. The VMT collaboration environment now includes the 
dynamic mathematics application, GeoGebra. It offers a multi-user version 
of  GeoGebra, which can be used in concert with VMT’s chat, web 
browsers, curricula and wiki repository. 

The Virtual Math Teams Project  
he Virtual Math Teams (VMT) Project grew out of the Problem-of-the-Week 
(PoW) service at the Math Forum. The Math Forum is a well-established 
online resource for improving math learning, teaching and communication 

(Renninger & Shumar, 2002). Operating since 1992, the Math Forum is now visited 
by several million different visitors a month. Its PoW service provides challenging 
problems of K-12 students on a weekly basis. These problems are primarily oriented 
to individual student work, and exemplary student solutions are posted to the 
http://mathforum.org site. The original idea of the VMT Project was to provide 
similar stimulating problems for small groups of students to work on collaboratively 
over the Internet (Stahl, 2006; 2009). 

In our design-based research at the VMT Project, we started by hosting student 
chats in a variety of commercially available environments, including AOL Instant 
Messenger, Babylon, WebCT and Blackboard. Based on these early investigations, we 
concluded that we needed to include a shared whiteboard for drawing geometric 
figures and for persistently displaying notes. We also found a need to minimize “chat 
confusion” by supporting explicit referencing of response threads. We decided to 
adopt and adapt ConcertChat, a research chat environment with special referencing 
tools (Mühlpfordt & Wessner, 2009). By collaborating with the software developers 
at Fraunhofer IPSI in Germany, our educational researchers have been able to 

T 
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successively try out versions of the environment with groups of students and to 
gradually modify the environment in response to what we find by analyzing the chat 
logs.  

Referencing support for collaboration  
The ConcertChat environment integrates text chat with a shared whiteboard. A 

unique feature of ConcertChat is its support for graphical referencing (see Figure 1 
below for an example). It allows for three forms of referencing from the text chat: 

• A chat message can point to one or more earlier textual postings with a bold 
connecting line. When that message appears in the chat as the last posting or as a 
selected posting, a bold line appears connecting the text to the selected chat 
posting above. 

• While someone types a new chat message, they can select and point to a 
rectangular area in the whiteboard. When that message appears in the chat as the 
last posting or as a selected posting, a bold line appears connecting the text to the 
area of the whiteboard.  

• While someone types a new chat message, they can select and point to a graphical 
object in the whiteboard. When that message appears in the chat as the last 
posting or as a selected posting, a bold line appears connecting the text to the 
area of the whiteboard.  



Essays in Collaborative Dynamic Geometry 

      

12 

 
 

Figure 1. A VMT chat room. Note the multiple workspace tabs on the left and the chat area 
on the right. The selected chat message is referencing an area on the whiteboard and the new 
message being typed references that previous message. The small rectangles above the selected 
chat message provide awareness within the chat area that a series of actions have taken place 
within one of the workspaces. The rectangles are color coded to match the color of the chat 
messages of the user who made the actions. 

Referencing is critical to supporting online collaboration. In face-to-face 
situations, like a group standing around a physical whiteboard, we tend to take for 
granted that people point to and gesture at items in the whiteboard. People also take 
turns drawing on the whiteboard by exchanging possession of the marker—and it is 
visible to everyone who is doing the drawing. In an online context, other forms of 
referencing and awareness are needed. The Concert-Chat referencing tool can be used 
to avoid or clarify confusions in text-chat discussions. The action indicators (shown 
in Figure 1) provide another form of awareness to someone focused on the chat that 
other participants are active in the whiteboard. In addition, notices are displayed 
announcing who is typing in the chat, editing text boxes in a whiteboard or creating 
new objects in a drawing. The box above the chat maintains a list of who is currently 
logged in the room. 

The VMT lobby, chat room and wiki 
This referencing is just one form of integration of media in the VMT 

environment. The overall technological integration of the VMT Lobby (or portal), 
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chat room/shared whiteboard, and wiki should be understood theoretically as a 
pedagogical integration of learning at the individual, small-group and community 
levels: (a) The VMT Lobby provides a portal for the individual user to browse the 
people and topics of the community and to select a room for group work. (b) The 
chat rooms are basically meeting and work places for the small groups as they engage 
in synchronous collaborative learning. (c) The wiki, on the other hand, primarily 
provides an asynchronous community space in which the work of all groups is 
coordinated, commented upon and perhaps summarized. 

(a) The VMT Lobby provides a social networking portal for students to log into 
the system. It includes tools for defining and viewing personal profiles. In general, 
students in a VMT group have no knowledge about each other except for what is 
revealed in the chat interaction; with the functionality available in the VMT Lobby, 
they can define their own profiles and view profiles of each other, as well as send 
messages to individuals or groups in their communities (projects). Communities are 
defined for various VMT constituencies, such as participants in a given online contest 
or in a given course. There is also support for defining buddies, listing favorite chat 
rooms, etc. In addition, there is an interface for searching and browsing available chat 
rooms, usually listed for a given community. This provides access to chat rooms on 
different topics. Students may be told by their teachers to find certain rooms, may be 
invited by buddies, may search for rooms on interesting topics or may create new 
rooms and invite peers to join them. 

 



Essays in Collaborative Dynamic Geometry 

      

14 

 
 

Figure 2. The VMT Lobby. In this view, a list of chat rooms is displayed for Project eMath. 
The math subjects for which there are rooms in this project are listed; under each subject are 
math topics (here, a set of related combinatorics topics) that have rooms defined; under each 
topic are a list of rooms. Clicking on a room name opens the associated chat room. 

(b) A typical VMT chat room consists of the text chat interface on the right and a 
shared whiteboard on the left (see Figure 1 above). The history of the whiteboard 
state can be scrolled through, much like that of the chat, but unlike the chat it usually 
retains inscriptions in the visible board as long as they are relevant. VMT chat rooms 
have a tabbed interface, with multiple workspaces—and users can add additional 
spaces as needed. One kind of workspace is the shared Workspace, supporting graphics 
and text boxes. Another is a similar shared whiteboard, intended for preparing a 
Summary of the group’s work for posting to a special wiki page associated with this 
chat room. A third tab may display the Topic for the room, stored on a wiki page by 
an instructor. A Wiki tab displays a page of the VMT wiki; a special page is created 
for each room, linked to other pages on the Topic, math Subject or Community. A 
Browser tab provides a simple multi-user web browser that can support the graphical 
referencing tool from the chat and a history scrollbar. A final tab can display wiki 
pages containing the VMT Help manual and associated information. As described 
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below, we have recently added an optional GeoGebra tab. This provides a complex, 
but integrated set of spaces for a group to work and communicate together. A group 
working on a math topic can bring in resources from the different tabs and everyone 
can see what the others are viewing and working on. 

(c) The VMT wiki can act as a digital library repository for summaries of work 
posted by teams. If there is a course that involves multiple chats by several teams, a 
wiki home page can be constructed for the course. The home page would then point 
to pages describing the course and each assignment. Group assignments are all posted 
to linked wiki pages. The course wiki includes index pages that bring together the 
student assignments in various combinations and allow the instructor to post 
feedback that is visible to all. The student groups can also rate and provide feedback 
to each other’s previous reports. 

Integration of tools in the environment  
The VMT environment has come a long way from the simple AOL Instant Messaging 
system to the current lobby/chat/tabbed-spaces/wiki multiple-interaction space. In 
part, this increased complexity parallels the shift from simple math exercises to open-
ended explorations of math worlds, from one-shot meetings to multiple-session Fests, 
from problem-solving tasks to knowledge-building efforts. Along with the 
considerable gain in functionality come substantial increases in complexity and the 
potential for confusion. This has been countered by trying to extend and supplement 
the integration approaches of ConcertChat. The graphical referencing and the history 
scrollbars have been extended to the multiple tabs. New social awareness notices have 
been added to track which tab each group member is viewing or referencing.  

The VMT collaboration environment has been tuned to the needs of high-school 
math students. There are specifically math-oriented functions—like a partial 
implementation of MathML for displaying equations (see 
http://vmt.mathforum.org/VMTLobby/VMTHelp/ mathequations.html) and the 
whiteboard’s stock of Euclidean shapes. In addition, there are tools for integrating 
the multiple workspaces—like the graphical referencing from chat, the creation of 
wiki pages corresponding to each chat room and the posting of summary text to the 
proper wiki page.  

Integration across modules has been important. Logins and passwords have 
been unified across the Lobby, chat rooms and wiki, so that logging into one 
automatically logs into the others. People registered in one module show up in the 
profiles and messaging system, by their selected community. When a new chat room 
is created, it is categorized by a community (e.g., a school), subject (e.g., 
combinatorics), a topic (e.g., Week 3’s assignment) and a group (e.g., Team D). A new 
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wiki page is generated for posting the summary from this room. The MediaWiki 
functionality of categories automatically associates this new page with aggregation 
pages for the community, subject, topic and group. 

Porting GeoGebra to VMT  
Our most recent enhancement to the VMT environment was to port the single-

user GeoGebra application into VMT as a multi-user component of the tabbed chat 
room. This allows groups of users to co-develop and co-explore a GeoGebra 
geometric construction. They can chat about the drawing and reference parts of it 
from their chat postings. There is a history slider, so users can scroll back and forth, 
watching the changes take place in the drawing for convenient review and reflection. 

The version of GeoGebra in VMT is fully multi-user. VMT integrates GeoGebra 
as a tab of the environment (see Figure 3). GeoGebra is a particularly appropriate 
dynamic math application for this project because its source code is freely available as 
open source, there is a development community to support on-going development, 
the lead developer and the founder are consulting with us, the application supports a 
wide range of math from Euclidean construction to calculus and 3-D, GeoGebra has 
won international prizes, and it has been translated into about 50 languages.  
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Figure 3. A GeoGebra construction created and discussed collaboratively in the VMT 2.0 
learning environment.  

Like all other dynamic math applications, GeoGebra previously existed only as 
a single-user application. While users could send their static constructions to each 
other, display screen images, or awkwardly include a view of the GeoGebra 
application within other environments (Blackboard, Moodle, Elluminate, etc.), only 
one person could dynamically manipulate the construction. Our port converted 
GeoGebra into a client-server architecture, allowing multiple distributed users to 
manipulate constructions simultaneously and to all observe everyone’s actions in real 
time. Every action in the GeoGebra tab is immediately broadcast by the server to all 
collaborating clients.  

In addition, incorporation of GeoGebra in the VMT environment framework 
allows users to engage in text chat while manipulating the construction. Importantly, 
users can graphically point from a chat posting to an area of the construction that 
they want to index—an important support for math discourse that is unique to VMT 
(or its now-defunct basis, ConcertChat). They can also scroll back and forth through 
the history of the GeoGebra construction, animating its evolution—a powerful way 
to explore many mathematical relationships. In addition, a complete record of the 
collaborative construction is available to the participants, their teachers and project 
researchers, allowing them to analyze and reflect upon the complete interaction, 
including the construction actions synchronized with the chat. 
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The VMT version of GeoGebra is compatible with the standard version. Thus, 
constructions can be imported and exported seamlessly between the two versions. 
This facilitates use of legacy GeoGebra curriculum within the collaborative VMT 
environment. Images of GeoGebra co-constructions can be created and pasted by 
users into the VMT wiki or into Word documents. Logs of the corresponding chats 
can also be saved as spreadsheet files and pasted into documents. 

The integration of GeoGebra significantly enhances the mathematical domain-
orientation of the VMT system. On the other hand, for the GeoGebra community, it 
makes available for the first time truly multi-user dynamic geometry support within a 
rich collaborative environment. With the flexible system of tabbed components, a 
curriculum designer, instructor or even a student can define topics for rooms with 
just GeoGebra and chat or with a more complicated mix of additional browsers and 
support components. 

For researchers of math learning, the enhanced environment provides a flexible 
laboratory for hosting virtual math teams engaged in GeoGebra-based tasks. The 
entire interactions of these teams will be logged in detail. Not only can the logs be 
generated in a variety of convenient formats, but also the team interactions can 
actually be replayed from the logs like digital videos for careful study (see Figure 4). 
With these tools, researchers can explore the group cognition of small teams 
accomplishing creative problem solving involving geometric constructions that are 
shared, visible and dynamic. 
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Figure 4. The VMT Replayer. The slider at the bottom can be set to scroll forward in real time 
or fast forward, as well as being dragged for browsing or stepped forward and backward action 
by action for detailed observation of coordinated construction and chat. Note that the new 
chat message being typed is graphically referencing a point in the GeoGebra construction for 
others to see. 

Designing for multi-user issues  
Making GeoGebra multi-user has involved many technical, underlying changes 

to the software and has necessitated a number of trade-offs and design decisions. In 
terms of the software technology, we treated the GeoGebra application as a client and 
embedded it in a Concert-Chat tab. Every action performed in the tab is immediately 
broadcast across the Internet to the VMT server. The server logs the action in its 
database and then broadcasts the action to the client of every user who is logged into 
the same room, including the originating client. In this way, each action performed by 
someone in a given VMT room is displayed identically for everyone who is working 
together. Minimizing Internet traffic is a major concern, especially with potentially 
large GeoGebra interdependent objects, and we had to make changes to Concert-
Chat and GeoGebra implementations to keep traffic under control.  

A major issue with multi-user systems is what to do when two users try to do 
conflicting things at the same time. We have recently implemented a locking 
mechanism, so that when two clients are creating objects at the same time or are 
manipulating the same object simultaneously, the changes are not broadcast until the 
end of the operations. This causes some delay in sharing what people are doing; 
however, we believe it is necessary to avoid serious confusion. Imagine if several 
clients were moving point A in opposite directions at the same time. If the system 
broadcast changes every tenth of a second, point A would be jumping back and forth 
wildly, making it hard for either user to move it sensibly. Where would point A end? 
We have decided to have point A end where the last user to release it leaves it. If two 
clients are simultaneously creating an initial triangle ABC, then without locking we 
would get multiple points with the same names. Our locking mechanism avoids these 
problems by noting the conflict and assigning different names to the points, but at 
some cost to mutual awareness.  

In the near future, we plan to try to implement two mechanisms to counteract 
the problem of delayed mutual awareness: (1) labeling actions and (2) simulating 
dragging. (1) We would like to display awareness notices in the drawing area stating 
who is creating, editing or moving a graphical object. This would indicate when 
multiple users are simultaneously at work, and perhaps some of the users would then 
wait to see what the others have done. (2) If point A is dragged to a new position, 
ending up, say, 5 units to the right, rather than having point A suddenly jump to the 
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new position in everyone’s client, we would simulate the dragging motion by 
interpolating 10 steps at tenth-of-a-second intervals. Then point A would appear to 
move to its new position through a smooth and straight motion. This would not be 
true to the actual dragging motion, but would give more of a feel for a dragging 
manipulation, which we believe to be important to the GeoGebra manipulation 
experience.  

Of course, other trade-offs are possible, depending upon the technical 
architecture. We are trying certain approaches and testing them out. We hope to soon 
have students trying our system. Gradually, we will learn of additional problems and 
evolve some solutions. The experience will never be the same as having a group of 
geometers standing around a physical whiteboard—although in some ways it will be 
better because there will be a permanent record of all interactions, which can be 
replayed for reflection and analysis. We hope that the integration of GeoGebra with 
text chat will help to overcome problems that arise from imperfect mutual awareness 
by allowing people to discuss in text what they are doing in constructions. 

Mathematics is often thought of as a solitary experience. However, our findings 
in the Virtual Math Teams Project show that it can be an exciting, engaging, 
motivating and rewarding experience when conducted collaboratively. To promote 
this effectively online, one must provide a carefully crafted set of tools. We believe 
that GeoGebra can play an important role as a central tool in the VMT environment 
and we look forward to working with the GeoGebra development and user 
community to tune our environment to meet the needs of math education globally. 
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2. Designing a Learning 
Environment to Promote Math 

Discourse 

Designing a software environment for online learning of  mathematics in 
small collaborative groups requires innovation in multiple dimensions. 
There has to be generic support for collaborative learning at a distance and 
also special functionality for mathematical work and communication. We 
combine the Virtual Math Teams environment with a multi-user version of  
GeoGebra. We also develop curricular activities through an iterative 
process of  evaluating the discourse that is stimulated by drafts of  the 
activities in prototypes of  the technology. 

Introduction 
athematics education in the future faces enormous opportunities from the 
availability of ubiquitous digital networks, from innovative educational 
approaches based on theories of collaborative learning and from rich 

resources for interactive, online, dynamic math exploration.  

The fact that more and more teachers and students are learning online—with 
distance education, online masters programs, home schooling, online high schools, 
etc.—makes the incorporation of virtual collaborative learning environments a 
growing need.  

This paper reports on the design of a virtual learning environment that integrates 
synchronous and asynchronous media with an innovative multi-user version of a 
dynamic math visualization and exploration toolbox. This VMT-with-GeoGebra 
environment is designed to support the production of significant math discourse. 

M 
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An Online Math Collaborative-Learning 
Environment  

The VMT-with-GeoGebra learning environment integrates two forms of 
technology to support math learning with collaborative and interactive tools:  

a) Computer-supported collaborative learning (CSCL) software and  

b) Dynamic mathematics (software that allows users to manipulate geometric 
diagrams, equations, etc.).  

(a) CSCL provides virtual-learning environments in which teams of students can 
interact synchronously and asynchronously to build knowledge together. This 
student-centered approach has many advantages, including increased motivation, 
sharing of skills, engaging in significant discourse and practicing teamwork. The 
system reported here extends the Virtual Math Teams (VMT) environment, which 
has already been prototyped and tested (Stahl, 2009b).  

(b) Dynamic math (such as Geometer’s Sketchpad, Mathematica, Cabri or 
GeoGebra) has profoundly impacted math education (Goldenberg, 1995; Hoyles & 
Noss, 1994; King & Schattschneider, 1997; Laborde, 1998; Myers, 2009; Scher, 2002), 
with Geometer’s Sketchpad and GeoGebra used in many US classrooms and globally. 
Yet, research on math education has not analyzed how students use dynamic math 
tools in sufficient detail (compare Cakir, Zemel & Stahl, 2009; Stahl, 2009b). 
GeoGebra (http://www.geogebra.org) is an open-source system for dynamic 
geometry, algebra and beginning calculus—including trigonometry, conics, matrices, 
graphing and Euclidean constructions. It offers multiple representations of objects in 
its graphics, algebra and spreadsheet views—which are all dynamically linked—
making GeoGebra a particularly flexible tool for exploration. The VMT-with-
GeoGebra system provides the first multi-user version of dynamic math, so that 
student teams can explore math collaboratively; it integrates the GeoGebra dynamic 
math tools into the larger VMT virtual collaborative-learning environment with text 
chat and wiki to support persistent discourses about math—that can be shared, 
reflected on and researched.1  

 
1 For a demo of the prototype system, go to http://vmt.mathforum.org/VMTLobby. Log in 

as “guest” with password “guest”. The Lobby should open showing the List of All Rooms. 
Select Project “VMT Research”. Click on "Apply filters". Open “Geometry". Open 
“Polygons". Click on "GeoGebra Demo Room" Eventually a JavaWebStart chat room 
should open. Explore its different tabs and functions. 
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Figure 1. A demo (not real student interaction data) GeoGebra construction created and 
discussed collaboratively in a multi-user prototype of the learning environment, based on the 
VMT system. The VMT system includes (not shown here): a Lobby with social networking 
and tools for teachers, integration with a wiki, and Web browsers. 

The VMT-with-GeoGebra system grew out of the successful Virtual Math 
Teams (VMT) Project. The VMT Project developed an open-source virtual learning 
environment for math students between 2003 and 2010. The system integrated a 
social-networking portal, synchronous text chat, a shared whiteboard, an 
asynchronous wiki, a referencing tool, mathML expressions and a web browser. 
Student actions and chat postings are automatically logged; they can be replayed for 
reflection, assessment and analysis by students, teachers and researchers. Over a 
thousand student-hours of piloted usage were logged. A qualitative micro-analytic 
approach to interaction analysis was developed based on ethnomethodologically 
inspired conversation analysis (Garfinkel, 1967; Sacks, 1962/1995; Stahl, 2009a; 
2009c; Zemel, Çakir & Stahl, 2009). A large number of publications have appeared 
from the project (see http://GerryStahl.net/vmt/pubs.html), including 2 books 
(Stahl, 2006; 2009b) and 8 doctoral dissertations (Çakir, 2009; Litz, 2007; Merges, 
2010; Mühlpfordt, 2008; O'Hara, 2010; Sarmiento-Klapper, 2009; Wee, 2009; Zhou, 
2010).  
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Figure 2. Image of actual student online collaborative work on patterns; a student points from 
a chat message to a smallest hexagon pattern composed of 6 triangles illustrating VMT's 
unique integration of chat and whiteboard with its deictic reference tool.  

A Design-Based Research Approach 
The VMT Project pioneered the study of online collaborative math discourse—

both its nature and modes of computer support for it. The 28 studies in (Stahl, 2009b) 
present some of the most important of the 169 publications related to the project. 
They include a number of case studies of interactions in the VMT environment by 
middle-school, high-school and junior-college students, which analyze: how math 
problem solving can be effectively conducted collaboratively among students who 
have never met face-to-face; how the structure of text chat interaction differs from 
spoken conversation; how the media of graphical diagrams, textual narratives and 
symbolic representations can be intimately interwoven to build deep math 
understanding; how deictic referencing is important to establishing shared 
understanding; how students co-construct a joint problem space; how collaborative 
meaning making and knowledge building are accomplished in detail; how online math 
discourse can be supported by a software environment that integrates synchronous 
and asynchronous media with specialized math tools; and how a methodology based 
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on interaction analysis can be used for a science of group cognition. (See Figures 2 
and 3.) 

 
Figure 3 shows the Replayer tool interface across the bottom. 

The VMT Project was structured as design-based research, with the technology, 
research and theory co-evolving through dozens of iterations. The VMT Project 
demonstrated both the practicality of the VMT-with-GeoGebra system and the need 
for it. While the VMT Project prototyped a rich cyber-learning environment and 
studied student interaction, it did not develop the range of supports that we know are 
needed for classroom use: robust software, problem sets, guidelines, etc. 
Furthermore, it did not include a dynamic-math component. The VMT-with-
GeoGebra system extends the environment to cover these needs. 

The VMT Project was widely recognized as an important example of 
synchronous support for online collaboration and was studied by several international 
researchers. The VMT Replayer allows complete replay of a user session, including all 
actions and system notices, as though the session was digitally video-recorded. The 
researcher’s view is guaranteed to be identical to the user’s view since it is generated 
from the same data as sent to a client computer. The log information is also made 
available in convenient textual or spreadsheet formats for student reflection and 
reporting as well as for researcher analysis.  
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Technology Development 
In the VMT-with-GeoGebra system, GeoGebra version 4 has been ported into 

the VMT system, making the dynamic math tools fully multi-user. GeoGebra is 
integrated as a tab in VMT (see Figure 1 above). GeoGebra is a particularly 
appropriate dynamic-math application for this project because its source code is freely 
available as open source, there is an active international development community to 
support on-going development, the application supports a wide range of math from 
algebra and geometry construction to calculus and 3-D, GeoGebra has won 
international prizes, and it has been translated into about 50 languages. Like all other 
dynamic-math applications, GeoGebra has until now only existed as a single-user 
application. While users can send their static constructions to each other, display 
screen images, or awkwardly include a view of the GeoGebra application within other 
environments through screen sharing (e.g., in Blackboard, Moodle, Elluminate, etc.), 
only one person can dynamically manipulate the construction. The port into VMT 
converted GeoGebra to a client-server architecture, allowing multiple distributed 
users to manipulate constructions and to all observe everyone’s actions in real time. 
Every action in the GeoGebra tab is immediately broadcast by the server to all 
collaborating clients (and logged in detail for replay and research).  

We have been exploring turn-taking mechanisms (see Figure 4) to avoid conflicts 
in the construction and modification of GeoGebra drawings; although it is important 
in synchronous chat to allow multiple users to type simultaneously, we have found 
that it is natural for a group to allow one member at a time to change a graphical 
construction and for group members to take turns editing and rearranging.  
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Figure 4. The GeoGebra tab with turn-taking button to avoid conflicts. 

Designing Activities 
The VMT-with-GeoGebra system is not a walk-up-and-use simple app. It 

requires orientation of students to its purposes and introduction to its functionality. 
The system therefore includes sets of Activities, which step students through 
interactions with each other, with the technology and with the mathematics. Each 
Activity stresses the use of the chat medium to support coordination and 
collaboration as well as to reflect on the mathematical actions engaged in and to 
investigate the relationships among the dynamic math objects. These Activities are 
correlated with math content presented in the U.S. Common Core State Standards for 
Mathematics and in selected math textbooks.  

Math teachers are trained in the use of the VMT-with-GeoGebra environment 
by having them work in it on Activities in small groups of teachers, and reflect on 
their experiences and on how they might use the Activities in their classrooms. 

These Activities have been designed to promote collaborative learning, 
particularly as exhibited in significant mathematical discourse about geometry. 
Collaborative learning involves a subtle interplay of processes at the individual, small 
group and class levels of engagement, cognition and reflection. Accordingly, the 
Activities are structured with sections for individual work, small-group collaboration 
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and whole-class discussion. It is hoped that this mixture will enhance motivation, 
extend attention and spread understanding. 

Curricular Goals 
The goal of the set of Activities is to improve the following skills in math 

teachers and students: 

• To engage in significant mathematical discourse; to collaborate on and discuss 
mathematical activities in supportive small online groups 

• To collaboratively explore mathematical phenomena and dependencies; to make 
mathematical phenomena visual in multiple representations; and to vary their 
parameters 

• To construct mathematical diagrams – understanding and exploring their structural 
dependencies 

• To notice, wonder about and form conjectures about mathematical relationships; 
to justify, explain and prove mathematical findings 

• To understand core concepts, relationships, theorems and constructions of basic 
high-school geometry 

The working hypothesis of the activities is that these goals can be furthered through 
an effective combination of: 

• Collaborative experiences in mathematical activities with guidance in 
collaborative, mathematical and accountable geometric discourse 

• Exploring dynamic-mathematical diagrams and multiple representations 

• Designing dependencies in dynamic-mathematical constructions 

• Explaining conjectures, justifications and proofs 

• Engagement in well-designed activities around basic high-school geometry content 

In other words, the Activities seek a productive synthesis of collaboration, discourse, 
visualization, construction, and argumentation skills applied in the domain of beginning 
geometry. They operationalize “deep conceptual learning” of mathematics in terms 
of these measurable outcomes:  

• The quality and quantity of significant mathematical discourse in collaborative 
interactions 
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• Group explorations of mathematical objects and representations, including 
noticing and wondering 

• Constructions of mathematical objects with dependencies 

• Explanations, justifications and proofs of conjectures 

• Engagement in significant mathematical discourse involving geometric notions of 
congruence, symmetry, dependencies, relationships, transformations and 
deduction 

Geometric Dependencies 
Our focus has centered increasingly on facilitating and supporting lessons in 
geometric dependency. GeoGebra allows one to construct systems of interdependent 
geometric objects. Students have to learn how to think in terms of these 
dependencies. They can learn through visualizations, manipulations, constructions 
and verbal articulations. These can all be modeled and these skills can be developed 
gradually. 

Our concerns are incorporated in a focus on dependency as follows: 

• Increase the ability of math teachers and students to engage in significant 
mathematical discourse about geometric dependencies. 

• Provide math teachers and students with a coherent sequence of activities 
exploring mathematical dependencies. 

• Empower math teachers and students to construct their own mathematical 
dependencies among objects in a dynamic-mathematics environment, which they 
can use in the future as well 

• Increase the understanding of math teachers and students in why mathematical 
objects behave in the ways they are constrained to by their dependencies, possibly 
proving why the dependencies have specific consequences 

• Increase the understanding of math teachers and students in the content of basic 
high-school geometry dependencies, including how to discuss them, explore them, 
visualize them, prove them and extend them 

We are now drafting and piloting versions of curricular activities designed to 
develop significant mathematical discourse focused on dependencies among 
geometric objects. Concomitantly, we are implementing software support for teachers 
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and students to explore the dependencies and assembling materials for professional 
development to prepare teachers to enact this curriculum with their students. 

Conclusion 
Incorporation of GeoGebra in the VMT environment framework allows users to 
engage in text chat while manipulating geometric constructions. Importantly, users 
can graphically point from a chat posting to an area of the construction that they want 
to index (see Figure 2)—a handy support for math discourse that is unique to VMT. 
They can also scroll back and forth through the history of the GeoGebra 
construction, animating its evolution—a powerful way to explore many mathematical 
relationships. In addition, a complete record of the collaborative construction is 
available to the participants, their teachers and project researchers, allowing them all 
to analyze and reflect upon the complete interaction, including the construction 
actions synchronized with the chat. GeoGebra in VMT provides an exciting 
collaborative experience and a rich dataset for research on collaborative learning of 
mathematics. A set of carefully designed Activities introduces students to the VMT 
environment, the construction of objects in GeoGebra and the approach of dynamic 
geometry in a collaborative setting. 
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3. Supporting Group 
Cognition, Individual Learning 
and Community Practices in 

Dynamic Geometry 

Abstract—Group cognition is analyzed at the small-group unit of  analysis. 
It involves the semantics, syntactics and pragmatics of  natural language, 
gestures, inscriptions, etc. The meaning-making processes involve inputs 
from individuals, based on their interpretation of  the on-going context. 
They are also responses to the on-going social/historical/cultural/linguistic 
context, which they can reproduce and modify. Technologies play a central 
role in mediating the multi-level, intertwined processes. Emergent 
technologies should be designed to support this mediation. Collaboration 
environments should be designed to prepare groups, individuals and 
communities to take advantage of  the technical functionality and to 
promote learning at all levels. This paper reports on the design of  a 
curriculum in dynamic geometry to support group cognition, individual 
learning and community practices in a coordinated way. 

Introduction  
 

roup cognition is analyzed at the small-group unit of analysis. It involves 
the semantics, syntactics and pragmatics of natural language, gestures, 
inscriptions, etc. The meaning-making processes involve inputs from 

individuals, based on their interpretation of the on-going context (Stahl, 2006, esp. 
Ch. 16). They also take into account the larger social/historical/cultural/linguistic 
context, which they can reproduce and modify (Stahl, 2013). Applying this perspective 
to the learning of mathematics, we adopt a discourse-centered view of mathematical 
understanding as the ability to engage in significant mathematical discussion (Sfard, 
2008; Stahl, 2008). Here, “discourse” includes gesture, inscription, representation and 
symbol, as well as speech and text; these are often closely interwoven in effective 
interactions (Error! Hyperlink reference not valid.; Çakir, Zemel & Stahl, 2009). 

G 
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Technologies play a central role in mediating the multi-level, intertwined problem-
solving, learning and knowledge-building processes. Emergent technologies should 
be designed to support this mediation. This involves considering within the design 
process of collaboration environments how to prepare groups, individuals and 
communities to take advantage of the designed functionality and to promote 
mathematical thinking at all levels. This paper reports on the design of a curriculum 
in dynamic geometry to support group cognition, individual learning and community 
practices in a coordinated way. 

We have been developing a collaboration environment for small groups of students 
to explore mathematics – especially dynamic geometry – together online (Stahl, 2009). 
Our Virtual Math Teams (VMT) environment now includes a multi-user version of 
GeoGebra, an open-source dynamic-geometry tool (Stahl et al., 2010). Shared chat 
rooms in this VMT environment can include: 

• Personal GeoGebra tabs for an individual to experiment with dynamic-geometry 
explorations and constructions. 

• Group GeoGebra tabs for a team of students to experiment together with 
dynamic-geometry explorations and constructions. 

• A text-chat window for a team to discuss its collaborative explorations, while it 
is working together or to ask questions when team members have problems in 
their individual work. 

• A shared whiteboard and a group wiki page for the group to summarize its 
findings. 

• The wiki can be used by a whole class or a community of teams to view and 
comment on what each team has accomplished. 

• Logs of the text chat and a replayer, which allows anyone to replay a collaboration 
session in complete detail for purposes of reflection and/or analysis. 

We have conducted pilot trials of the VMT-with-GeoGebra environment and have 
found that this relatively complex system requires some preparation and training for 
students, student groups and classes to use effectively without encountering 
frustration. In response to issues identified in the analysis of the multi-user GeoGebra 
use sessions, we have drafted a set of dynamic-geometry curricular activities, 
interspersed with tutorial tours of the technology features (Stahl, 2012a). These 
materials are designed for use both by teachers in professional-development contexts 
and by students in online-classroom or after-school settings. 

The curriculum activities have been designed to promote collaborative learning, 
particularly as it occurs in significant mathematical discourse about geometry. 
Collaborative learning involves a subtle interplay of processes at the individual, small-
group and classroom levels of engagement, cognition and reflection. Accordingly, the 
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activities are structured with sections for individual work, small-group collaboration 
and whole-class discussion. It is hoped that this mixture will enhance motivation, 
extend attention and spread understanding. 

Increasing Skill Levels 
The set of activities should gradually increase student skill levels in each of the 
identified dimensions. The design starts out assuming relatively low skill levels and 
gradually increases the level of skill expected. Concomitant with this is a progressive 
shift from scaffolded instruction to open-ended inquiry. 

1. The discourse begins with having students greet each other online and then 
negotiate about who will do what, when in the online environment. Students are 
next asked to comment on their noticings and wonderings. Later, they are to make 
conjectures. Finally, they are expected to explain things to each other, make sure 
that everyone understands, and produce presentations of group findings. 
Linguistic, conceptual and procedural skills developed in collaborative work 
eventually contribute to individual skills. 

2. The exploration begins with being introduced to software widgets and tools. It goes 
on to increasingly complicated geometric drawings. Then, students are expected 
to construct geometric objects themselves and in small groups. Finally, they are 
given open-ended scenarios and encouraged to figure out how to explore 
unknown mathematical territory. 

3. Construction skills gradually grow from dragging existing dynamic objects, to 
constructing with step-by-step instructions, to figuring out how to construct 
objects with specific dependencies, to defining their own custom construction 
tools, to constructing objects of their own design in open-ended micro-worlds. 
The skill level progresses from novice to a reasonable command of GeoGebra’s 
geometry tools. A transition to GeoGebra’s algebra connection (analytic 
geometry) is provided at the end, opening up GeoGebra’s multiple 
representations of geometric diagrams, analytic-geometry graphs, spreadsheet 
data, 3-D transformations and a computer-algebra system. 

4. Proof in geometry is introduced slowly, with a focus on noticing and wondering. 
This is followed by formulation of text-chat-based explanations and multi-media 
documentation of findings. The explanations gradually entail increased levels of 
justification, finally approaching formal proofs, without ever reaching the 
completely formalized version of routinized two-column proof. 

5. The geometry content starts by covering many of the activities in Book I of Euclid’s 
Elements (300 BCE/2002), but implemented in the computer-supported 
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collaborative-learning medium of multi-user dynamic geometry. It incorporates 
the beginning standards for high school geometry in the new Common Core 
Standards (CCSSI, 2011), including congruence, symmetry and rigid 
transformations. The fundamental features of triangles are examined first, and 
then students are encouraged to explore similar features for quadrilaterals. For 
instance, students are involved in designing hierarchies of kinds of triangles or 
quadrilaterals based on alternative representations and dependencies of 
congruence, symmetry and rigid transformations. Finally, a sampling of creative 
objects, micro-worlds and challenge problems are offered for student-centered 
exploration. 

There is a theoretical basis for gradually increasing skill levels in terms of both 
understanding and proof in geometry. Here “understanding” and “proof” are taken 
in rather broad senses. The van Hiele theory (see deVilliers, 2003, p. 11) specifies 
several levels in the development of students’ understanding of geometry, including: 

1. Recognition: visual recognition of general appearance (something looks like a 
triangle). 

2. Analysis: initial analysis of properties of figures and terminology for describing 
them. 

3. Ordering: logical ordering of figures (a square is a kind of rectangle in the 
quadrilateral hierarchy). 

4. Deduction: longer sequences of deduction; understanding of the role of axioms, 
theorems, proof. 

The implication of van Hiele’s theory is that students who are at a given level cannot 
properly grasp ideas presented at a higher level until they reach that higher level. Thus, 
a developmental series of activities pegged to the increasing sequence of levels is 
necessary to effectively present the content and concepts of geometry, such as, 
eventually, formal proof. Failure to lead students through this developmental process 
is likely to reinforce student feelings of inadequacy and consequent negative attitudes 
toward geometry. 

Citing various mathematicians, deVilliers (2003) lists several roles and functions of 
proof, particularly when using dynamic-geometry environments: 

1. Communication: proof as the transmission of mathematical knowledge. 
2. Explanation: proof as providing insight into why something is true. 
3. Discovery: proof as the discovery or invention of new results. 
4. Verification: proof as concerned with the truth of a statement. 
5. Intellectual challenge: proof as the self-realization/fulfillment derived from 

constructing a proof. 
6. Systematization: proof as the organization of various results into a deductive system 

of axioms, major concepts and theorems. 
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In his book, deVilliers suggests that students be introduced to proof by gradually 
going through this sequence of levels of successively more advanced roles of proof 
through a series of well-designed activities. In particular, the use of a dynamic-
geometry environment can aid in moving students from the early stages of these 
sequences (recognition and communication) to the advanced levels (deduction and 
systematization). The use of dragging geometric objects to explore, analyze and 
support explanation can begin the developmental process. The design and 
construction of geometric objects with dependencies to help discover, order and 
verify relationships can further the process. The construction can initially be highly 
scaffolded by instructions and collaboration; then students can be guided to reflect 
upon and discuss the constructed dependencies; finally they can practice constructing 
objects with gradually reduced scaffolding.  

This can bring students to a stage where they are ready for deduction and 
systematization that builds on their exploratory experiences. Furthermore, by working 
through the different roles of proof, math teachers and students are exposed to a 
richer conception of proof, in line with contemporary theories of proof, such as those 
by Lakatos (1976) and Livingston (1999). 

Discourse and Technology about Dependencies 
The curricular activities center particularly on facilitating and supporting lessons in 
geometric dependency. GeoGebra allows one to construct systems of inter-
dependent geometric objects. The dependencies built into dynamic-geometry 
constructions are intimately related to proofs illustrated by those constructions. 
Often, to understand a dependency and to be able to implement it in a construction 
is tantamount to being able to articulate a proof and to explore its validity dynamically 
(Stahl, 2012b). Students have to learn how to think in terms of these dependencies. 
They can learn through visualizations, manipulations, constructions and verbal 
articulations. These can all be modeled by examples, and these skills can be developed 
gradually. 

The view of mathematical understanding as a communications skill suggests the 
central role of mathematically significant discourse and collaborative group practices in the 
growth of the abilities of students as they move from level to level in geometric 
understanding and proof. The activities for VMT-with-GeoGebra should support 
increasing fluidity with mathematically significant discourse. 

The set of activities is designed to provide an educational experience in basic geometry 
to math teachers and students, taking them from a possibly novice level to a more 
skilled level, from which they can proceed more effectively without such designed 
activities. It is hoped that by providing activities on different levels for each of the 
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dimensions, it can help most math teachers and students to increase their relevant 
skills – probably in quite different ways for different people.  

Our design work is guided by socio-technical implications of continuing pilot studies 
as the technology and pedagogy of our project co-evolve. We are countering the 
problems that caused technical and cognitive distractions in our pilot studies by 
improving the software and testing the curriculum. The curriculum integrates tutorials 
about using the VMT and GeoGebra interfaces with carefully structured dynamic-
geometry activities for virtual math teams. The activities systematically build up the 
background knowledge, group practices and problem-solving orientation needed for 
engaging in significant mathematical discourse. 
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4. Evaluating Significant Math 
Discourse in a Learning 

Environment 

ntegral to our development of an environment for online collaborative learning 
of mathematics is the evaluation of the discourse of teachers and students using 
the system. We use multiple approaches to analyzing the interaction of small 

groups of people engaged in exploring geometry together, guided by a set of curricular 
activities.  

Math Cognition as Math Discourse 
To mathematicians since Euclid, geometry represents the paradigm of creative intellectual 
activity. Its methods set the standard throughout Western civilization for rigorous thought, problem 
solving and argumentation. Many schools teach geometry in part to instill in students a 
sense of deductive reasoning. Yet, too many students—and even some math 
teachers—end up saying that they “hate math” and that “math is boring” or that they 
are “not good at math” (Boaler, 2008; Lockhart, 2009). They have somehow missed 
the intellectual math experience—and this may limit their lifelong interest in science, 
engineering and technology.  

According to a recent “cognitive history” of the origin of deduction in Greek 
mathematics (Netz, 1999), the primordial math experience in 5th and 4th Century BCE 
was based on the confluence of labeled geometric diagrams (shared visualizations) and 
a language of written mathematics (asynchronous collaborative discourse), which supported 
the rapid evolution of math cognition in a small community of math discourse around 
the Mediterranean, profoundly extending mathematics and Western thinking.  

The vision behind the research described in this paper is to foster communities of math 
discourse in networks of math teachers, in classrooms of K-12 math students and in 
online communities associated with the Math Forum. We want to leverage the 
potential of networked computers and dynamic math applications to catalyze groups 
of people exploring math and experiencing the intellectual excitement that Euclid’s 
colleagues felt—refining and testing emerging 21st Century media of collaborative math 
discourse and shared math visualization to support math discourse in both formal and 
informal settings and groupings.  

I 
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The learning sciences have transformed our vision of education in the future (Sawyer, 
2006; Stahl, Koschmann & Suthers, 2006). New theories of mathematical cognition 
(Bransford, Brown & Cocking, 1999; Brown & Campione, 1994; Greeno & Goldman, 
1998; Hall & Stevens, 1995; Lakatos, 1976; Lemke, 1993; Livingston, 1999) and math 
education (Boaler, 2008; Cobb, Yackel & McClain, 2000; Lockhart, 2009; Moss & 
Beatty, 2006), in particular, stress collaborative knowledge building (Bereiter, 2002; 
Scardamalia & Bereiter, 1996; Schwarz, 1997), problem-based learning (Barrows, 
1994; Koschmann, Glenn & Conlee, 1997), dialogicality (Wegerif, 2007), 
argumentation (Andriessen, Baker & Suthers, 2003), accountable talk (Michaels, 
O’Connor & Resnick, 2008), group cognition (Stahl, 2006) and engagement in math 
discourse (Sfard, 2008; Stahl, 2008a). These approaches place the focus on problem 
solving, problem posing, exploration of alternative strategies, inter-animation of 
perspectives, verbal articulation, argumentation, deductive reasoning and heuristics as 
features of significant math discourse (Maher, Powell & Uptegrove, 2010; Powell, 
Francisco & Maher, 2003; Powell & López, 1989).  

To learn math is to participate in a mathematical discourse community (Lave & 
Wenger, 1991; Sfard, 2008; Vygotsky, 1930/1978) that includes people literate in and 
conversant with topics in mathematics beyond basic arithmetic. Learning to “speak 
math” is best done by sharing and discussing rich math experiences within a 
supportive math discourse community (Papert, 1980; van Aalst, 2009). By articulating 
thinking and learning in text, students make their cognition public and visible. This 
calls for a reorientation of the teaching profession to facilitate dialogical student 
practices as well as requiring content and resources to guide and support the student 
discourses. Teachers and students must learn to adopt, appreciate and take advantage 
of the visible nature of collaborative learning. The emphasis on text-based 
collaborative learning can be well supported by computers with appropriate 
computer-supported collaborative learning (CSCL) software, such as that prototyped 
in the Virtual Math Teams (VMT) Project (Stahl, 2009). 

A Learning Environment for Math Discourse  
In order to support our vision of significant mathematical discourse, we have 
integrated an online environment for synchronous and asynchronous communication 
(VMT) with a system for exploring dynamic mathematics (GeoGebra). We have 
described this dual system elsewhere (Stahl, 2012; Stahl et al., 2010). We attempt to 
support the combination of collaborative math discourse and shared math visualization by 
allowing small groups of students to engage in text chat while they are exploring a 
dynamic math workspace together. We have created a multi-user version of 
GeoGebra and integrated it with chat (as well as wiki and shared whiteboard) 
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communication with the VMT functionality. This is designed to pool the advantages 
of dynamic math visualization with collaborative learning and math discourse. 

 
Figure 1. The VMT environment with multi-user GeoGebra and chat. 

Researching Discourse Practices 
Our research centers on measurements of group math discourse rather than on 
assessment of individual learning of math content—in accordance with the socio-
cultural view that effective individual math learning can be an indirect product of 
participation in group math discourse (Lave & Wenger, 1991; Sfard, 1998; 2008; Stahl, 
2006; Vygotsky, 1930/1978). Vygotsky's notion of the zone of proximal development 
suggests that students may be able to engage in mathematical work within groups at 
a level that they will not be able to engage in for a couple years as individuals—and 
that such group work can be essential for their individual development in the long 
run (Vygotsky, 1930/1978, pp. 84-91). As a result, there is a need to assess the 
educational effectiveness of group interactions as such, beyond pre/post tests of the 
individuals.  

In addition, the striking finding within CSCL research of productive failure (Barron, 
2003; Kapur & Kinzer, 2009; Patak et al., 2011; Schwartz, 1995) shows that there can 
be a paradoxical inverse relationship between measures of successful learning by small 
groups versus by the individual members of those groups because of group processes 

 



Essays in Collaborative Dynamic Geometry 

      

45 

that reveal deep mathematical relationships but that do not lead immediately to high 
test scores of the individuals. For these reasons, we evaluate engagement in 
mathematics in terms of the quantity and quality of the math discourse that takes place during 
the small-group problem-solving interactions, looking for increases for groups as they 
participate and in successive project years as our teaching model, collaboration 
technology and curricular resources are iteratively developed.  

The analysis of significant math discourse is a task and goal for students using the 
system, for their teachers assessing their learning as well as for researchers studying 
collaborative math education. Reflection on interaction logs by teachers and students 
primarily involves trying to follow the problem-solving path of participants and to 
notice critical collaboration moves. They will be encouraged to look for examples of 
accountability to the group, to standards of math reasoning and to the characteristics 
of their math objects. They will look for instances where someone poses a productive 
inquiry that initiates effective group exploration—or where the group fails to come 
up with a useful proposal or fails to take up a proffered proposal. Examples will be 
culled and shared on the community wiki. 

A Design-Based Research Approach 
Formative evaluation is a constant process built into the design of our work. As a 
design-based research effort, our project involves designing and exploring an 
iteratively refined solution—and by documenting its impact on the quantity and 
quality of math discourse by teachers and students. The interlocking components of 
the project will be reviewed at weekly project team meetings. Team meetings include 
interaction-analysis data sessions (Jordan & Henderson, 1995; Stahl, 2010), in which 
the research group collaboratively discusses new data from logs of teachers or 
students—and makes design decisions for refining the co-evolving components of 
our research. The project team discusses what seems to be working and what does 
not. It decides what to modify for the next iteration. Our ultimate goal is to increase 
the quality and quantity of both teacher and student mathematical discourse. Therefore, teacher 
professional development is oriented to improving the math discourse of their 
students. 

Other research has documented the efficacy of dynamic-math visualization tools for 
individual learning; for instance, a study of geometry students in eleven Florida schools 
revealed a significant difference in the FCAT mathematics scores of students who 
were taught geometry using Geometer’s Sketchpad compared to those who used the 
traditional method—regardless of differences based on SES or gender (Myers, 2009). 
Our project has a different focus. We have developed coding schemes and analysis 
approaches oriented to the group unit of analysis based on conversation analysis of 
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adjacency pairs and longer sequences (Sacks, 1962/1995; Schegloff, 2007; Stahl, 2009, 
Chs. 20, 22, 23, 26; 2011b; Stahl et al., 2011). This approach serves both quantitative 
and qualitative analysis, by simultaneously specifying the structure of meaningful 
discourse moves and providing countable categories of group interaction units, in 
order to document changes over time—comparing discourse characteristics in 
selected time slices within teams or across cohorts.  

The project will automatically produce raw data in the form of log files of participant 
online interactions. The log files are anonymous, but allow tracking of individual users 
through consistent login handles. The VMT environment is instrumented to capture 
all user actions in the chat and whiteboard—this has been extended to multi-user 
GeoGebra. A database of all sessions is automatically maintained and provides 
spreadsheet logs in handy formats and Replayer files. Software tools will be used for 
automated and manual log analysis of discourse measures and their evolution during 
training. While low-level group processes (e.g., number, length and rate of chat 
postings and drawing actions in different time slices) can be tracked automatically and 
analyzed statistically, higher-level math-discourse processes have to be interpreted 
manually. Raw and coded logs are maintained in a database to facilitate analysis of 
changes over time for groups across sessions and across successive cohorts of 
participants. 

Quantitative analysis—based largely on the coding of discourse moves in teacher and 
student VMT logs—will track changes in key measures of significant math discourse. 
Discourse will be coded and measured along the following dimensions: (1) volume of 
discourse and level of participation, (2) percentage of on-task math discourse, (3) use 
of representations, (4) integration of chat and drawing, (5) use of accountable talk 
moves, (6) adoption of socio-mathematical norms and practices, (7) speaking 
meaningfully with explanation and argumentation, (8) involvement in posing, 
exploring and solving problems and (9) additional dimensions to be developed based 
on project experience.  

The theory of math learning through participation in math discourse (Sfard, 2008; 
Stahl, 2008b) specifies important mathematical discourse moves, such as 
encapsulation, reification, saming, routines, deeds, explorations and rituals. The 
theory of accountable talk (Michaels, O’Connor & Resnick, 2008; Resnick, 1988) 
specifies discourse moves that promote accountability to the group, to standards of 
math reasoning and to the characteristics of the math objects. Speaking meaningfully 
in math discourse “implies that responses are conceptually based, conclusions are 
supported by a mathematical argument and explanations include reference to the 
quantities in the problem context [as opposed to a focus on merely] describing the 
procedures and calculations used to determine the answer” (Clark, Moore & Carlson, 
2008, p.298).  

Socio-mathematical norms include what counts as an acceptable, a justifiable, an easy, 
a clear, a different, an efficient, an elegant and a sophisticated explanation (Yackel, 
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1995; Yackel & Cobb, 1996). Mathematical practices emerge from interaction, are 
taken up by participants and are applied repeatedly (Medina, Suthers & Vatrapu, 2009; 
Stahl, 2011a). These dimensions of significant math discourse are associated with 
typical sentences and discourse moves that can be identified by coders. A coding 
scheme will be validated with acceptable inter-rater reliability, as in (Stahl, 2009, Chs. 
22, 23; 2011b).  

Discourse-Building Activities 
These theories suggest the central role of mathematically significant discourse and 
collaborative group practices in the growth of the skills of students as they move from 
level to level in geometric understanding and proof. Based on our analyses of teacher 
and student discourse within teams using our VMT-with-GeoGebra system, we are 
designing curricular activities to build mathematical discourse practices. The activities 
for VMT-with-GeoGebra should support increasing fluidity with mathematically 
significant discourse. 

The set of activities is therefore designed to: 

• Increase the ability of math teachers and students to engage in significant 
mathematical discourse 

• Provide math teachers and students with a coherent sequence of activities 
exploring mathematical relationships and representations 

• Empower math teachers and students to construct their own mathematical 
objects in a dynamic-mathematics environment, which they can use in the 
future as well 

• Increase the understanding of math teachers and students in why 
mathematical objects behave in the ways they do, possibly proving why they 
do 

• Increase the understanding of math teachers and students in the content of 
basic high-school geometry content, including how to discuss it, explore it, 
visualize it, prove it and extend it 

The set of activities is designed to provide an educational experience in basic geometry 
to math teachers and students, taking them from a possibly novice level to a more 
skilled level, from which they can proceed more effectively without such designed 
activities. It is hoped that by providing activities on different levels for each of the 
dimensions, it can help most math teachers and students to increase their relevant 
skills – probably in quite different ways for different people.  

Detailed interaction analysis of selected cases will show how the math discourse 
actually evolves. Quantitative analysis can establish the statistical significance of 
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changes in learning outcomes, but it generally does not provide much insight into the 
mechanisms of change; these mechanisms will become visible in detailed case studies 
in which the specifics of the interactions can be studied. By combining quantitative 
and qualitative analysis of discourse transformations, the project evaluation will 
determine how the online interaction involves engagement in significant mathematical 
discourse.  
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5. Tracing the Change in 
Discourse in a Collaborative 

Dynamic Geometry 
Environment: From Visual to 

More Mathematical 

Diler Oner and Gerry Stahl 

 

Abstract. This case study investigates the development of  group cognition 
by tracing the change in mathematical discourse of  a team of  three middle-
school students as they worked on a construction problem within a virtual 
collaborative dynamic-geometry environment. Sfard’s commognitive 
framework was employed to examine how the student team’s word choice, 
use of  visual mediators, and adoption of  geometric construction routines 
changed character during an hour-long collaborative problem-solving 
session. The findings indicate that the team gradually moved from a visual 
discourse toward a more formal discourse—one that is primarily 
characterized by a routine of  constructing geometric dependencies. This 
significant shift in mathematical discourse was accomplished in a CSCL 
setting where tools to support peer collaboration and pedagogy are 
developed through cycles of  design-based research. The analysis of  how 
this discourse development took place at the group level has implications 
for the theory and practice of  computer-supported collaborative 
mathematical learning. Discussion of  which features of  the specific setting 
proved effective and which were problematic suggests revisions in the 
design of  the setting.  
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Introduction 
ocumenting processes by which learning takes place in collaborative settings 
has been one of the most important research agendas for CSCL researchers. 
This endeavor is even more challenging in the context of learning geometry, 
which has been considered a classic example of individual intellectual 

development (Stahl, 2016). Shifting the focus from individual cognition to group 
cognition, this study examines the development of a group of students’ geometrical 
thinking in the Virtual Math Teams (VMT) environment (Stahl, 2009). VMT is an 
open-source, virtual, collaborative learning setting that affords synchronous text-
based interaction (chat) with an embedded multi-user dynamic-geometry application, 
GeoGebra (www.GeoGebra.org). VMT is regarded as the first sustained effort 
supporting a collaborative form of dynamic geometry (Stahl, 2013a).  

Learning within a dynamic geometry environment (DGE) is indicated by the ability 
to construct figures, which marks the transition toward formal mathematics. There is 
a crucial distinction between drawing and construction within a DGE. Drawing refers to 
the juxtaposition of geometrical objects that look like some intended figure (Hoyles & 
Jones, 1998). Construction, however, depends on creating theory-based relationships, 
in other words dependencies (Stahl, 2013a), among the elements of a figure. Once 
relationships are constructed accordingly, the dynamic figure maintains these 
theoretical relationships even under dragging.  

The transition from visual to formal mathematics is, however, neither straightforward 
nor easy for students working with dynamic geometry (Jones, 2000; Marrades & 
Guttierez, 2000). Students often think that it is possible to construct a geometric 
figure based on visual cues (Laborde, 2004), although constructing dynamic-geometry 
figures requires defining dependencies. Corresponding to this contrast, one can 
distinguish between two different mathematical discourses (Sfard, 2008) in which students 
may engage when working within DGEs. Within one of these, students may talk 
about geometrical figures as if they are merely visually perceptible entities without 
making any connections between them and the theoretical relationships they signify. 
When presented with a geometry construction problem, students might adopt a 
solution routine (Sfard, 2008) that is based on visual placement and verification, which 
produces a drawing (Hoyles & Jones, 1998). Taking a more sophisticated mathematical 
discourse, however, they would frame the problem as construction, that is, one that 
involves establishing dependencies.  

Sfard (2008) argues that such a discursive jump to more sophisticated discourses takes 
place “while participating in the discourse with more experienced interlocutors” (p. 
191). However, this study will show that participation within a well designed 
collaborative learning setting, such as VMT, can also help students move forward 
from visual toward more formal ways of dealing with construction problems.  That 
is, interacting with expert interlocutors (e.g., teachers) may not be the only path 

D 
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toward advancing one’s mathematical discourse. This developmental process may also 
take place within a virtual collaborative setting where feedback from dynamic-
geometry software, collaboration with peers and guidance from task instructions 
collectively fulfill a role similar to that of the discourse of experts.  

Constructing Dependencies with Dynamic Geometry 
In geometry, entering the theoretical domain is challenging given that students need 
to deal with the double role that diagrams play. On the one hand, diagrams refer to 
theoretical properties of geometrical objects and their relations. On the other hand, they 
are spatio-graphical figures that are immediately accessible through visual perception 
(Laborde, 2004). These two worlds come in close contact in DGEs. When one uses 
theory to construct a geometrical object, theoretical relationships are preserved even 
when the elements of the construction are visually altered through dragging. That is, 
spatio-graphical aspects of the construction keep reflecting dynamically invariant 
theoretical properties dynamically. For instance, when one properly constructs two 
line segments to be perpendicular bisectors of each other, not only will the segments 
look and measure as though they bisect each other at 90°, but they will remain so even 
if the points of the construction are dragged into other positions. Within a DGE, in 
order to construct a perpendicular bisector, one needs to create dependencies by defining 
the theoretical relationships that determine perpendicularity. The counterpart of the 
classical Euclidean compass-and-straightedge construction within a DGE makes uses 
of circle and line software tools, which can, for instance, create a rhombus whose 
diagonals bisect at right angles (see Figure 2b in the Methods section). In that way, 
dynamic-geometry constructions provide a computer-based context in which the 
connections between spatio-graphical and theoretical worlds are maintained.  

Although dynamic geometry affords unique possibilities for learning geometry, there 
have been concerns regarding the nature of mathematical truth that students may be 
deriving when working in DGEs (Chazan, 1993a; Hadas et al., 2000; Hoyles & Jones, 
1998). Some researchers and teachers worry that when students can easily generate 
empirical evidence, the need and motivation for formal explanations may vanish. 
More fundamentally, students may not make the transition toward the theoretical 
aspects of geometry (Marrades & Guttierez, 2000) and build the connection between 
spatio-graphical and theoretical worlds that is an essential aspect of meaning in 
geometry (Laborde, 2004). Learners may become stuck in the transition area between 
a visually produced solution and the underlying theoretical relationships (Hölzl, 1995).  

On the other hand, it can be argued that focusing on constructing dependencies may 
help students move toward noticing relevant mathematical relationships (Jones, 
2000). Dynamic geometry constructions are associated with formal geometry because 
created dependencies can correspond to elements of a mathematical proof (Stahl, 
2013a). One starts with creating dependencies as if listing the givens in a 
mathematical-proof task. These built-in relationships in turn constrain the elements 
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of a figure in certain ways that lead to further relationships, which reflect the ideas 
underlying a corresponding explanatory proof.  

Some researchers stress the differences between Euclidean geometry and dynamic 
geometry. For instance, Hölzl (1996) argues that dynamic-geometry software imposes 
a hierarchy of dependencies that alters the relational character of geometric objects. 
He states that a distinction arises between free points (that can be dragged) and 
restricted points (such as intersections), which may not be geometrical or necessary 
in a paper-and-pencil environment. This is not surprising given that Euclidean 
geometry and dynamic geometry rely on “qualitatively different technologies” 
(Shaffer & Kaput, 1999). Despite the lack of complete congruence between the two, 
many researchers believe that explicitly stating the steps of a dynamic-geometry 
construction can break down the separation between deduction and construction 
(Chazan & Yerulshalmy, 1998; Healy & Jones, 1998; Stahl, 2013a). That is, well-
designed DGEs may be able to help students to transition toward formal 
mathematics.  

Constructions are also taken as a form of mathematization (Gattegno, 1988; Treffers, 
1987; Wheeler, 1982) by Jones (2000), who defined the term for elementary-school 
geometry using dynamic-geometry software. When mathematizing, students can be 
said to be involved in modeling the geometrical situation using the tools available in 
the software. This involves setting up a construction and seeing if it is appropriate, 
and quite probably having to adjust the construction to fit the specification of the 
problem (p. 62). Thus, when students move forward from a visual solution toward 
one that is based on constructing dependencies in a DGE, this is taken as an 
indication of the development of students’ geometric thinking.  

Theoretical Framework 
In this study, Sfard’s (2008) commognitive framework is used to examine students’ 
mathematical discourse. Defining learning as the development of discourses, Sfard 
frames (mathematical) thinking as an individualized form of communication. Thus, 
she suggests a developmental unity between the processes of thinking and 
communicating, which leads to naming her approach “commognitive.” 
Commognitive researchers are interested in mathematical discourses, as this is where 
one can trace the processes of learning. Sfard distinguishes mathematical discourses 
in terms of their tools—words and visual means—and the form and outcomes of their 
processes—routines and narratives (Figure 1). Each of these constructs is explained 
below, but the focus will be on the notion of routines, which is the most relevant 
construct for the analysis in this study.  

Different mathematical discourses employ different mathematical words, which might 
signify different things in different discourses, and visual objects, such as figures or 
symbolic artifacts. In addition to using these discourse tools, participants functioning 
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in different discourses produce what Sfard calls narratives, that is, sequences of 
utterances about mathematical objects and relations among them. Narratives are 
subject to endorsement or rejection under certain substantiation procedures by the 
community. Endorsed narratives usually take the form of definitions, axioms, 
theorems and proofs. In order to produce mathematical narratives, participants 
engage in mathematical tasks in certain ways. They follow what are called metarules, 
which are different than object-level rules. Rules that express patterns about 
mathematical objects, say about triangles, are defined as object-level rules (e.g., the 
sum of interior angles of a triangle is 180°). Metarules, on the other hand, are about 
actions of participants, and they relate to the production and substantiation of object-
level rules. The set of metarules that describe a patterned discursive action are named 
routines, since they are repeated in specific types of situations.  

Routines take two forms: the how and the when of a routine. The how of a routine, 
which may be called course of action or procedure, refers to a set of metarules describing 
the course of the patterned discursive action. The when of a routine, on the other 
hand, is a collection of metarules used by participants to determine the 
appropriateness of the performance. The researcher might observe the how of a 
routine more easily when a specific task is assigned. Examining the when of a routine, 
however, requires extended periods of observation, when participants are asked to 
solve problems that are more complex. In this study, given that students were 
provided with a well-defined task, the how of a routine is analyzed.  

 

 

 

 

 

Tools of math discourses Form and outcomes of math discourses 

Words Visual means Routines Narratives 

Use of certain 
keywords that 
signify different 
things in different 
discourses. 

Visible objects that 
are operated upon 
within 
communication. 

Set of metarules 
that describe a 
patterned discursive 
action and that 
relate to the 
production and 
substantiation of 
object-level rules. 

Sequences of 
utterances about 
mathematical 
objects and 
relations among 
them. 

 

Figure 1. The four distinguishing aspects of mathematical discourses 
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Sfard (2008) states that metarules and routines are the researcher’s construct based on 
observations of participants’ discursive actions. Therefore, they are about the 
observed past. They are useful constructs for the researcher because “constructed 
metarules allow us to map the trajectory of one’s discursive development” (p. 209).  

Method       
This is a case study of a team of three eighth-grade students (about 14 years old) who 
worked on a geometry construction problem collaboratively within the Virtual Math 
Teams (VMT) environment.  These three students were participants in the VMT 
Project, the larger design-based research (DBR) project that incorporates cycles of 
data collection and analysis to refine technology, curriculum and theory for 
collaborative learning.  As part of the VMT project, the participants worked on the 
tasks of a geometry curriculum for the VMT environment written by Stahl (2013b) 
for about a semester. Although the participants had very little formal background in 
geometry, this particular team was able to solve a challenging task (Oner, 2013) in 
session 5. That brought this team to the attention of the project research team leading 
to this study to understand the team’s mathematical development (see Stahl [2015] 
for an analysis of all eight of their sessions). 

The study focuses on one of the team’s problem-solving sessions, namely, session 3. 
This session was chosen for presentation here as it represented an “extreme case” 
(Patton, 1990) given that it displayed characteristics from which one could learn the 
most for the purposes of the larger DBR project. Detailed analyses of such cases 
could suggest ways of refining the VMT technology, pedagogy and curriculum to 
provide better support for future online groups.     

The Context and Participants 
The team was named the “Cereal Team,” because the members selected their online 
handles to be Cheerios, Cornflakes and Fruitloops. None of the team members had 
previously studied geometry; they were taking first-year algebra at the time of data 
collection. They are all females. Before the session analyzed in this study, they had 
met within the VMT online environment for two hour-long sessions, trying basic 
GeoGebra tools, such as the software tools for creating points, lines and line 
segments, or working on the task of equilateral-triangle construction (in sessions 1 & 
2).  

In session 3, students worked on Topic 3 of the VMT dynamic-geometry curriculum 
(Stahl, 2013b) that involved two tasks:  
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Task 1: Construct two lines that are perpendicular bisectors of each other. A list of 
steps is provided so that students can construct the diagonals (AB and CD) of a 
rhombus (ACBD). A completed construction is provided as an illustration for 
students (Figure 2a).  

Task 2: Construct a perpendicular line to a given line through a given point. The 
expected solution for this task is provided in Figure 2b. Here, one first needs to define 
the given point H as a midpoint between two points using the circle tool (i.e., drawing 
the circle at center H with radius AH). Since H is the center of this circle AH and HB 
are congruent, which are the radii of this smaller circle. Now one can use points A 
and B (the intersections of line FG and the small circle) as centers and line segment 
AB as the radius to construct the two larger circles. As line segments DB, BC, CA 
and AD are all radii for these circles (r), they are equally long. Connecting these line 
segments would create four congruent triangles (by the SSS congruency theorem 
involving triangles CHB, CHA, DHA, and DHB). This implies that angle CHB is a 
right angle and line CD is perpendicular to the line FG at H.     

 

 

Figure 2a. Construction of two line segments that are perpendicular bisectors 
of each other (Task 1). 
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Figure 2b. Construction of the perpendicular to the line FG through a given point H 
(solution for Task 2). 

Participants work on geometry problems in the VMT software environment within 
chat rooms created for each session. Figure 2c shows the VMT room created for 
session 3. The screenshot was taken at the very beginning of the session. Note that a 
completed perpendicular bisector construction is provided for students. In VMT 
rooms, there is a chat panel on the right hand side and a whiteboard area for multi-
user GeoGebra. One can post a chat anytime during the session. However, in order 
to manipulate objects in the GeoGebra area one has to click on the “Take Control” 
button (at the bottom). Thus, only one person at a time can interact with the dynamic-
geometry section of the room. The GeoGebra view is, however, shared by everyone 
in the team so they can all observe changes to the figures as they are made. 
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Figure 2c. The VMT window at the start of work on session 3. Note the task instructions and 
example figures. The chat section is in the panel on the right. 

Data Collection and Analysis 
The team’s meeting in the VMT environment was part of an after-school club 
organized by their math teacher in an American public school. The Cereal Team 
worked on Topic 3 for about an hour. The problem-solving session was recorded as 
a VMT log file to be replayed later allowing subsequent observation of the team’s 
problem-solving process in micro-detail. All chat postings and GeoGebra actions 
produced by the team members are automatically logged and digitally recorded.  

In order to investigate the changes in participants’ discourse, both the chat postings 
and the actions of the participants recorded in their VMT session were examined 
through Sfard’s (2008) discursive lens. As summarized in Figure 3, the particular focus 
was on the changes in: (a) the team’s use of the word “perpendicular,” (b) the visual 
mediators they acted upon (i.e., the perpendicular bisector construction), and (c) their 
mathematical routines, since the changes in these features were the most salient 
aspects of their changing discourse.  

Given the nature of the assigned geometry tasks, this study investigated two 
routines:  

• The production of the perpendicular: This routine involved the use of a set of 
procedures referring to the repetitive actions in producing a perpendicular line, 
such as construction (by creating dependencies) or visual placement (drawing) 

• The verification of perpendicularity: This routine is a set of procedures describing the 
repetitive actions in substantiating whether a solution (a line produced) is in fact 
perpendicular to a given line. These procedures could include visual judgment, 
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numerical measurements, or use of theoretical geometry knowledge to justify 
proposed solutions. 
 

words visual means routines 

The use of the 
word 
“perpendicular” 

The perpendicular 
bisector 
construction 

• The production of the 
perpendicular 

• The verification of 
perpendicularity 

Figure 3. Sfard’s (2008) three discourse aspects used in the present analysis 

Two discourses are considered different when they are incommensurable, that is, when 
they have different rules for the same type of task (Sinclair & Moss, 2012). One can 
therefore distinguish between two mathematical discourses when they entail two 
different ways of solving the tasks in Topic 3 as summarized in Figure 4. In one 
discourse, students’ production of the perpendicular and verification of 
perpendicularity are exclusively based on spatio-graphical cues without any concern 
for theoretical relationships. More specifically, the solution and verification routine is 
based on visual placement of a perpendicular-looking line (spatio-graphical solution), 
which produces a drawing (Hoyles & Jones, 1998). Along the same lines, the use of 
the word “perpendicular” reflects a visual image in which two lines perceptually look 
perpendicular. Thus, this discourse is categorized as visual. In another discourse, which 
is called formal, the production of the perpendicular line involves constructing 
dependencies—that is, defining relationships using the software tools. The 
verification routine within this discourse is theoretical, deriving from geometrical 
relationships. The word “perpendicular” within this discourse signifies a theoretical 
relationship between geometrical objects.  

 

Visual discourse Formal discourse 

• Production of the 
perpendicular is based on 
visual placement of a 
perpendicular-looking line 
(spatio-graphical) 

• Verification of 
perpendicularity involves 
visual check (spatio-
graphical) 

• The production of the 
perpendicular is based on 
constructing dependencies 

• Verification of 
perpendicularity derives from 
theoretical relationships 

• The use of the word 
“perpendicular” signifies a 
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• The use of the word 
“perpendicular” reflects a 
visual image of which two 
lines look perpendicular 

theoretical relationship 
between geometrical objects 

Figure 4. Characteristics of visual vs. formal mathematical discourses in session 3. 

As the first step in the analysis, the chat postings and GeoGebra actions of the Cereal 
Team were divided into episodes, mainly based on the detected changes in 
participants’ routines of solving the task (i.e., routines of production and verification). 
In each episode, what is said and done was examined focusing on the three aspects of 
their mathematical discourse when relevant: their use of the word “perpendicular,” 
the visual means acted upon, and routines of the production of the perpendicular or 
verification of perpendicularity in each episode. In what follows, an analysis of the 
most notable moments of these episodes will be presented by providing excerpts from 
the chat postings and VMT room screenshots.2  

Analysis 
Based on the team’s routines of production and verification, the interaction is divided 
into the following episodes: (1) constructing the perpendicular bisector; (2) drawing a 
perpendicular-looking line; (3) drawing the perpendicular using the perpendicular 
bisector construction (PBC) as straightedge; (4) use of circles with no dependencies 
defined; (5) constructing dependencies; and (6) discussing why the construction 
worked. 

Episode 1: Constructing the perpendicular bisector (3:32:15-3:40:20) 
As the first task, the team was asked to construct two line segments that are 
perpendicular bisectors of each other. They were provided the steps to construct a 
line segment first and then to construct two circles around its endpoints, with the line 
segment as their radii (see Figure 2a for the expected answer, above). By constructing 
the two intersections of the two circles and connecting them, the participants would 
obtain two line segments perpendicular to each other at their midpoints.  

 
2 The full log for Session 3 is available at: http://gerrystahl.net/vmt/icls2014/Topic3.xlsx. The VMT 

Player is available at: http://gerrystahl.net/vmt/icls2014/vmtPlayer.jnlp. The replayer file for 
Session 3 is available at: http://gerrystahl.net/vmt/icls2014/Topic3.jno.  
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At the start of the first episode, Fruitloops and Cheerios were active with the 
construction of the two line segments as perpendicular bisectors of each other. The 
team decided that Fruitloops should take control and tackle the task (Excerpt 1, Lines 
14-16). However, Fruitloops asked how she could make a line segment after creating 
two points (I and J). At that moment, the segment tool was not visible; it needed to 
be pulled down in the toolbar. Cornflakes provided some direction by saying that the 
segment tool is next to the circle tool (Excerpt 1, Line 19). This information was 
sufficient for Fruitloops, as she was then able to construct a line segment (IJ).  

 
Excerpt 1. 

Li
ne 

Post time User Message 

11 3:31:02.6 fruitloops who wants to take control 

12 3:31:16.1 fruitloops do you was to delete the 
instruction 

13 3:31:21.5 fruitloops want* 

14 3:32:11.4 fruitloops want me to start? 

15 3:32:13.4 cheerios take control 

16 3:32:16.0 cornflakes Yes 

17 3:33:03.9 fruitloops how do i make the line 
segment? 

18 3:33:08.0 cheerios do u need help 

19 3:33:26.1 cornflakes its by the circle thingy 

20 3:33:38.1 fruitloops got it thanks 

21 3:34:06.5 cornflakes no problem 

22 3:35:54.1 fruitloops i did it 

23 3:36:02.0 cheerios good job my peer 

24 3:36:14.4 cornflakes Nice 

25 3:36:15.6 fruitloops someone else want to 
continue? 

26 3:36:23.6 fruitloops thankyou thankyou 

27 3:36:32.5 cheerios release control 

28 3:37:40.4 fruitloops so now you need to 
construck points at the 
intersection 

29 3:38:12.1 fruitloops no you dont make a line 
you make a line segment 
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30 3:38:35.1 fruitloops good!! 

31 3:39:20.4 fruitloops so continue 

32 3:39:29.9 cheerios i just made the 
intersecting line and point 
in the middle 

33 3:39:40.0 cheerios it made a perpindicular 
line 

 

Another problem Fruitloops had difficulty with was constructing circles at the 
endpoints of the line segment with the same radius, which establishes the dependency 
crucial for the construction. She created two circles centered at points I and J with 
radius IK and JL respectively, which were not congruent but looked the same (Figure 
5a). To define the radii of the circles centered at points I and J, she used arbitrary 
points (K & L), not the line segment IJ. That is, her circles looked to have the same 
radius, but they were not constructed based on an equal-radius relationship. Later, 
however, after playing with the circle tool for a while, Fruitloops did the construction 
again and managed to construct two circles around the endpoints (points I and J) with 
the same radii (IJ) (Figure 5b).  

 

 
Figure 5a. 

 
Figure 5b. 

 

Next, Cheerios took control and continued the work by constructing the intersection 
points of the two circles (new points K and L) and the line that passed through them. 
Yet, as the following move, Cheerios removed the line she just constructed. Next, she 
reconstructed it, and then again deleted it and the intersection points. Finally, she 
reconstructed the intersections. At this point, Fruitloops drew attention to the 
instructions, saying they needed to construct a line segment not a line (Excerpt 1, Line 
29). This time, Cheerios constructed the line segment KL through the intersections, 
and created point M, the intersection of the two segments (KL and IJ). Cheerios 
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explained her actions by saying “i just made the intersecting line and point in the middle,” 
calling M “the point in the middle.” She continued, “it made a perpindicular line” (Excerpt 
1, Lines 32-33).  

In this episode, the routine for solving the first task simply involved following the 
instructions. Yet, Fruitloops had two difficulties. While one had to do with finding 
the needed menu item in the software, the other was related to constructing the key 
dependency, that is, same-radius circles at the endpoints of the line segment. Cheerios 
also had to pay attention to the wording in the instructions (i.e., the difference 
between “line” and “line segment”). She used the word “perpendicular” once 
(Excerpt 1, Line 33). At this point, it seems reasonable to argue that the word 
“perpendicular” was just a revoicing of the task instructions. 

Episode 2: Drawing a perpendicular-looking line (3:40:27-3:55:30) 
Moving to the second part of the given task, the team now had to work on a more 
challenging problem, which was constructing a perpendicular to a line through a given 
point. In this episode, the team’s problem-solving discourse took a visual character, 
which was evidenced by (a) producing a perpendicular-looking line (a drawing), (b) 
verifying perpendicularity by visual perception, and (c) using the word 
“perpendicular” to refer to a visual image. One other important aspect of this episode 
was Cornflakes’ bringing the illustrative perpendicular-bisector construction to the 
team’s attention.  

On their screen, a line FG and the point H was provided to them (Figure 2c). Initially, 
however, how to use these givens was not clear to any of the team members. For 
Cornflakes and Cheerios, the production of the perpendicular first required creating 
another reference line that was somehow related to the line FG, as they both tried to 
construct lines that either looked parallel to or intersected the line FG. Fruitloops 
elegantly suggested using the line that was already there (Excerpt 2, Line 37). 
Furthermore, she next uttered the word “perpendicular.” She said “perpindicular no 
intersecting” (Excerpt 2, Line 39). This use was different than that of Cheerios in the 
first episode. Fruitloops used the word to evaluate Cheerios’ line, which intersected 
the line FG. At this stage, this use of “perpendicular” may have just implied a visual 
image rather than a construct with mathematical properties.  

 

Excerpt 2. 

Line Post 
time 

User Message 

34 3:40:27
.5 

fruitloops okay cornflakes go next 

35 3:41:11.
5 

cornflake
s 

what are you supposed to do? 
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36 3:41:42
.6 

fruitloops just follow the instructions 

37 3:43:48
.5 

fruitloops were we supposed to just use the 
line that was already there? 

38 3:44:10
.2 

cornflake
s 

i think so 

39 3:44:44
.2 

fruitloops perpindicular no intersecting 

40 3:44:46
.1 

fruitloops not* 

 

After this initial stage, Cornflakes took control. She constructed a point N and a line 
through N and H that looked perpendicular to line FG at H (Figure 6a). Then she 
removed this line but later reconstructed it in the same manner, and deleted it once 
more. She was just picking a location for point N such that a line NH would visually 
appear to look perpendicular to line FG. 

Next, however, she did something rather unexpected: she started moving the 
perpendicular-bisector constructions (PBCs) around. She dragged both the one that 
was given with the topic and the one they had just constructed in episode 1 changing 
their shape and location. Not seeing any of the use of the PBC immediately, she 
repeated her production of a line that seemed (visually) perpendicular to line FG 
through H, after creating points N and O. While the line looked as if it passed through 
O, N and H, it was only passing through O and H (Figure 6b). 

 

 
Figure 6a. 

 
Figure 6b. 

 

After Cornflakes’ attempt to provide a solution, Fruitloops took control. She first 
deleted the line Cornflakes constructed (line OH), the one that appeared to be 
perpendicular to FG at H (Figure 6b). She played with constructing some other points 
and line segments, which did not seem relevant. It is reasonable to argue that she was 
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not happy with Cornflakes’ seemingly perpendicular line. She then released control 
and asked in the chat: “can you remake it?” (Excerpt 3, Line 43). In response, Cheerios 
took control and added points O and Q and a line through them that passed through 
H (Figure 7a). This line again was a visual solution that looked perpendicular to FG 
through H.  

Cheerios then added another point (R) on the line placing it in the upper plane. 
Fruitloops, however, questioned defining extra points (O and Q) (Excerpt 3, Line 44) 
while Cornflakes was fine with them (Excerpt 3, Line 45). In response, Cheerios 
removed point R, and then her line OQ. She reconstructed point R and constructed 
another line through R, which this time did not even look perpendicular to line FG 
at H (Figure 7b). She then asked if the line was ok (Excerpt 3, Line 46). Fruitloops 
once again evaluated the line Cheerios constructed saying “its not perpinicuklar” 
(Excerpt 3, Line 48). Then Cornflakes deleted this line and constructed a more 
perpendicular-looking one first through H and S (a new point) and then, deleting line 
HS, through H and N (Figure 7c). Even though Fruitloops seemed satisfied this time 
saying, “I think that’s good,” (Excerpt 3, Line 49) Cornflakes erased the perpendicular-
looking line (line HN) once more.  

 

 
Figure 7a. 

 
Figure 7b. 

 
Figure 7c. 

 

The solution offered by Cornflakes included placing a perpendicular-looking line 
visually (a spatio-graphical solution), which did not depend on creating dependencies. 
Cheerios also worked toward producing a line that would look perpendicular to the 
line FG at point H. However, there was also some level of discomfort with this 
solution, which was evidenced by deletion actions immediately followed by creating 
such lines. Fruitloops did not explicitly undertake the same production routine. She 
used the word “perpendicular,” judging Cheerios’ line as not fitting her notion of 
perpendicular. However, she eventually agreed on the line produced by Cornflakes in 
response (Excerpt 3, Line 49). Therefore, at this stage, one can say that all team 
members’ production of the perpendicular routine involved creating a line that was a 
drawing. An important aspect of this episode was Cornflakes’ little play with the 
available PBC. Even though the PBC had not been used as a mediator of the 
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production of the perpendicular routine just yet, Cornflakes made its presence known 
and highlighted it as a potential tool.  

 

Excerpt 3. 

Line Post time User Message 

41 3:48:09.7 fruitloops sorry i did it by accident 

42 3:48:23.5 cheerios its fine :) my dear peer 

43 3:48:38.3 fruitloops can you remake it 

44 3:48:52.7 fruitloops why did you make point o and q 

45 3:48:55.0 cornflake
s 

its alright 

46 3:49:09.5 cheerios is the line ok 

47 3:49:16.0 cornflake
s 

i didnt make point o and q 

48 3:49:23.0 fruitloops its not perpinicuklar 

49 3:50:57.7 fruitloops i think thats good 

 

As the team did not seem completely satisfied with their (visual) solution, some of 
their efforts next focused on finding ways to judge perpendicularity. This stage was 
marked and initiated by Cheerios when she suggested rotating the line FG (she 
referred to it as FHG) “so it is easier to make it horizontal” (Excerpt 4, Line 50). With 
this statement, she meant dragging the given line FG into a horizontal-looking 
position so that one can test when a line was perpendicular to it more easily. 
Presumably, the prototypical visual image of perpendicularity for her involves a 
horizontal base line and a vertical perpendicular to it. This statement added a new 
routine to the problem: verification of perpendicularity along with a production 
routine.  

However, neither Cornflakes nor Fruitloops took up this suggestion. Cornflakes was 
busy reconstructing another perpendicular-looking line passing through H. Fruitloops 
also adjusted this line so that it would look more perpendicular. Cheerios first helped 
Fruitloops by removing some of the extra points on or around that line and adjusting 
the line. Next, she implemented what she suggested by making the line FG horizontal 
looking, so that the team could better test the perpendicularity of the line it was to 
construct (Figure 8a). This would of course be a visual test, not a mathematical one. 
Seeing the line FG in a horizontal position, Cornflakes asked Cheerios to construct 
the perpendicular line (Excerpt 4, Line 53). Cheerios then constructed another two 
points (R and O) and a line through them that looked perpendicular to FG, but this 
did not go through point H. Cheerios deleted her first construction and then cleared 
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the area deleting some extra points. Then she constructed line NH, which looked 
nearly perpendicular to FG through H (Figure 8b). Cornflakes seemed satisfied with 
the new line, saying, “that’s good” (Excerpt 4, Line 54). Fruitloops said, “I think its 
perpendicular cause they are all 90 degree angles” (Excerpt 4, Line 55).  

 

 
Figure 8a. 

 
Figure 8b. 

 

Excerpt 4. 

 
To summarize, Cheerios produced yet another drawing (Line NH, Figure 8b) at this 
point and Cornflakes and Fruitloops agreed on that solution (Excerpt 4, Lines 54-55). 
Furthermore, Fruitloops’ approval involved the use of the word “perpendicular.” She 
said: “i think its perpendicular cause they are all 90 degree angles” (Excerpt 4, Line 
55). With this sentence, it became clearer that she used the word as representing a 
visual image of perpendicularity as she referred to the measure of the angles without 
measuring. Thus, all group members were still realizing the perpendicular line as a 
figure that could be produced perceptually. Moreover, Cheerios felt the need to verify 

Line Post time User Message 

50 3:50:59.8 cheerios turn line fhg so its easier 
make it horizontal 

51 3:52:54.4 fruitloops Hey 

52 3:54:06.9 fruitloops which point did you move to 
get the line like that 

53 3:54:07.5 cornflakes now construct the line 

54 3:55:10.7 cornflakes thats good 

55 3:55:30.5 fruitloops i think its perpendicular cause 
they are all 90 degree angles 
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their solution. She suggested producing the perpendicular line in a horizontal-vertical 
arrangement of two lines (the prototypical visual image for perpendicularity), which 
allowed a visual verification. Therefore, at this stage, a new routine for verifying 
perpendicularity emerged, although it was also spatio-graphical.  

 

Table 1 provides a summary of the analysis presented for Episode 2.  

 
Table 1. Summary of Episode 2 in terms of discourse characteristics 

Production of 
the 
perpendicular 
routine 

Verification 
of 
perpendicula
rity routine 

Use of the 
word 
perpendicular 

Use of visual 
mediators 

Creating 
another 
reference line 
in relation to 
line FG 
(Cornflakes 
and Cheerios) 

 Signifying a 
visual image 
of 
perpendicular 
to disagree 
with a spatio-
graphical 
solution 
(Fruitloops) 

 

Spatio-
graphical 
solution / 
drawing a 
perpendicular-
looking line 
(Cornflakes) 

  PBC-random 
dragging 
(Cornflakes) 

Spatio-
graphical 
solution / 
drawing a 
perpendicular-
looking line  
(Cheerios & 
Cornflakes) 

 Signifying a 
visual image 
of 
perpendicular 
to disagree 
and then 
agree with a 
spatio-
graphical 
solution  
(Fruitloops) 

 

Spatio-
graphical 
solution 
(Cornflakes, 
Fruitloops, 
Cheerios) 

Spatio-
graphical 
verification / 
vertical-
horizontal 
alignment of 
the lines 
(Cheerios) 

Signifying a 
visual image 
of 
perpendicular 
to agree with 
a spatio-
graphical 
solution  
(Fruitloops) 
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Episode 3: Drawing the perpendicular using the PBC as straightedge 
(3:55:55-3:58:26) 
Something interesting happened next. Cornflakes started moving the PBC around as 
if she wanted to use it as a protractor—to verify the right angles. She was not able to 
get the orientation correct. Getting the idea, Fruitloops took control and dragged the 
PBC (the one they constructed) placing the middle point M on top of H and aligning 
with the line FG (Figure 9a). Cornflakes was satisfied, as she responded with a “yes” 
(Excerpt 5, Line 56). These moves signaled a new and different verification routine 
of perpendicularity, one that is based on measurement rather than based on a visual 
judgment.  

 
Figure 9a. 

 
Figure 9b. 

Meanwhile, Fruitloops realized another procedure for producing the perpendicular. 
Even though she was able to superimpose the two figures well, she deleted the 
perpendicular-looking line (Line NH). This move suggested that rather than using the 
PBC as a tool for measuring the angles, she could use it as a straightedge to draw the 
perpendicular. This still represented a visual production of the perpendicular (a spatio-
graphical solution); meanwhile it perhaps marked the point of new possibilities for 
approaching the problem. Cornflakes was following Fruitloops one step behind 
saying “so after construting the line we put the circle on top” (Excerpt 5, Line 57). She 
was still seeing the PBC as a tool for checking perpendicularity rather than as a tool 
for drawing. Fruitloops, on the other hand, constructed another line (line OH) that 
looked like it concurred with the line segment KL (the segment perpendicular to 
segment IJ in the PBC construction, Figure 9b). Cornflakes then realized what 
Fruitloops was trying to do as she typed “so put the line thru the line on the circle” 
(Excerpt 5, Line 58). Fruitloops, however, was not sure how to proceed. She deleted 
her line (line OH), and even constructed an intersecting line (not a perpendicular). 
She next deleted that too, and finally said “I don’t know what I am doing help” (Excerpt 
5, Line 59).  
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 In this episode, two new routines emerged. First, initiated by Cornflakes, the routine 
of verification shifted from one that is based on perception to one that is based on 
measurement by making use of a new visual mediator, the PBC. She wanted to use 
the PBC, which is known to be perpendicular, to check perpendicularity. She got help 
from Fruitloops to do that. Secondly, the production of the perpendicular also 
changed character involving the same visual mediator. While helping Cornflakes, 
Fruitloops wanted to imitate a paper-pencil routine of drawing the perpendicular 
using the PBC as a straightedge, yet she left the work unfinished. Cornflakes adopted 
this new routine as well.  
Excerpt 5. 

Line Post time User Message 

56 3:56:28.6 cornflakes Yes 

57 3:57:05.2 cornflakes so after construting the line we 
put the circle on top 

58 3:57:56.8 cornflakes so put the line thru the line on 
the circle 

59 3:58:18.5 fruitloops i dont know what i am doing 
help 

60 3:58:24.8 fruitloops sonmeone else take control 

 

Table 2 provides a summary of the analysis presented for Episode 3.   

 
Table 2. Summary of Episode 3 in terms of discourse characteristics. 

Production of the 
perpendicular routine 

Verification of 
perpendiculari
ty routine 

Use of 
the 
word 
perpen
dicular 

Use of 
visual 
mediators 

Spatio-graphical 
solution / imitation of 
paper-pencil routine 
of drawing the 
perpendicular using 
PBC as straightedge 
(Fruitloops & 
Cornflakes) 

Measurement
-based 
verification 
using PBC 
(Cornflakes & 
Fruitloops) 

 -PBC as 
protractor 
(Cornflakes) 
-PBC as 
straightedge 
(Fruitloops) 
 

Episode 4: Use of circles with no dependencies (3:58:27- 3:59:52) 
Taking control after Fruitloops, Cornflakes first dragged the PBC away. For a while, 
she seemed to play with the PBC: randomly constructing points on it, dragging them, 
and moving the labels of the points. Then, Cheerios jumped in, suggesting to “make 
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the line first” (Excerpt 6, Line 61). One can infer that Cheerios was still trying to 
produce the perpendicular line visually. In response, Fruitloops clarified her approach: 
“i think you need to make the circles first” (Excerpt 6, Line 62). This statement signaled 
a new routine regarding the production of the perpendicular. That is, Fruitloops 
proposed using the construction of circles to produce the perpendicular just as the 
team had done with the PBC and the equilateral triangle in the previous topic (Topic 
2). 

Following her statement, Fruitloops took control and embarked on constructing. At 
this moment, Cornflakes said “put point m on tp of h” (Excerpt 6, Line 63). That is, she 
proposed moving the PBC back on top of point H. This statement suggested that she 
was not yet following Fruitloops. She either wanted to use the PBC to check 
perpendicularity, or more plausibly, to use it as a guide to draw the perpendicular. 
Fruitloops, on the other hand, started the construction by creating two circles with 
centers at F and G and with radii GQ and FR, respectively (Figure 10). However, 
although GQ and FR looked the same, they were not constructed as equal. This was, 
in fact, the same procedure she had initially followed with the PBC construction at 
the very beginning of their session (Figure 5a). She later constructed another and 
larger circle with center H and radius HS around these two circles, but immediately 
deleted it. Thus, although she realized that there had to be a construction involving 
circles, she failed to create the dependency for equal-radius circles. She then released 
control.  

 

At this stage, Fruitloops suggested a new routine for the production of the 
perpendicularity, the one that included creating circles. It is quite plausible that this 
newly emerged routine had been triggered by the presence of the PBC in the problem-
solving environment. Although she wanted to follow a procedure that involved 

 

Figure 10. 
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constructing circles, she was not able to build the necessary dependencies. Neither 
Cornflakes nor Cheerios was at this level yet.  
Excerpt 6. 

Line Post time User Message 

61 3:58:35.8 cheerios make the line first 

62 3:58:51.2 fruitloops i think you need 
to make the 
circles first 

63 3:59:19.0 cornflakes put point m on tp 
of h 

Table 3 provides a summary of the analysis presented for Episode 4.   
 

Table 3. Summary of Episode 4 in terms of discourse characteristics 

Production of 
the 
perpendicular 
routine 

Verificati
on of 
perpend
icularity 
routine 

Use of 
the 
word 
perpe
ndicul
ar 

Use of 
visual 
mediators 

Use of circles 
with no 
dependencie
s defined 
(Fruitloops) 

  PBC as 
image of 
constructio
n 
(Fruitloops) 

Episode 5: Constructing dependencies (3:59:53-4:14:15) 
Although Fruitloops was not able to complete what she had started immediately, 
Cheerios eventually took up her new reframing of the problem. After Fruitloops, 
Cheerios took control. She constructed a line through points T and S (new points) 
and adjusted it so that line TS would look like it passed through not only H, but also 
the intersections of the circles that Fruitloops constructed (Figure 11a). Cheerios tried 
several strategies to make the line TS to go through the intersections of the circles 
and point H, such as constructing a point very close to H (point U) and a line through 
that. However, as Fruitloops observed, the line was not going through H (Excerpt 7, 
Line 64). Thus, although Cheerios was now building on what Fruitloops had started, 
there were two problems with their attempts to construct the perpendicular. First, H 
was not defined as the midpoint of a line segment. Secondly, the circles around the 
endpoints did not have the same radius. In other words, although their production of 
the perpendicular routine now included the use of circles, no dependencies were 
constructed.  
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Figure 11a. 

 
Figure 11b. 

 

At this point, Cornflakes provided a definition for bisection, saying, “bisection is a 
division of something into two equal parts” (Excerpt 7, Line 65), which was not given to 
them with this task. Cheerios then took control and moved point H to the line, 
however it did not attach to the line. Next, Cornflakes played with the line as well 
moving it around point H and seeing that it was not set to pass through H. Then 
Fruitloops realized the problem saying, “we didn’t put a point between the circles so the 
libne isnt perpendicular” (Excerpt 7, Line 66) and later adding “the part where the circles 
intersect” (Excerpt 7, Line 69). 

Although Fruitloops was not using a formal mathematical language to explain her 
reasoning, this statement provided a new perspective on the production of the 
perpendicular as creating certain dependencies (which she demonstrated by actually 
performing the construction later). In response, Cornflakes dragged line FG and saw 
that dragging messed up their solution (Figure 11b). Cheerios agreed with Fruitloops 
immediately saying “oh I see now” (Excerpt 7, Line 68). Cornflakes, however, kept on 
moving other parts of the figure (such as points H, F) to make intersections and their 
perpendicular-looking line (TH) concur. Observing that Cornflakes was not 
convinced, Fruitloops suggested that she look at the examples. Finally, Cornflakes 
said, “ok I see” (Excerpt 7, Line 71). 

Now that the team members seemed to be all on the same page, they spent some time 
discussing who would do the construction. Finally, Fruitloops took control and 
cleared up the space first by removing some points and their perpendicular-looking 
line. Then she created two circles at centers F and G with the same radius FG correctly 
(Figure 12). She also constructed the intersections (points Q and R) and explained 
what she did: “so i madfe two circles that intersect and the radius is the same in both 
circles right?” (Excerpt 7, Line 79). Cheerios agreed, “yea they are the same” (Excerpt 
7, Line 80). Fruitloops highlighted once more that their radii were FG: “and segment 
fg is the radius” (Excerpt 7, Line 81). These statements confirmed that Fruitloops 
wanted to focus the group’s attention on constructing certain relationships. 
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Cornflakes followed with a “yes” (Excerpt 7, Line 82). Cheerios said, “now we have 
to make another line” (Excerpt 7, Line 83). However, Fruitloops did not want to 
continue, saying: “yeah someone else can do that” (Excerpt 7, Line 84).  

 
Figure 12. 

 

Excerpt 7.  

Lin
e 

Post 
time 

User Message 

64 4:02:26.
9 

fruitloops the line isnt going through part 
h 

65 4:02:39.
5 

cornflakes bisection is a division of 
something into two equal parts 

66 4:04:58.
2 

fruitloops we didnt put a point between 
the circles so the libne isnt 
perpendicular 

67 4:05:03.
8 

fruitloops line* 

68 4:05:19.
4 

cheerios oh i see now  

69 4:05:20.
6 

fruitloops the part where the circles 
intersect 

70 4:05:34.
8 

fruitloops look at the examples and youll 
see 

71 4:05:46.
9 

cornflakes ok i see 

72 4:05:51.
8 

cheerios r u fixing it 

73 4:05:54.
7 

fruitloops do you want to do it? 

74 4:06:02.
0 

cornflakes so we have to put a poijt 
bewtween the circles 

75 4:06:19.
4 

fruitloops yeah you can do it if you want 

76 4:06:43.
5 

fruitloops or should i do it? 
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77 4:06:49.
4 

cornflakes you can 

78 4:06:49.
6 

cheerios yea u should 

79 4:08:23.
3 

fruitloops so i madfe two circles that 
intersect and the radius is the 
same in both circles right? 

80 4:08:41.
9 

cheerios yea they are the same  

81 4:08:55.
1 

fruitloops and segment fg is the radius 

82 4:08:58.
4 

cornflakes yes  

83 4:09:04.
1 

cheerios now we have to make another 
line  

84 4:09:14.
8 

fruitloops yeah someone else can do that 

 

In this episode, Fruitloops identified one of the problems with the construction in 
line 66 (Excerpt 7): the need to create equal-radius circles. Although one can argue 
that she was not fully aware of the mathematical meaning of this dependency, she 
must have come to a realization that the way circles are constructed matters. She 
furthermore carried out the construction and drew attention to the defined 
relationships (circles with the same radius). The team members agreed upon this 
procedure. Thus, Fruitloops turned the routine of production of the perpendicular 
into a construction, one that is based on defining dependencies. Her use of the word 
“perpendicular” in line 66 (Excerpt 7) also reflected this change in the production 
routine. Here “perpendicular” was not used to represent a visual image or to evaluate 
a figure based on that image, as in her previous uses of the word. Rather, the word 
referred to a mathematical relationship that results from the way the circles were 
constructed.  

There was still one other dependency the team needed to consider. This issue came 
up when Cornflakes responded to Fruitloops’ invitation and constructed a line 
passing through Q and R (the circle intersections) and U (Figure 13a). Seeing that it 
did not pass through H, Cornflakes deleted almost half of Fruitloops’ construction 
hoping to solve it, even going back to making the same mistake Fruitloops made (not 
noticing the role of equal-radius circles at the endpoints of a line segment). However, 
she eventually repeated the same construction steps and went back to the point where 
she started. Since H was not defined as the midpoint of the radius, the line through 
the circles’ intersection points was not going through it. At this point, Fruitloops 
suggested a solution with the problem of H: “you make the points go through qr and 
then you move h ontop of the line” (Excerpt 8, Line 85). Q and R were the intersection 
points of the circles Cornflakes deleted. Next, Fruitloops took control and she 
performed what she said; she constructed the intersection points Q and R back again 
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and the line through them, and attached H to that line by simply dragging it (Figure 
13b). Then she announced that she finally did it (Excerpt 8, Line 86).  

 

 
Figure 13a. 

 
Figure 13b. 

 

Although the team seemed to be on the same page regarding one of the dependencies 
(constructing equal-radius circles), the dependency regarding the point H was 
overlooked. Fruitloops simply attached the arbitrary point to their perpendicular line 
and this procedure seemed to work. Therefore, her routine of constructing a 
perpendicular through an arbitrary point did not involve taking that arbitrary point as 
the reference point as the task author intended. Rather, she took advantage of the 
dynamic geometry by simply dragging the point to the perpendicular.  

Excerpt 8. 
Line Post 

time 
User Message 

85 4:11:09.
8 

fruitloops you make the points go 
through qr and then you move 
h ontop of the line 

86 4:13:08.
4 

fruitloops i think i did it finallyu 

87 4:13:49.
1 

cornflakes the klines bisec the circle 

88 4:14:15.
3 

cornflakes *the lines bisect the circle 

 

Table 4 provides a summary of the analysis presented for Episode 5.   
 

Table 4. Summary of Episode 5 in terms of discourse characteristics 
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Production of the 
perpendicular routine 

Verific
ation 
of 
perpe
ndicul
arity 
routin
e 

Use of the word 
perpendicular 

Use of 
visual 
mediators 

Constructing 
dependencies / use 
of equal-radius 
circles (Fruitloops) 

 

 Signifying a 
mathematical 
relationship 
(Fruitloops) 

 

Dynamic solution / 
attaching the 
arbitrary point H to 
the line (Fruitloops) 

 

 
  

  

 

Episode 6: Discussing why the construction worked (4:14:29-4:16:17) 

Immediately after producing a solution, Fruitloops raised the question, “but how do 
we know for sure that the line is perpinmdicular” (Excerpt 9, Line 89). Cheerios said she 
was not sure (Excerpt 9, Line 90). Cornflakes first mentioned the spatio-graphical 
aspect of the figure by saying: “there 90 degree angles” (Excerpt 9, Line 91). However, 
Fruitloops was looking for another explanation. She said, “but you cant really prove 
that by looking at it” (Excerpt 9, Line 93). In response, Cornflakes participated within 
this new discourse sensing that the explanation had to do with the circles. She said, 
“they intersect throught the points that go through the circle” (Excerpt 9, Line 94). 
Fruitloops built on that and said, “it has to do with the perpendicular bisector” (Excerpt 
9, Line 95). The two continued the discussion with Cornflakes saying “they ‘bisect’ it” 
(Excerpt 9, Line 96). Fruitloops must have thought Cornflakes referred to the line 
segment by “it” and added, “and the circles” (Excerpt 9, Line 97). Cheerios was 
relatively quiet when Fruitloops and Cornflakes were looking for a deeper 
understanding. She simply said, “oh I see” (Excerpt 9, Line 98) as a response. 
However, before they moved to the next tab, she was the one who dragged their 
perpendicular construction extensively, confirming the integrity of the construction 
as suggested by the final step in the topic instructions.  

In this episode, it became clear that Fruitloops was not content with a spatio-graphical 
verification routine. She completed the task, yet also wondered why it worked. This 
may indicate that she was ready for a formal mathematical explanation. While 
Cheerios remained silent, Cornflakes participated within this conversation. 
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Fruitloops’ use of the word “perpendicular” in line 89 (Excerpt 9) sounded more 
mathematical as she asked, “how do we know for sure the line is perpendicular?” She 
further mentioned the PBC as if highlighting its significant role within this problem 
solving session.  

 

Excerpt 9. 
Line Post time User Message 

89 4:14:29.8 fruitloops but how do we 
know for sure 
that the line is 
perpinmdicular 

90 4:14:39.6 cheerios im not sure  

91 4:14:42.1 cornflakes there 90 degree 
angles 

92 4:14:45.4 cheerios do u cornflakes 

93 4:14:59.4 fruitloops but you cant 
really prove that 
by looking at it 

94 4:15:06.8 cornflakes they intersect 
throught the 
points that go 
through the circle 

95 4:15:17.7 fruitloops it has to do with 
the perpendicular 
bisector 

96 4:15:19.8 cornflakes they"bisect" it 

97 4:15:31.2 fruitloops and the circles 

98 4:15:37.2 cheerios oh i see 

 

Table 5 provides a summary of the analysis presented for Episode 6.  
 
Table 5. Summary of Episode 6 in terms of discourse characteristics 

Produc
tion of 
the 
perpen
dicular 
routine 

Verification of 
perpendicularity 
routine 

Use of the 
word 
perpendicul
ar 

Use 
of 
visu
al 
med
iator
s 

 -Spatio-graphical 
(Cornflakes) 
-Looking for a 
verification 

Signifying a 
mathematic
al 
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routine beyond 
spatio-graphical 
evidence 
(Fruitloops & 
Cornflakes) 

relationship 
(Fruitloops) 

Discussion 
Mathematical experiences at the middle-school level are considered critical for 
students to develop deductive and formal thinking (Ellis et al., 2012). Harel and 
Sowder (1998) note that it would be unreasonable to expect that students will instantly 
appreciate sophisticated forms of mathematics in high school, where expectations 
regarding mathematical rigor are higher. Therefore, it is important to provide learning 
opportunities for middle-school students to advance their geometric thinking. The 
VMT environment is designed to serve this purpose by affording virtual collaborative 
problem solving with a multiuser GeoGebra component. It is important to study the 
ways in which teams of students using the VMT software and its curriculum are 
learning geometry and what problems they encounter. Toward this end, Sfard’s (2008) 
discursive lens was employed to investigate the change in mathematical discourse of 
a team of three middle-school students as they worked on a geometry construction 
problem in the VMT environment. The analysis focused on how the team’s use of 
the word “perpendicular,” its use of the PBC as a visual mediator, and its use of 
routines (for production of a perpendicular and for verification of perpendicularity) 
shifted during an hour-long collaborative problem-solving session. The findings 
indicated that the Cereal team, whose members had very limited formal geometry 
background, moved forward from a visual discourse toward a more sophisticated 
formal mathematical discourse.  

To be specific, the team started constructing two line segments as perpendicular 
bisectors of each other following the instructions of Topic 3 (Episode 1). In this part, 
Cheerios’ use of the word “perpendicular” was copied from the task instructions as if 
using a foreign language word in a sentence. The team next moved to the second task, 
which was built on the first one. This presented a challenge as the team needed to 
figure out how to construct a perpendicular to a line through a given point, which 
they had not done before.  

Table 6 summarizes the team’s use of the word “perpendicular,” their use of visual 
mediators, their routines of production of a perpendicular, and their verification of 
perpendicularity in episodes 2 to 6, where the team worked on the second task in 
Topic 3.  
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Table 6. The change in discourse in episodes 2-6 (summary). 

E
p
i
s
o
d
e 

Production 
of the 
perpendicul
ar routine 

Verification 
of 
perpendicul
arity routine 

Use of the 
word 
perpendicula
r 

Use 
of 
visu
al 
medi
ators 

2 
 

Creating 
another 
reference 
line in 
relation to 
line FG 
(Cornflakes 
and 
Cheerios) 

 Signifying a 
visual image 
of 
perpendicula
r to disagree 
with a 
spatio-
graphical 
solution 
(Fruitloops) 

 

Spatio-
graphical 
solution / 
drawing a 
perpendicul
ar-looking 
line 
(Cornflakes) 

  PBC
-
rand
om 
drag
ging 
(Cor
nflak
es) 

 
Spatio-
graphical 
solution / 
drawing a 
perpendicul
ar-looking 
line 
(Cheerios & 
Cornflakes) 

  
Signifying a 
visual image 
of 
perpendicula
r to disagree 
and then 
agree with a 
spatio-
graphical 
solution 
(Fruitloops) 
 

 

Spatio-
graphical 
solution 
(Cornflakes, 
Fruitloops, 
Cheerios) 

Spatio-
graphical 
verification / 
vertical-
horizontal 
alignment of 
the lines 
(Cheerios) 

Signifying a 
visual image 
of 
perpendicula
r to agree 
with a 
spatio-
graphical 
solution 
(Fruitloops) 

 

 
3 

 
Spatio-
graphical 
solution / 
imitation of 
paper-pencil 

 
Measureme
nt-based 
verification 
using PBC 
(Cornflakes 

  
-
PBC 
as 
protr
actor 
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routine of 
drawing the 
perpendicul
ar using 
PBC as 
straightedge 
(Fruitloops & 
Cornflakes) 

& 
Fruitloops) 

(Cor
nflak
es) 
-
PBC 
as 
strai
ghte
dge 
(Frui
tloop
s) 
 

 
4 
 

Use of 
circles with 
no 
dependenci
es defined 
(Fruitloops) 
 

  PBC 
as 
imag
e of 
cons
tructi
on 
(Frui
tloop
s) 

5 Constructing 
dependenci
es / use of 
equal-radius 
circles 
(Fruitloops) 
 

 Signifying a 
mathematica
l relationship 
(Fruitloops) 

 

Dynamic 
solution / 
attaching 
the arbitrary 
point H to 
the line 
(Fruitloops) 
 

   

6  -Spatio-
graphical 
(Cornflakes) 
-Looking for 
a 
verification 
routine 
beyond 
spatio-
graphical 
evidence 
(Fruitloops 
& 
Cornflakes) 

Signifying a 
mathematica
l relationship 
(Fruitloops) 
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In the production of the perpendicular routine column in the summary Table 6, one can see 
that the team started by producing spatio-graphical solutions including placing the 
perpendicular line visually and imitating the paper-and-pencil procedure of drawing 
the perpendicular by using the PBC as a straightedge guide (in Episodes 2 & 3). These 
routines, however, evolved into first using circles (in Episode 4) and then defining 
certain relationships with the circles, such as the use of equal-radius circles with the 
construction allowing the group to successfully complete the task (in Episode 5). The 
second dependency, however, was bypassed by simply attaching the arbitrary point H 
to the perpendicular line. Although no dependencies were created here, as Sfard 
(personal communication, June, 2014) observed, this could be considered a legitimate 
move in GeoGebra. In a dynamic-geometry world where everything moves, the point 
of reference may be redefined as well, as long as the software supports this use.3 

A parallel progression can also be observed in the verification of the perpendicularity routine 
column. The team first felt the need to verify their solution, which was not explicitly 
asked in the instructions. Initially, this took a spatio-graphical form, with Cheerios 
wanting to arrange the lines into a vertical-horizontal position, which represents the 
prototypical visual image for perpendicularity (in Episode 2). Then Cornflakes, who 
received help from Fruitloops, wanted to use the PBC as a protractor turning the 
verification routine into one that is based on measurement (in Episode 3). Eventually, 
Fruitloops, upon completing the construction, asked how they could be sure if the 
line was perpendicular (in Episode 6). In this episode, Cornflakes pointed at the visual 
appearance of the figure to convince Fruitloops. However, Fruitloops seemed to be 
looking for a verification routine that would go beyond the spatio-graphical. She even 
used the word “proof”—though not necessarily in a deductive mathematical sense. 
This situation is quite contrary to the findings in the literature, as students’ validation 
of a mathematical statement often takes the form of testing it against a few examples, 
even at the more advanced levels (Chazan, 1993b; Coe and Ruthven, 1994). In the 
case of dynamic geometry, students often think that they can justify a claim by 
empirically checking the diagram (Laborde, 2004)—that is, by dragging.  

This situation and the difficulty the team had with defining point H as the middle 
point suggest revisions in Topic 3. The group constructed the PBC at the beginning 
of their session following scripted steps. Completing the task with Fruitloops, 
Cheerios said, “i just made the intersecting line and point in the middle,” continuing, “it 

 
3 The instructions specified that, “point H is an arbitrary point on line FG.” In Euclidean geometry, 

that would mean that even though H can be any point on line FG, it is not something that moves. 
Thus, although one looks for a solution that would work for any point H, any treatment of H would 
be static. In dynamic geometry, however, an arbitrary point H is a free point that can be dragged 
along line FG. Thus, there is some legitimacy to the students’ solution. Ultimately, however, the 
solution fails the drag test of dynamic geometry. If one properly constructs the perpendicular 
through point H, then one should be able to drag point H along line FG and have the perpendicular 
to FG move with it so that it always passes through H and remains perpendicular to FG. Cheerios, 
however, had only dragged their final construction by moving point G.  
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made a perpindicular line” (Excerpt 1, Lines 32-33). However, there was not much 
discussion of its mathematical aspects. The group immediately moved to the next task 
of constructing a perpendicular to a line through a given point. It may be necessary 
to lead students explicitly to discuss their constructions mathematically when 
scaffolding the development of higher-level discourses. If participants are genuinely 
wondering about the relationships and asking questions, as in the present case, 
additional task instructions could even provide the geometrical theory behind such 
constructions. Encouraging students to make explicit connections between their 
deduction and construction knowledge is important since otherwise, as Schoenfeld 
(1988) cautioned, students may be learning about dynamic constructions merely as a 
set of procedures to follow.   

The word perpendicular was first used by Cheerios in the first part of the task (Episode 
1). She uttered the word only once, as if to revoice the instructions. Fruitloops, on the 
other hand, used the word throughout the problem-solving session. Her use of the 
word also represented a parallel advancement along with the production and 
verification routines. Initially the word signified a visual image of perpendicularity and 
was used to evaluate produced visual solutions (in Episodes 2&3). Later, however, 
her use of the word came to refer to a certain relationship between figures (in 
Episodes 5&6).  

Finally, it is reasonable to argue that the PBC, the already completed construction, 
functioned as the key visual mediator of the session. The PBC figure is derived from 
Euclid and was presented as a resource in the Topic 3 instructions. The group was 
also asked to construct the PBC at the beginning of their session following very 
specific steps. In the second task, Cornflakes brought it to the team’s attention when 
the team seemed to be out of ideas (in Episode 2). Although at first she only played 
with it randomly, she later figured out a way to use it as a protractor, thus as a tool 
for verifying perpendicularity (in Episode 3). This use may have led Fruitloops to view 
it as a straightedge that could be used to draw the perpendicular (in Episode 3). More 
importantly, however, the PBC became a crucial resource that probably triggered 
Fruitloops’ use of circles, which led to the framing of the problem as a construction 
task (in Episode 4).  

These observations about the PBC are important for at least three reasons: First, when 
students appear to be stuck with the problem or run out of ideas, they seem to make 
use of every resource within their problem-solving space. Ryve, Nilsson, and 
Pettersson (2013) underline the crucial role that visual mediators play in effective 
communication.  However, along with visual mediators, they have also observed that 
technical terms (i.e., technical mathematical words) were equally important for 
communication that is effective. In Episode 5, just before Fruitloops framed the task 
as construction, Cornflakes provided a definition for the term “bisection” (Excerpt 
7, Line 65). This definition was not given to the team with the task, thus Cornflakes 
must have found it somewhere else. A little later, when Fruitloops realized the 
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problem with their circles, she was lacking the mathematical terms to express the 
situation. She said “we didn’t put a point between the circles so the libne isnt 
perpendicular” and then “the part where the circles intersect” (Excerpt 7, Lines 66, 69). 
Hence, CSCL task designers should pay considerable attention to the type of 
resources to be provided to students with the problems. These resources should 
encompass not only visual mediators but also the technical mathematical words. 

Secondly, Cornflakes initially was not able to place the PBC on top of line FG 
correctly, but Fruitloops completed what Cornflakes had in mind, and Cornflakes 
responded with a “yes.” Afterwards, Fruitloops realized another procedure for 
producing the perpendicular (i.e., use the PBC as a straightedge to draw the 
perpendicular). All these suggest that in a setting like VMT, “transactive dialogue” 
(Berkowitz & Gibbs, 1985, as cited in Barron 2000) can take place through 
participants’ actions using visual mediators on the shared computer screen. This 
seems more likely when students lack the technical terms to express themselves, as in 
this case. The “take control” button opens up a “joint problem space” for dynamic 
manipulations and affords action-based dialogue, in addition to the conversational 
turns supported by the chat platform. In that way, as Roschelle & Teasley (1995) 
observed, participants can still interact productively even when they lack the technical 
vocabulary to talk about the problem.   

Third, and most importantly, one could observe that the PBC accompanied the 
moments of change in mathematical routines: first from the vertical-horizontal 
alignment of the lines to the use of PBC as a straight-edge guide in Episode 3, and 
then to the use of circles in producing the perpendicular in Episode 4. Thus, it is 
reasonable to assume that it played a significant role in the change in mathematical 
discourse in this problem-solving session.  

Along with the PBC, other aspects of the VMT environment also seemed to play a 
role in the moments of discourse shifts. In Episode 4, Fruitloops introduced a new 
production routine when she suggested making the circles first (Excerpt 6, Line 62) 
and started constructing the circles. The team constructed circles in the first part of 
Topic 3 (to construct PBC) and the equilateral triangle in the previous topic in the 
VMT curriculum (Topic 2), which also required using circles in defining 
dependencies. Thus, the VMT curriculum, particularly the sequence of the topics in 
that curriculum, might have also played an important role in supporting students’ 
discourse development.    

Initially Fruitloops’ circles were not created using the necessary dependencies such as 
the equal-radius relationship. As no dependencies were defined, the team had 
problems creating the line that would go through the intersections of the circles and 
the point H. That is, the dynamic-geometry software provided the essential feedback 
until Fruitloops realized that they needed to construct the circles with certain 
relationships (in Episode 5). Both Cheerios and Cornflakes played with their 
construction to see that there was something missing with their solution at that stage. 
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This situation also confirms Roschelle & Teasley (1995), who observed that when 
students had differing ideas, they were able to experiment with the computer 
representation. In a dynamic-geometry environment, the drag function enables testing 
the construction if dependencies are correctly defined. Eventually, this 
experimentation leads the participants to generate new ideas, when they see that their 
solution is not supported by the software.  

This analysis was conducted at the group unit of analysis, involving the team discourse 
rather than the individual cognition of the students.4 This analysis is not necessarily 
meant to suggest that the individual team members, including Fruitloops, decisively 
moved beyond the visual discourse. Nor is the observed discursive jump by the team 
necessarily an indication of “individualization” (Sfard, 2008): that the team members 
will henceforth follow more formal mathematical procedures and employ more 
formal word uses irrespective of the context. One can observe that Cornflakes and 
Cheerios were mostly attending to the spatio-graphical aspects of their figure, even 
toward the end of the session. Even Fruitloops was not able to clearly articulate why 
and how circles worked.  

This team of novices succeeded in participating within a collective discourse that 
gradually took a more mathematical character. Yet, this more formal discourse was, 
as Baruch Schwarz (personal communication, June 2014) suggested, rooted in the 
spatio-graphical solutions—i.e., solutions that rely on reasoning and recognition of 
geometric figures with their appearances without any regard to their mathematical 
properties (Laborde, 2004). Thus, similar to what Sinclair and Moss (2012) noted, the 
process of discourse change may be better described as oscillating—rather than 
simply shifting—between the visual and more formal discourse levels.  

Sfard’s commognitive framework provided an account for the development of 
geometrical thinking observed within this episode. Rather than talking about fixed-
ordered geometrical cognitive levels, as in van Hiele levels (1986), Sfard (2008) talks 
about incommensurable mathematical discourses. Saying that two discourses are 
incommensurable does not mean that one cannot participate in both of them at the 
same time. It simply means that “they do not share criteria for deciding whether a 
given narrative should be endorsed” (Sfard, 2008, p. 257). However, moving towards 
higher discourse levels requires “student’s acceptance and rationalization 
(individualization) of the discursive ways of the expert interlocutor” (p. 258). Thus, 
students need to interact with expert others in order to develop sophisticated 

 
4  In a similar analysis of all eight sessions of the Cereal Team, Stahl (2016) conceptualizes the 

development of the group’s mathematical cognition in terms of the successive adoption of group 
practices, rather than routines, in order to emphasize that they are being theorized as group-level rather 
than individual phenomena. As illustrated in the six episodes here, the Cereal Team questions, 
negotiates and adopts new practices through their discourse (including shared GeoGebra actions). This 
meaning-making process creates a shared understanding within the team. Once the team agrees to use 
a routine, it may become a group practice, which can be used in the future without further discussion.  
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mathematical discourses. The findings in this study indicate that an environment such 
as VMT may provide a context in which students can engage in higher-level 
mathematical discourses with their peers.  

Thus, along with instruction by expert mathematicians, well-designed virtual 
collaborative learning environments can provide a form of interaction that supports 
significant mathematical discourse development. In that regard, the findings support 
Sinclair and Moss (2012), who suggested that dynamic-geometry software could 
function as a stand-in or alternative for the discourse of experts. In the present case, 
multi-user dynamic geometry was a component of the VMT software, which was built 
to support collaborative learning with a specific geometry curriculum (Stahl, 2013b). 
Therefore, in addition to the dynamic geometry component, the curriculum and the 
collaborative interaction aspects of the VMT environment also played crucial roles in 
supporting students’ mathematical discourse development.  

There is a tendency in educational research to reduce cases of group cognition to 
psychological phenomena of individual cognition. Considering the Cereal Team’s 
problem-solving session, one may be inclined to think that Fruitloops was the higher 
thinker in this session. Not only did she appear to be the one solving the second task, 
she also wondered why it worked. However, that was not where she started. Initially, 
her notion of perpendicular referred to a visual image. It evolved into one that 
represented a mathematical relationship. Similarly, at the beginning, her routine of the 
production of the perpendicular involved a spatio-graphical solution, the same as for 
everyone else in the team, which only later became one that was based on defining 
dependencies. These transformations took place within the context of interacting with 
her team members, enacting task instructions, and interacting with the VMT software. 
Furthermore, most of the time, her lead was negotiated with the other team members, 
as part of the team’s coordination of social resources (Oner, 2013). These took the 
form of the others building on her actions (as in Episode 5) as well as engaging in 
transactive dialogue (Berkowitz & Gibbs, 1985, as cited in Barron, 2000) with Cornflakes 
(as in Episode 6). She received help from other team members (as in Episode 1). The 
PBC was brought to her attention by other team members (Cornflakes) as well. Thus, 
the team’s success was the product of group cognition, not simply attributable to one 
team member (Stahl, 2006).  

Would the findings be applicable for other online groups? Qualitative case studies, 
such as this one, are not usually designed to make grand generalizations concerning 
the population. They, however, allow making what Stake (1978) calls “naturalistic 
generalizations.” That is, the findings from a case with a unique team in a particular 
situation can provide insight and understanding of potential computer-supported 
collaborative learning and development. Session 3 was just one hour of the team’s 
eight-hour experience with dynamic geometry; the whole longitudinal development is 
analyzed in a similar way by Stahl (2016), providing more insight into the team’s 
development of geometric commognition. Furthermore, this case study should not 
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be viewed as a summative assessment of the VMT environment, but as part of one 
cycle in an iterative DBR investigation. Accordingly, it was more concerned with 
documenting learning and how a team of novice students accomplished significant 
advance in mathematical discourse within the VMT environment in order to guide 
modifications in technology, pedagogy and curriculum—so that more student groups 
might undergo similar mathematical development in future versions of VMT. We can 
now conduct such analyses of other teams during other DBR cycles or using different 
CSCL supports. 
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6. Constructing Knowledge: 
A Community of Practice 

Framework for Evaluation in 
the VMT Project 

Michael Khoo and Gerry Stahl 

Abstract: This paper describes a formative evaluation of  the Virtual Math 
Teams (VMT) Project as it adopts the GeoGebra dynamic-mathematics 
application. The project team is considered as a Community of  Practice, 
which communicates with student users through boundary objects. An 
ethnographic action-research approach is used to analyze three sources of  
data: VMT user manuals; screenshots of  tool interfaces and assignments; 
and logs of  student chat sessions addressing those assignments. The 
analysis focuses on how the topic of  ‘construction’ is articulated in each 
data set. The results show that the team understands ‘construction’ in terms 
of  a complex web of  knowledge of  dynamic geometry, while the students 
develop their own emergent notions of  ‘constructing’ from the boundary 
objects produced by the team. Recommendations for boundary object 
design are considered. 

Introduction 
 

 basic distinction in project evaluation is that between summative and 
formative evaluation (Frechtling, 2002). Summative evaluation assesses the 
final outcomes of a project, while formative evaluation assesses ongoing 

processes, focusing on how that project is achieving its goals. Evaluations reported in 
the literature are often summative in nature, and explicit cases of formative evaluation 
are infrequent. One issue here is that the ongoing nature of formative evaluation, and 
the iterative generation of interim data, present a less tidy unit of analysis than 
summative evaluation. However, formative evaluations are useful, for instance in 
design research, where projects follow iterative design cycles of development, 

A 
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implementation, and assessment. Where a summative evaluation may conclude that 
one intervention has better outcomes than another, a formative evaluation may 
suggest how to adjust the intervention to be more effective.  

This paper introduces a formative evaluation of work with the Virtual Math Teams 
(VMT) Project as it adopts the GeoGebra dynamic-mathematics application. One aim 
of the evaluation is to evaluate the ongoing ways in which the VMT project team is 
codifying its knowledge of dynamic geometry into the project’s online tools and 
documentation, and how well these tools and documents support students to engage 
in dynamic geometry. This contributes to the ongoing incremental improvement of 
the project’s artifacts, and is a typical use of formative evaluation (it would be of little 
use to wait until the project has been completed in order to evaluate these materials).  

The evaluation approach described in this paper draws on theories of Communities 
of Practice (Lave & Wenger, 1991; Wenger, 1998) to consider VMT not just as a series 
of tools, assignments and users, but as an ensemble of people, practices, processes, 
and other phenomena, which all aim at education in dynamic geometry. The analysis 
focuses on recent pedagogical artifacts produced by the project, the ways in which 
these artifacts represent the educational intentions of the project team, and how these 
artifacts are used by the project’s student users. The analysis focuses on the team’s 
understanding of dynamic geometry, the reifications of these understandings in 
informational artifacts, and the understanding gained by students after interacting 
with these reifications. An important issue here is the extent to which the design of 
VMT tools and curricula help students to understand dynamic-geometric 
construction in the same ways as the project team. 

The VMT Project with GeoGebra 
VMT is a CSCL project spanning over a decade (Stahl, 2013). The project’s 
technological, pedagogical and analytic components provide an integrated online 
platform for middle- and high-school students to engage in online mathematical 
discourse as they explore dynamic geometry. Geometrical construction and 
explanation are emphasized. In classical geometry, these practices involve the use of 
a straight edge and a compass. In VMT, these concrete affordances are ‘translated’ 
(Stahl, 2013a) into a virtual environment and dynamic screen tools. VMT 
incorporated GeoGebra for the past several years. The system now includes an online 
environment with a chat window, a virtual whiteboard, and a range of interactive 
dynamic-geometry tools, which students use to learn about dynamic geometric 
construction (Stahl, 2011).  

The project follows a design-based research approach, with iterative cycles of user-
centered design, implementation and evaluation. The dynamic-geometry tools in 
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VMT have been developed over a number of years by a team of pedagogists, learning 
scientists, coders, discourse analysts, social scientists, HCI experts, evaluators, and 
others. Key components of the design process are the team’s weekly meetings, in 
which members discuss topics such as the student chat logs, curriculum design, 
technological issues, and paper writing. Outputs from the meetings include revised 
assignments, analyses of project data, drafts of papers, and technical bug reports and 
fixes. These and other outputs feed into the iterative development of the educational 
artifacts that mediate the project to its users: the online tools, the tool documentation, 
the curricula, specific assignments, and so on. It is a form of mutual bootstrapping, 
with implementations of the tools and curricula generating data for the research team, 
the analysis of which supports improvements in the tools and curricula, which in turn 
leads to the generation of new data for analysis. The project team’s hope is that by 
following a design-research process, the educational artifacts they produce will be 
more useful than a ‘one-shot’ design approach. 

Communities of practice are often glossed somewhat simply as ‘groups of people 
working together on a common task.’ The concept has however considerable 
theoretical depth, including attempting to account for how knowledge is constituted 
and shared within and between groups. Lave and Wenger (1991) draw on theories of 
practice by Giddens (1979), Bourdieu (1977), and others, to theorize how newcomers 
become members of a CoP and gain knowledge of its practices not just by learning 
what a community knows, but what community members do. This includes knowing 
what to talk about in that community, and also how to talk and to support community 
discourse and memory. Experienced community members guide less experienced 
members through the community’s practices, a process known as legitimate 
peripheral participation, “an engagement in social practice that entails learning as an 
integral constituent.” Wenger (1998) further elaborates membership in a CoP in terms 
of a duality of participation and reification (Figure 1). Participation involves “the 
social experience of living in the world in terms of membership in social communities 
and active involvement in social enterprises,” while reification includes a range of 
activities (making, designing, representing, naming, encoding, and describing, as well 
as perceiving, interpreting, using, reusing, decoding and recasting”) which generate 
traces of that membership. The processes are distinct yet mutually constitutive: 
“[Reification] always rests on participation: what is said, represented, or otherwise 
brought into focus always assumes a history of participation as a context for its 
interpretation. In turn, participation always organizes itself around reification because 
it always involves artifacts, words and concepts that allow it to proceed.” 
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Communities of Practice 

 
Figure 1. Participation and reification in Communities of Practice. (c.f. Wenger, 1998, Figs 

1.1 and 4.1.) 
 

Given that meaning is constituted internally in CoPs in terms of the participation-
reification duality, what might individuals external to a CoP make of the reifications 
of that CoP? Here, says Wenger, boundary objects play an important role. According 
to Star and Griesemer (1989), boundary objects are: 

objects which are both plastic enough to adapt to local needs and 
constraints of the several parties employing them, yet robust enough to 
maintain a common identity across sites … They may be abstract or 
concrete. They have different meanings in different social worlds but their 
structure is common enough to more than one world to make them 
recognizable, a means of translation. The creation and management of 
boundary objects is key in developing and maintaining coherence across 
intersecting social worlds. 

While CoPs regularly appear in the CSCL literature, boundary objects appear less 
frequently. The rest of this paper therefore focuses on VMT as a CoP and its use of 
boundary objects. 
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Boundary objects in VMT 

 
Figure 2. Boundary objects in the VMT project 

 

From the point of view of CoP theory, participation in the VMT project team is built 
partly on community practices that support project members’ knowledge of math, 
dynamic geometry, the project tools, and the team’s educational and pedagogical 
philosophy. Reification in VMT takes this knowledge and produces artifacts such as 
the tool interfaces and documentation that represent this knowledge to users. 
Ongoing cycles of participation and reification have led to the creation of formalized 
webs of meaning that in turn support the team’s practices and identity. This process 
has been going on for a number of years, with the team’s knowledge of dynamic 
geometry reified in the form of a range of informational artifacts. Many of these 
artifacts are internal to the project, such as document drafts, meeting agendas and 
minutes, email, and so on. Other artifacts – boundary objects – have been designed 
to communicate the project team’s understandings of dynamic geometry to wider 
audiences. Distillations of the team’s thinking, these boundary objects are tailored for 
particular audiences, and include documents such as conference papers, journal 
articles, funding proposals, and reports. The boundary objects that we are interested 
in here are designed for students, and consist of sociotechnical ensembles of tools, 
interfaces, instructions, curricula, and other artifacts. As explicit reifications of the 
team’s knowledge, they are designed to lead students, through a series of activities and 
exercises, to an understanding of dynamic geometry. 

Figure 2 shows, on the left, the CoP of the project team; on the right, a series of small 
and emerging CoPs that represent various student teams; and in the middle, the 
boundary objects created by the project team and intended to serve as sense-making 
artifacts for the students. An important evaluation question here is: Do these boundary 
objects – which make sense to the team – also make sense to the students and support them to learn 
about dynamic geometry?  

To address this question, the students’ discourse and actions in VMT are analyzed, 
using as a starting point Laborde’s (2004) distinction between spatio-graphical and 
theoretical reasoning. According to Laborde, when students construct and use 
geometrical figures, they can understand these figures at ‘face value,’ in terms of what 
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they see, and also in terms of wider theoretical reasoning. In learning, students 
oscillate between these two modes of reasoning, with theoretical hypotheses explored 
partly through the construction of diagrams, leading to new hypotheses being formed, 
and an increase in their overall understanding. From this perspective, when examining 
the VMT student logs, do we see students working their way through the assignments 
based on ‘surface’ comprehension of the visual forms that they see on their screens, 
or do they build theoretical arguments and reasoning to account for the underlying 
dynamic geometrical forms? The analysis that follows evaluates this question by 
examining the ways in which the project team and the students use the word 
‘construction’ and its synonyms. Analyzing the use of ‘construction’ is useful, as such 
usage can be a marker of both spatio-graphical and theoretical reasoning, depending 
on the context in which it is used (c.f. Wittgenstein, 2001). 

Methodological approach 
As noted in the introduction, formative evaluation focuses on descriptions of ongoing 
dynamic processes, rather than static one-off measurements of project outcomes. It 
calls for different methods than may traditionally be used in summative evaluation. 
The research in this paper follows an ethnographic action-research approach (Tacchi, 
Slater, & Hearn, 2003), combining ethnographic methods with ongoing analyses of 
and contributions to the field site. The aim is to develop iterative improvements in 
theoretical and practical understanding, useful for both the ethnographer and the 
research subjects. It is a method suitable for complex field sites exhibiting 
organizational and technological development, such as VMT (Baskerville & Pries-
Heje, 1999). 

In this analysis, it is assumed that the VMT team produces reifications both for 
internal use and also for communicating with external stakeholders. The focus here is 
on boundary objects produced for students, and the students’ responses to these 
boundary objects. The data examined were as follows. First, curricula and manuals 
related to the VMT tools were analyzed, including introductory assignments, and 
overall reviews of the project work (Stahl 2012, 2013b, 2014a, and 2014b). Second, 
the VMT interface, and instructions and assignments were analyzed (screenshots of 
many of these are included in the documents just cited). Third, the chat of a student 
group in the VMT Fall Fest 2013 was analyzed (see 
http://gerrystahl.net/vmt/icls2014/Topic3.xlsx; 
http://gerrystahl.net/vmt/icls2014/). The analysis followed a general grounded-
discourse-analysis approach, in which ‘construction’ had previously been identified as 
a main category, and axial codes related to ‘construction’ were identified. The analysis 
was carried out using NVIVO coding software. 
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Results 
As might be expected, the curricula, manuals, and the VMT interface, evidenced richer 
uses of ‘construction’ than the discourse of the student teams. At the same time, the 
students used what knowledge they had acquired from the reifications to engage, at 
times, in creative hypothesis generation. For reasons of space, the analysis in this 
section is abbreviated. 

Curricula and manuals 
Across the four documents, ‘construction,’ as well as ‘constructing,’ ‘constructed,’ and 
a range of synonyms, were used in a wide variety of practical and technical senses. 
Approximately 180 examples were identified. A common sense usage that emerged 
from the coding was that of an activity that can be carried out by users: 

GeoGebra lets you construct dynamic-mathematics figures 
A related usage was that of a thing that was being made or had been made in 
GeoGebra by students or tutors: 

Take turns being in control of the construction. Say what you are doing in the 
chat. 
Use the chat to let people know when you want to ‘take control’ of the GeoGebra 
construction. Use the chat to tell people what you notice and what you are 
wondering about the construction. 
Sliding the history slider shows you previous versions of constructions in the 
GeoGebra tab, so you can review how your group did its work. 

Construction was seen as an activity carried out with tools. For instance, the VMT 
tool has a ‘construction area’ (i.e. the whiteboard area and associated tool buttons): 

Here is how to use these tool buttons. Try each one out in the construction area 
of your own GeoGebra tab. First click on the button for the tool in the tool bar, 
then click in the construction area to use the tool. 

Different uses of ‘construction’ were often combined in the same chunk of discourse, 
for example: 

You can even let someone else take control in your tab to help you construct 
something or to explore your construction. After your group constructs something 
in the group GeoGebra tab, you should make sure that you can do it yourself by 
doing the construction in your own tab. 

A wide range of synonyms was also used to describe actions involved in construction, 
for example: 
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Use the Compass to draw a circle whose radius is equal to the distance between 
two points and whose center is at a third point. First click on two points to define 
the length of the radius. 
Then without releasing the cursor, drag the circle to the point where you want its 
center to be. 

A ‘construction’ was often seen as the goal or outcome of an assignment. This usage 
included subsidiary actions, such as creating, dragging, moving, and placing, and 
subsidiary components such as points, lines, segments, rays, and so on. While this 
whole/subsidiary distinction was often observed, there were also places where these 
usages overlapped, for instance where students were expected to construct a figure 
with underlying dependencies. In these cases, a dependency, although part of the 
overall figure, could be referred to in itself as a construction: 

Note: You must construct the dependencies among the objects, (lines and circle), 
not just draw something that looks like this. 
Can you think of any ways you could use the dependency created with the 
compass tool or circle tool to construct  other geometric figures or relationships? 

Finally, where one task of the assignment was to come up with a component, this 
could also be referred to as a construction. For instance, a segment – if it was the 
outcome of an assignment – could be constructed: 

Challenge: Construct a segment DG along ray DE, whose length is equal to the 
sum of the length of a radius AB of a circle plus the length of a segment BC 
connecting two points on the circumference of the circle. 
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Interface and assignments 

 
Figure 3. An example of an assignment 

The project manuals (previous section) are useful documents, but students may not 
always read them, and their first encounter with VMT is often through the tool 
interface. The interface includes several interrelated functional elements, including a 
whiteboard area in which students can construct dynamic geometry figures with a 
range of tools, a chat window where they can communicate with other students in 
their group, and a list of users currently online. Often included in the whiteboard area 
are informational graphics related to the assignments. The content and format of the 
graphics varies, but they can be seen as summaries of the description of the 
assignment in the manual, consisting of a few sentences, step-by-step instructions, 
and figures (see Figure 3). Graphics are sometimes posted alongside pre-built 
GeoGebra constructions that students can interact with. The assignments 
summarized in the graphics run from simple tasks that introduce the students to the 
functions and affordances of VMT, to more complex tasks that test students’ 
understanding of dynamic geometry. As a boundary object, the assignment figure 
provides a good reflection and synopsis of the associated course materials, although 
it should be noted that as the description and accompanying figures are succinct 
summaries, they might require further background understanding in order to be 
usefully understood (such understanding as is, for instance, provided in the extended 
explanations in the accompanying manuals). The graphic illustrated in Figure 3 was 
presented to students in Session 3 of the Fall Fest of 2013, in which the students had 
to construct the perpendicular of a line they have previously constructed, and after 
that to construct a perpendicular bisector through a given point. The word 
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‘construction’ is used in several places in this assignment description, and refers both 
to the construction of various parts of assignment, and the overall goal of the 
assignment itself (the construction of perpendiculars and bisectors). The assignment 
also includes elements of dynamic geometry, where the students are instructed to 
‘drag to make sure your new Line stays perpendicular.’ 

Student chat logs and constructions 
Students use VMT tools to discuss how to approach each assignment, to coordinate 
their use of the whiteboard and tools, and to discuss what they have learned and 
discovered in each session. The system is instrumented to capture the traces of 
student discussion and tool use in GeoGebra. These logs are regularly analyzed by 
project members, both individually, and in collective data sessions. The discussion in 
this section refers to a student session associated with the GeoGebra assignment 
outlined in the previous section. An excerpt from this log is shown in Figure 4, which 
shows (left to right) the event number; the time a student started to write a comment; 
the time the student actually posted the comment; and the comment itself. Because 
of their login names, this student team, who are middle school students, are referred 
to by the VMT project as the ‘Cereal Team’ (sessions by the Cereal team are also 
reported in Çakir & Stahl, 2015, and Öner & Stahl, 2015). 

 
Figure 4. An example of a VMT chat log 

 

Here we can see the three team members, Cornflakes, Cheerios, and Fruitloops. An 
interesting feature of this session is that while the students often referred to using the 
tools, they used the term ‘construction’ relatively infrequently: they used ‘make’ 
fourteen times; ‘put,’ ‘move’ and other related terms seven times; and ‘construct’ only 
twice. For example: 

(17) fruitloops: how do i make the line segment? 
(29) fruitloops: no you dont make a line you make a line segment 
(30) cheerios: i just made the intersecting line and point in the middle 
(50) cheerios: turn line fhg so its easier make it horizontal 
(57) cornflakes: so after construting the line we put the circle on top 
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(63) cornflakes: put point m on tp of h 
(85) fruitloops: you make the points go through qr and then you move h ontop of the 
line 
(28) fruitloops: so now you need to construck points at the intersection (Assignment: 
Construct Points at the intersections) 
(53) cornflakes: now construct the line (Assignment: Can you construct a Line 
perpendicular to FG that goes through Point H?) 
 

Where construction is part of the students’ chat, it seems to be in terms of quoting 
from the assignment. For instance: 

 

 
Figure 5. “You can’t really prove that by looking at it.” 

 

One question that could be asked of the students’ actions here, following Laborde’s 
model of spatio-graphical and theoretical thinking, is: Are they generally making, 
moving, putting, etc., or are they ‘constructing’ in the dynamic-geometrical sense 
intended by the term? The discourse of the students describes various acts of 
manipulation, but there is little explicitly technical reference to any higher order 
dynamic-geometry principles that could be informing the construction. At the same 
time, however, the students also engage in some incipient attempts at proof, even if 
they lack the technical language to describe this in formal terms. This occurs towards 
the end of their session, where Fruitloops makes some suggestions for summing up 
the knowledge gained from the assignment (Figure 5). Here, Fruitloops seems to be 
working towards a distinction between what the students see, what they know, and 
what they should be able to prove, noting that “you can’t really prove that [the line is 
perpendicular] by looking at it,” but rather that the students should aim towards an 
understanding guided by deeper underlying geometrical thinking. 
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Discussion 
One finding from the analysis is that the VMT project team used ‘construction’ and 
related terms in complex ways, while the students used the same terms imprecisely. 
On one level this should not be surprising. At this stage in their learning of dynamic 
geometry, the students do not necessarily have at their disposal the range of language 
and concepts that would enable them to make the rich connections between dynamic-
geometry concepts and practices that the project team does. Further, the students 
seemed to respond literally to the assignment prompts, with the inference that they 
are demonstrating spatio-graphical responses; that is, they are talking about 
constructing without having full knowledge of what this might mean in dynamic 
geometry. 

From the point of view of the evaluation framework proposed in this paper, one 
counter-argument is that the students did in fact develop an understanding of dynamic 
geometry, but that they did not (yet) possess a sophisticated enough vocabulary to 
express this in the same terms as the project team. Towards the end of the session 
described in this paper, and in response to the assignment instruction “Point H is an 
arbitrary Point on Line FG. Can you construct a Line perpendicular to FG that goes 
through H?”, they test hunches by moving the construction around to see if it aligned. 
They appear to be working towards a preliminary hypothesis regarding dynamic-
geometrical proof, even if they do not formally test this, or use the same terminology 
that a member of the VMT team might have used. While from one perspective, this 
may be seen as spatio-graphical behavior, and lining up different figures with no 
regard for why they align, at the same time, these actions can also be seen as nascent 
forms of hypothesis testing based on early understandings of the possibilities for 
proof in dynamic-geometry environments. This has been suggested in other analyses 
of the Cereal Team. Çakir and Stahl (2015) studied another VMT session in which the 
team was instructed to drag previously constructed quadrilaterals, in order to make 
inferences regarding the underlying dependencies and constructions of these 
quadrilaterals. They note: “through an interactive process of calibrating and 
recalibrating their indexical references (Zemel & Koschmann, 2013) to the evolving 
visual configurations witnessed during different dragging performances, the team 
members were able to collectively notice several dependencies among constituent 
elements, describe them in colloquial and semi-formal terms, and produce conjectures 
for the underlying causes of those dependencies.” Similarly, Öner and Stahl (2015), 
who have analyzed the same session described in this paper, but using Sfard’s 
commognitive framework, suggest that by the end of the session the students are 
engaged in working towards a preliminary discussion of proof, even if this is not 
framed in rigorous terms. 

From the perspective of Laborde, the Cereal Team iterated rapidly between spatio-
graphical responses and theoretical reasoning. This rapid iteration and reasoning was 
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supported by the dynamic nature of the VMT tools and the ability to drag, as well as 
by the collaborative affordances of the interface, such as the ability to watch other 
students manipulating constructions in real time, and the chat window for discussion 
of these manipulations. This iteration was productive; while (as the students observed) 
the perpendicular bisector figure may look the same from either a spatio-graphical or 
theoretical perspective, as they interacted with it over the course of the session, the 
students started to specify differences between these perspectives. They began to 
posit proto-rules for evaluating whatever it is that they have been instructed to notice 
in the assignment (constructing a perpendicular bisector), and move from spatio-
graphical reasoning and towards theoretical reasoning. Thus, while their discourse 
consciously reflects at least partly the steps presented in the assignment images and 
texts – and they recognize that following these steps correctly should result in 
achieving the assignment goal – they are also aware that the assignment calls on them 
to provide theoretical accounts beyond those same steps. They recognize that their 
dynamic constructions can be seen both as spatio-graphical assemblages of 
components (points, lines, circles), and also as objects that can be explained in terms 
of more abstract underlying dynamic-geometrical principles. At this stage, however, 
this reasoning is emergent, not least because of the lack of practice with and reflection 
upon dynamic geometry, at least beyond the immediate goals of the assignment. 

Overall, the VMT tools and documentation functioned well as boundary objects that 
reified and externalized the project team’s knowledge for students. This is not 
surprising, given the design-research approach that the project team uses, which 
produces regular ongoing revisions to these artifacts. At the same time, the 
observations, framed within CoP theory, regarding the differences in meaning of 
‘construction’ in both the vocabularies and practices of the project team and the 
students, suggest further topics for investigation in this process. What are the 
ontological grounds that the team and the students bring to their understanding of 
geometry and dynamic geometry? Do the students understand their actions in terms 
of classical geometry, in which they have yet to be formally trained, or in terms of a 
translation of dynamic geometry, or in terms of something else again? Further, how 
do they interpret the affordances of the VMT tools? Do they assume that objects 
move, unless otherwise specified, and if so, what sort of understanding of dynamic 
geometry then emerges? These questions lead to a consideration of how VMT can be 
developed further to support students in theory building and proof. One strategy 
suggested by the evaluation is to continue to refine the boundary objects produced by 
the team (in the form, for instance, of assignment images and texts), and to gain 
further traction with the students’ understanding of what is meant by ‘construction.’ 
A second strategy is to understand further the contribution the connections between 
the collaborative nature of the tools, and the rapid iterations between spatio-graphical 
and theoretical thinking displayed by the students. (Note: this section benefited from 
discussion at the 2014 ICLS workshop Interaction Analysis of Student Teams Enacting the 
Practices of Collaborative Dynamic Geometry; http://gerrystahl.net/vmt/icls2014/.) 
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Conclusion 
A formative evaluation of the VMT project, based on Communities of Practice and 
boundary objects, identified various uses of ‘constructing’ by project members and 
students. For the VMT team, the idea of constructing was constituted within a web 
of dynamic-geometry knowledge, and reified in boundary objects such as instructional 
manuals, assignments, and interfaces. The students drew on these boundary objects, 
developing notions of ‘constructing’ which were more emergent. The evaluation 
recommendations are that the project’s boundary objects should continue to be 
refined, and also that further understanding be gained of what team members and 
students understand by ‘constructing’ and related terms. Overall, the CoP approach 
usefully pulled back the evaluation lens from the tools, and brought into view the 
project as a whole, covering not just technology use, but organizational levels of 
design and implementation. The evaluation design allowed insights to be fed back to 
the project team on an iterative basis, complementing the design-research approach 
of the team. 
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7. Dragging as a Referential 
Resource for Mathematical 

Meaning Making in a 
Collaborative Dynamic-
Geometry Environment  

Murat P. Çakır and Gerry Stahl 

Abstract: This paper focuses on the referential roles played by dragging 
moves on dynamic-geometry representations in a collaborative-geometry 
problem-solving context. Through an interaction analysis of  chat excerpts 
where dragging is used by a team of  students to explore the geometric 
properties of  a given polygon, the paper investigates the role of  dragging 
on the facilitation of  joint mathematical meaning making online. Our 
qualitative findings suggest that the indexical properties of  the dynamic 
constructions are specified and recalibrated through the coordination of  
dragging actions with textual chat, where the two types of  actions mutually 
elaborate each other.  

Introduction 
 

ynamic Geometry Systems (DGS) such as GeoGebra, Geometer’s 
Sketchpad and Cabri offer unique affordances for exploring and making 
sense of geometry (Arzarello et al., 2002; Hölzl, 1996). The visual interface 

provided by such micro-worlds allows students to construct geometric objects by 
using elements of Euclidean Geometry such as points, lines and circles through a 
digital analog of compass and straight-edge constructions. More importantly, the 
object-oriented design of these micro-worlds allows students to dynamically act on 
these constructions by dragging their constitutive elements, which helps them to 
interactively explore the implications of the dependencies within those constructions 
(Stahl, 2013). By developing increasingly more purposeful dragging strategies, 

D 
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students may notice how a family of Euclidean constructions relate to each other and 
whether specific invariants are present in that family of figures (Arzarello et al., 2002). 
Therefore, such dynamic representations can be instrumental in helping students 
develop a deeper understanding of geometry by making otherwise obscure 
ideas/theorems in geometry more accessible. The possibility of testing an invariant 
across a continuum of cases can also help students to develop intuitions for 
generalizations that go beyond the particular construction view at hand (Leung, 2008).  

The nature of the dragging actions through which geometric constructions are 
manipulated and explored, and their role in facilitating students’ understanding of 
geometry concepts have been investigated by several studies in the math-education 
literature (Arzarello et al., 2002; Baccaglini-Frank & Mariotti, 2010; Leung, 2008; 
Lopez-Real & Leung, 2006; Hölzl, 1996). In particular, Arzarello et al. (2002, p.67) 
proposed a hierarchy of dragging modalities that distinguish wandering dragging 
(randomly moving basic points to fish for interesting configurations or regularities in 
the dynamic diagram), bounded dragging (moving a restricted point), guided dragging 
(moves aimed to give the dynamic drawing a particular shape), dummy locus dragging 
(moves that reveal that a point is restricted to move on a specific path), line dragging 
(drawing new points along a line in order to keep the regularity of the figure), linked 
dragging (linking a point to an object and moving it onto that object) and the dragging 
test (moves aimed to test if a particular property of the current shape is preserved). 
These dragging actions are employed by students at different stages of their problem-
solving activity, which provide insights into their reasoning with dynamic 
representations. In particular, wandering and guided dragging are employed during 
exploration/discovery phases, dummy locus dragging often hints at the construction 
of a conjecture, and the dragging test is often used to validate/justify conjectures. 
Therefore, dragging is treated as a key process facilitating the development of 
cognitive structures that bridge perceptual observations with formal accounts of 
deductive reasoning in geometry (Arzarello et al., 2002).  

The focus of the dragging studies reviewed thus far has been on the individual learner 
developing a sense of understanding through his/her interaction with dynamic 
representations. However, acting on these dynamic resources also has a social 
significance, which changes the problem context not only for the actor himself but 
also for collaborators witnessing those actions. At the individual unit of analysis, the 
meaning-making role of the dragging actions may be difficult to investigate from the 
actions themselves or think-aloud protocols. In a collaborative problem-solving 
situation, such actions become resources for joint meaning making, which are acted 
upon, referred to, reasoned with, and questioned in collaborative discourse (Stahl, 
2009). Therefore, such collaborative activities present a perspicuous setting for 
researchers to explore how actions with and around dynamic-geometry objects 
facilitate the development of shared mathematical understanding.  
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This paper focuses on the referential roles played by dragging moves on dynamic-
geometry representations in a collaborative geometry problem-solving context. Our 
interest is motivated by recent CSCL studies that treat collaborative problem solving 
as “discovery work,” in which collaborators work out the indexical details of their 
joint situation by calibrating and recalibrating references to relevant constituent 
elements of their shared task and its evolving solution (Zemel & Koschmann, 2013; 
Koschmann & Zemel, 2011). Indexical expressions refer to those linguistic resources 
whose sense depends on the context of the utterance. Through a process of 
calibrating and recalibrating references to an evolving space of persistently available 
diagrams, participants increasingly specify what those representations mean for them 
as part of an evolving solution account. Referring expressions initially function as a 
place holder for what is currently not known, which gets specified further (i.e., 
thingified) as subsequent actions and references modify their sense in interaction 
(Koschmann & Zemel, 2011). We argue that dragging actions have a similar referential 
role, which facilitates the discovery process with dynamic representations in geometry. 
Through an interaction analysis (Jordan & Henderson, 1995) of excerpts where 
dragging is used to explore the geometric properties of a given polygon, we identify 
the role of dragging on the facilitation of joint mathematical meaning making by 
studying how the dragging is used to increasingly specify the indexical properties of 
the dynamic construction.  

Methods and data 
The excerpts analyzed in this paper are obtained from the Virtual Math Teams (VMT) 
Spring Fest organized by the Math Forum in 2013. The analyzed chat session is part 
of a broader curriculum-development activity including the use of dynamic geometry 
in math classes supported through online collaborative-learning activities in the VMT 
system. The team consisted of Fruitloops, Cornflakes and Cheerios who are female 
students about 14 years old, who have not yet studied geometry. This team completed 
seven hour-long chat sessions of dynamic-geometry tasks in the VMT environment 
before they met for the session from which the excerpts were obtained. In this 
session, the team was given a set of 21 different quadrilaterals and was asked to (a) 
identify their dependencies, and (b) tell how each of them was constructed. The task 
description suggests participants drag the vertices of each quadrilateral to see what is 
special about each one. The GeoGebra application also hints at the presence of 
dependencies/constraints by shading vertices that are dependent on other points. 
Excerpts from this chat session were subjected to interaction analysis to investigate 
the referential roles fulfilled by dragging actions.  

During the session, participants interacted through the VMT environment (Stahl, 
2009), which provides a chat interface with an integrated electronic drawing area with 
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collaborative dynamic-geometry drawing capabilities. The dynamic drawing area is 
based on GeoGebra, a popular dynamic-geometry application. The VMT 
environment allows a group of users to co-construct and discuss shared dynamic-
geometry objects online. Access to the drawing area is managed through a turn-taking 
mechanism, which allows only one user at a time to construct or manipulate dynamic 
objects. The VMT system also supports researchers by providing re-playable logs of 
these sessions for analysis, allowing step-by-step walkthroughs of drawing and typing 
actions that took place during the online student sessions. The excerpts discussed in 
this paper involve manipulation of dynamic objects through dragging moves—which 
is challenging to present in a text document. For that reason, screenshots that capture 
intermediary states of the dragging actions are provided to complement the chat logs.  

Analysis 

Excerpt 1 
The excerpt starts when the team decides to move on to polygon #2 (i.e., EFGH). 
Before exploring polygon #2, the team took turns to explore polygon #1 (i.e., ABCD) 
by dragging each of its four vertices; they quickly concluded that none of the vertices 
had any dependencies (i.e., they are free points). In line 1, Cornflakes announces that 
she will explore polygon EFGH, and then she takes control of the drawing area. 
Cornflakes first drags vertex F. The series of screenshots displayed in Figure 1 shows 
how polygon #2 changes while Cornflakes is dragging point F. Cornflakes drags point 
F up, left, down and then right, tracing almost a complete circle around point E in a 
counter-clockwise direction. Note that points E and H are unaffected by this drag, 
but point G is apparently moving as F is dragged. 
 

1. cornflakes (3:20:26): ill do polygon efgh 
2. cornflakes (3:20:33): takes control of the drawing area 
3. cheerios (3:20:37): just say the number its easier 
4. cornflakes (3:20:40-3:20:50): drags points F (Figure 1), H, D, E (Figure 

2) and G (drags on H, D, and G were not visualized in the figures. D is 
part of another polygon the team worked on prior to EFGH, which is not 
displayed). 

5. cornflakes (3:20:52): releases control of the drawing area 
6. cornflakes (3:21:17): okasy polygon 2 has all points moving except point 

g 
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7. cornflakes (3:21:28): and point g is also a different color 
8. cheerios (3:21:40): do u think it is restricted  
9. cheerios (3:21:44): or constrained 
10. fruitloops (3:21:49):i feel like poly 1 and poly 2 are almost exactly the 

same except that poly 2 had one point that is a lighter shade 
11. fruitloops (3:22:04): can i try moving it? 
12. cornflakes (3:22:17): sure 
13. fruitloops (3:22:25): and @ cheerios , i dont know for sure 

 
Figure 1. Cornflakes drags vertex F counter-clockwise around point E. Each screen shot 
corresponds to different stages of the polygon as F is dragged. The dashed lines are provided 
to aid the interpretation of the dynamic changes enacted by the dragging action. The dashed 
line over E, which was not affected by the drag, is provided as an anchor to aid the visual 
comparison between stages. Arrows show the direction of the drag. 

Next, Cornflakes drags vertex H up and down. Then she begins to drag point 
E. The steps of this dragging action are displayed in Figure 2 below. Point E is slightly 
moved to up-right and then to bottom-left, which did not seem to affect any other 
vertex, except very minor shifts on G’s position. Finally, Cornflakes drags point G. 
Point G is moved up-left and then down-right slightly as a consequence of this 
dragging action. None of the other vertices seem to be affected.  

 
Figure 2. Cornflakes drags point E. Black arrows indicate the direction of the next drag. 

After dragging point G, Cornflakes posts two chat messages (lines 6 & 7), 
announcing that “polygon 2 has all points moving except point g”, and notes that 
point G is also marked with a different color. Cornflakes’ account marks G as 
different from other points based on the claim that all points can move except G, 
even though she has explicitly moved point G during her last drag. The way she 
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formulates her observations from her drags suggests that she is oriented towards 
whether a point can be freely moved or not. Cheerios responds to Cornflakes in line 
8 by asking if she thinks “it” is restricted or constrained. The indexical “it” can be 
read as a reference to point G, since this point was the most salient object mentioned 
in Cornflake’s chat messages besides polygon #2. By explicitly mentioning the terms 
“restricted” and “constrained,” Cheerios invokes relevant terminology that encodes 
specific distinctions among the kinds of points one can make in GeoGebra. Hence, 
Cheerios’ message can be read as an implicit assessment of Cornflake’s account in 
terms of its descriptive adequacy, as well as an attempt to orient Cornflake’s proposal 
towards a more formal account. So, Cheerios’ statements can be seen as a recalibration 
move. Both terms seem to index a kind of limitation in the movement of a point 
based on their dependencies on other points, but the specific distinction encoded in 
this terminology has not been explicitly specified yet.  

Next, Fruitloops posts the message she has been typing while Cheerios’ 
messages appeared in chat, which states that polygon #1 and polygon #2 are almost 
the same except for the point with the lighter shade (line 10). Fruitloops’ account 
seems to be informed by her observation of Cornflakes’ prior dragging moves, and 
makes a visual reference to the color-coding of each vertex. She then requests the 
team’s permission to try moving the polygon on her own in line 11. In line 12, 
Fruitloops responds to the question raised by Cheerios, that she is not sure about the 
restricted/constrained distinction.  

Overall, in excerpt 1, the team seems to be oriented towards how the points 
can be moved around based on the witnessed dragging actions enacted by Cornflakes. 
The team does not mention more specific dependencies among the vertices, as the 
drags are rather minimal and hence have not yet hinted at the more complicated 
structure underlying polygon #2’s construction. The team members seem to be 
oriented towards visually salient features of polygon #2, such as having a point G that 
is lighter in shade. Based on what is revealed by the drags performed by Cornflakes, 
the team seems to endorse the interpretation that polygon #2 is very similar to 
polygon #1 except for the vertex with the light blue shade. Cheerios contributes to 
the discussion by making the concepts “constrained” and “restricted” relevant to 
ongoing interaction as a means to categorize vertices. Yet, it is still not clear how these 
terms should be applied to the problem at hand. 

Excerpt 2 
Fruitloops takes control of the GeoGebra area and begins to manipulate the shared 
dynamic drawing (line 15). Figure 3 shows a chronologically ordered series of screen 
shots from her dragging of point G. The dashed reference lines crossing over point 
E, which remained stationary while Fruitloops was dragging point G, are provided to 
aid the comparison of different stages. Fruitloops’ drag gradually moves point G in a 
circular motion, first in a clockwise and then in a counter-clockwise direction, which 
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is followed by several full circles in both directions. As Fruitloops is performing the 
drag on G, she seems to gradually notice the path that point G is constrained to, 
which is evidenced in the way she moves the vertex back and forth repeatedly in 
clockwise and counter-clockwise directions in this episode (Figure 3). Meanwhile, 
Cheerios requests permission to access the drawing area, which is acknowledged by 
Cornflakes. However, Fruitloops holds onto her turn in the drawing area, while she 
is typing what will appear in line 18, which states, “so point g only moves in like a 
circular motion around point f.” Fruitloops’ account is a reflection on or noticing of 
what has been discovered in the dragging. The message specifies the relationship she 
notices between points G and F without making any reference to more technical 
terms such as restrictions or constraints, but using only colloquial terms or 
descriptions. In the next line, Cornflakes agrees. This is followed by further drags of 
point G around F by Fruitloops, which seem to complement her exposition in line 18 
with an enactment of the verbally described movement pattern. These drags also 
simultaneously verify the proposed relationship, which recalibrates the status of 
vertex G for the group in this context. 

 

14. fruitloops (3:22:42): takes control of the drawing area 
15. fruitloops (3:23:04): drags Point G (Figure 3) 
16. cheerios (3:23:18): ok can i try  
17. cornflakes (3:23:22): sure 
18. fruitloops (3:23:23): so point g only moves in like a circular motion around point f 
19. cornflakes (3:23:35): @fruitloops yea 
20. fruitloops (3:23:50): drags Point G 

 

 
Figure 3. Chronologically ordered screenshots taken while Fruitloops is dragging vertex G.  

In this episode, through her rigorous drags of vertex G, Fruitloops uncovers 
an important property of polygon #2: that vertex G always follows a specific circular 
path around point F. As soon as she gains control of the drawing area, Fruitloops 
starts dragging the point with the lighter shade. Fruitloops’ initial drags on G seem 
rather exploratory, which gradually becomes more orderly and purposeful as she 
notices the constraint imposed on G. While Fruitloops is communicating this noticing 
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to her teammates, she coordinates her actions across both chat and drawing areas in 
such a way that her verbal description in chat can be read in relation to her ongoing 
enactment on the shared drawing. In short, the sequential organization of Fruitloops’ 
actions across both interaction spaces made her point witnessable by her teammates. 
This instance highlights another important aspect of dragging in dynamic geometry. 
The progression of drags from exploratory trials to purposeful demonstrations/tests 
serves both as a public display of an evolving understanding and as a resource for 
communicating abstract visuo-spatial relationships that may be difficult to articulate 
in text. Thus, drags also have a social role in this context, as demonstrable actions 
embodying specific conjectures about dependencies among geometric objects. 

Excerpt 3:  
Following Fruitloops’ demonstration, Cheerios asks about the difference between the 
terms “constrained” and “restricted” in line 23. Cornflakes states that “constrained is 
limited function,” which provides some specificity for one of the terms. In the 
meantime, Fruitloops continues to drag vertices of polygon #2. She first drags point 
H slightly to the bottom. No other point seems to be affected by this move. Next, 
she begins to drag point E (Figure 4). Point E is gradually moved away and towards 
point F, which simultaneously moves point G out and towards point F. Fruitloops 
carefully and slowly drags E around F, which suggests that she is oriented towards the 
relationship among E, G and F triggered by the dragging action on E.  

 

21. fruitloops (3:24:09): drags Point H (Figure 4) 
22. fruitloops (3:24:15): drags Point E (Figure 4) 
23. cheerios (3:24:16): what si the difference between constrained and 

restricted  
24. fruitloops (3:24:17): drags Point G (Figure 4) 
25. fruitloops (3:24:21): drags Point E (Figure 4) 
26. cheerios (3:24:24): is* 
27. cornflakes (3:24:41): constrained is limited function 
28. fruitloops (3:24:46): also when you move e, g moves away or closer to f 
29. fruitloops (3:25:08): so i think g it definitly constrained 
30. fruitloops (3:25:12): drags Point H 
31. cornflakes (3:25:13): yes 
32. cornflakes (3:25:19): i think that too 
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33. cheerios (3:25:25): why though 
34. fruitloops (3:25:31): drags Point,F  
35. fruitloops (3:25:59): and g moves whenever you move point e and f but it 

doesnt move when you move h 
36. cheerios (3:26:20): okay  
37. fruitloops (3:26:31): releases control of the drawing area 

 

 
 

Figure 4. Fruitloops drags vertex E, first towards F, then away from F and then towards it 
again.  

Fruitloops then posts in line 28 that “also when you move e, g moves away 
or closer to f.” This can be read as a verbalization of the recent drag on E, which 
demonstrates the relationship among points E, G and F, where dragging E affects the 
position of G with respect to F. Similar to the previous instances, the verbal 
announcement of the noticed properties immediately follow the dragging actions. In 
line 29, Fruitloops elaborates on the prior message by proposing that G must be 
constrained. This statement also responds to the ongoing discussion of the distinction 
between constraints and restrictions, by proposing point G as an instance of a 
constrained object. In other words, the posting indexes G as a particular instance of 
a constrained point. In lines 31 and 32, Cornflakes concurs with Fruitloops’ 
observation. In line 33 Cheerios posts a message wondering why the proposed 
relationship holds, which problematizes for the whole team the underlying cause of 
the relationship proposed by Fruitloops. In line 35, Fruitloops summarizes her 
observations after performing another drag on F. She states that point G moves 
whenever points E and F are moved, but G does not move when H is moved.  

In this episode, Fruitloops identifies additional key relationships among 
points E, F, G and H through her systematic dragging of these points. She is oriented 
toward observing how each point is influenced by her drags on other points. Through 
initially explorative and progressively deliberate drags, Fruitloops notices that G’s 
position is influenced by moving E or F, but not H. However, her statements do not 
specify the nature of those relationships in terms of concepts such as lengths or angles 
yet. The verbal accounts are primarily characterizations of visual effects triggered by 
drags of different points. Based on the relationships identified between E, F and G, 
Fruitloops proposes that G must be constrained, which provides further specificity 
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to (i.e., a recalibration of) what is referred to by the term “constraint” by proposing 
G as an exemplar (lines 28, 29).  

Excerpt 4 
In line 38 Fruitloops takes up the prior discussion of the distinction between 
constraint and restriction. Fruitloops suggests that G is constrained because it can be 
moved, but the function is limited (i.e., limited to move on a circle around F). Then 
Fruitloops posts a question asking for the definition of “dependant” (sic) in line 40. 
This concept is mentioned in the task description, which asks the team to identify the 
dependencies in each polygon. About a minute later, a chat message from Cheerios 
appears, stating the need for the other line or point: otherwise “it wont work.” In line 
43, Cornflakes agrees and states that some points depend on each other. The 
definitions are rather implicit and ambiguous at this point, but the concept of 
dependence gradually attains its meaning as a kind of connection between two or 
more objects in this exchange.  

 

38. fruitloops (3:26:42): @ cheerios. i think its constrained because it moves 
but the function is limited  

39. cheerios (3:27:36): oh i see 
40. fruitloops (3:27:37): what is the definition of dependant 
41. cheerios (3:28:52): u need the other line or point otherwise it wont work 
42. fruitloops (3:28:54): do you guys have any idea of how this was made? 
43. cornflakes (3:29:15): yeah some points are dependent on others 
44. cornflakes (3:29:43): maybe some invisible circles and the shapes could 

be dependent on thos circles 
45. cheerios (3:30:02): yea maybe like the triangles 
46. fruitloops (3:30:20): maybe because point g only moves in a circular 

motion around point f 
47. cornflakes (3:30:35): but why? 
48. fruitloops (3:30:55): i think it has to do with how it was constructed 
49. cheerios (3:31:03): i agree 
50. cornflakes (3:31:29): YES 
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51. fruitloops (3:31:44): cause eremember how before in the other topic we 
would sometimes use circles to construct stuff and then hide the circles? 
well maybe thiis quad was made using a circle 

52. cornflakes (3:31:58): yeah and one of the points was on the circle 
53. cheerios (3:32:38): yeah that makes sense remember when we made the 

triangle the same thing happened 
54. cornflakes (3:32:43): yes 
55. fruitloops (3:33:10): but i dont really know how it could have been made? 
56. fruitloops (3:33:48): releases control of the drawing area 
57. cheerios (3:34:14): maybe they used another shape instead of circles 
58. fruitloops (3:34:17): do you thinkk point e is the same distance away from 

f as g? 
59. fruitloops (3:34:25): takes control of the drawing area 
60. fruitloops (3:34:26-3:35:02): drags Point G (Figure 5) 

 

In line 42, Fruitloops asks the team if they have any idea how the polygon 
was made. In line 44, Cornflakes proposes that there may be invisible circles 
accounting for the dependencies they have uncovered. In line 45, Cheerios agrees and 
states that this situation is “like triangles.” Cheerios seems to be referring to the team’s 
past constructions during previous sessions, where they used circles to make 
equilateral and inscribed triangles. In line 46, Fruitloops endorses the possibility of a 
hidden circle, based on the observation that G is only moving in circles around point 
F. In line 51, Fruitloops elaborates further by reminding other members about a past 
exercise where they used a circle as part of a larger construction and then hid it from 
view by making it invisible in GeoGebra. In line 57, Cheerios proposes the possibility 
that the point may even be constrained to an object other than a circle.  

In line 58, Fruitloops solicits other members’ assessment about the 
observations that points E and G are equally distant from point F. Next, she drags 
point G on the GeoGebra board, making circles around point F. Snapshots from 
Fruitloops’ dragging actions are given in Figure 5. Fruitloops slows down when point 
G gets near point E, and drags it back and forth as the two points coincide with each 
other. This drag seems to explore the possibility that EF and FG have the same length. 
This is the first instance where a group member mentioned distance as a way to 
characterize a dependency among a set of points.  
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Figure 5. Fruitloops’ drag on vertex G. G is seen as moving in a circle around F. Fruitloops 
slows down when G is about to move near vertex E. 

In this episode, the team starts to reflect on the relationships uncovered 
between the points, and the terminology that should be used to characterize those 
relationships. The team begins to develop conjectures about possible ways polygon 
#2 might have been constructed. At this time, they relate the observed behavior to 
their prior experiences using circles in earlier sessions. The team seems to agree on 
the idea/conjecture that at least G would be constrained on such a circle. The notion 
of dependence makes its first appearance in the chat, gradually becoming a resource for 
describing how the polygon might have been constructed. In this episode, the team 
makes another key observation regarding the underlying structure of polygon #2: that 
the edges EF and FG have the same length. Fruitloops’ drags of point E around F 
led her to realize that her drags influence the length of EF and FG in similar ways, 
where E and G can even be collapsed onto the same point.  

Towards the end of their discussion of polygon #2, the team discusses how 
the dependencies they had discovered could be implemented in GeoGebra. The 
possibility of using an invisible circle for constraining G and the use of the compass 
tool to define two line segments of the same length are mentioned as possible steps 
in the construction. The team also discusses the order of the construction steps that 
might have been used to produce polygon #2. The proposed steps of the construction 
can be considered as an informal proof account, explaining why the polygon has the 
discovered properties. However, the team disagrees about which point would be 
plotted first, and cannot account for the joint relationship between points E, F and 
G, which precludes them from proceeding further in their joint inquiry.  

Discussion 
Previous literature characterizing dragging moves has primarily focused on how an 
individual learner’s cognitive processes are shaped through interaction with dynamic 
representations, without emphasizing the social and practical significance of such 
actions. In this paper, we underlined the social-interactional implications of dragging 
actions in a collaborative CSCL problem-solving context. The excerpts analyzed in this 
paper present a detailed view of the lived work of joint reasoning performed by a 
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team of students while they were working together to discover the geometric 
properties of a given dynamic polygon. The team went through a sequence of sense-
making steps, including dragging, noticing, stating in chat, bridging to past meaningful 
experiences of intersubjective shared understanding, and using technical terms like 
dependency. Our analysis of the excerpts suggest that through an interactive process 
of calibrating and recalibrating their indexical references (Zemel & Koschmann, 2013) to the 
evolving visual configurations witnessed during different dragging performances, the 
team members were able to collectively notice several key dependencies among 
constituent elements, describe them in colloquial/semi-formal terms and produce 
conjectures for the underlying causes of those dependencies.  

The progression of dragging performances from exploratory trials to purposeful 
demonstrations serves both as a public display of an evolving understanding, and as 
a resource for noticing and communicating abstract visuo-spatial relationships that 
may be difficult to describe and follow in textual communication. In the excerpts 
analyzed above, the availability of the intermediary stages of dragging actions made 
the reasoning that goes with the unfolding dragging activity witnessable by the group. 
The witnessed unfolding of visual changes served as an indexical ground which (a) 
gave sense to subsequent utterances that refer to the noticed regularities, and (b) 
provided further specificity to technical terms that distinguish relevant geometric 
relationships such as constraints and dependencies by enacting them in the dynamic 
figure. Moreover, the emerging purposefulness of the drags was made evident with 
verbal glosses following an episode of dragging, which accounted for what was there 
to be noticed. Hence, actions in both interaction spaces mutually elaborate each other, 
where (a) drags highlight key relationships and eliminate the need to verbalize every 
complex detail, while (b) verbal accounts direct others’ attention to relevant parts of 
the figure where the regularities can be located.  

The analyzed excerpts also suggest that not all drags are equally effective for noticing 
key geometric properties. This point is supported by a comparison of the dragging 
performances of Cornflakes and Fruitloops, and the subsequent proposals the team 
members had made in the discussion following those drags. Initial drags by Cornflakes 
led to the conjecture that polygon #2 is very similar to #1 (whose vertices had no 
dependencies), except for the vertex that was marked with a different color. Only 
after Fruitloops took over and performed more strategic drags, did the team realize 
that there was more to the underlying geometric structure of polygon #2. In 
particular, the team noticed the following regularities: (a) G moves around F in a circle 
and when G is moved no other vertex moves, (b) when H is moved, no other vertex 
moves, (c) G moves when F is moved, (d) G moves when E is moved, and (f) E and 
G are always equidistant from F.  

The analysis of the team’s work in dragging its figures shows how collaborative 
learning about the nature of geometric dependencies develops gradually through 
hands-on exploration guided by challenging tasks in a computer-supported 
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environment. In the remaining part of their chat session, which is not covered in the 
above excerpts, the team members continued to explore similar polygons by taking 
turns dragging. The dragging strategies developed in the excerpts above were 
appropriated by other members during those explorations. This exemplifies the 
gradual transformation of one member’s public display of dragging-mediated 
reasoning into a shared practice of geometric reasoning for the team. Through 
calibration and recalibration of indexical references that refer to the discovered 
properties of the shared dynamic drawing, team members gradually made sense of 
key geometry concepts as they were enacted by dragging actions on shared figures. 
The affordances of the VMT environment for making the results of intermediary 
stages of drags available for all participants and the way participants coordinated such 
actions with their chat messages were consequential for collaborative meaning making 
online. For this reason, a key design requirement to support collaborative learning in 
CSCL settings should be the inclusion of mechanisms that help participants 
effectively coordinate representational affordances, especially in contexts like 
geometry, where diagrams and concepts need to be closely aligned with each other. 
Likewise, an important part of CSCL methodology should include the analysis of 
discourse and actions as referential components of intersubjective meaning making. 
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8. Collaborative Exploration 
of Geometric Dependencies in 

Dynamic Geometry 

Gerry Stahl, Stephen Weimar, Annie Fetter, Anthony 
Mantoan 

Abstract. The Virtual Math Teams Project (2002-2014) at the Math Forum 
developed a collaborative-learning environment for mathematics, 
combining text chat and a multi-user version of  GeoGebra. It created 
curricular activities aligned with Common Core and provides teacher 
professional development. It has deployed the technology and curriculum 
with groups of  students year after year and analyzed some of  the student 
interactions in micro-detail. Study of  how collaborative learning takes place 
in this GeoGebra-based environment has been used to refine the 
environment and curriculum. Student teams learn how to collaborate, work 
online, use GeoGebra, analyze and construct dynamic-geometry figures, 
think about dependencies among geometric objects and talk about 
mathematics. This presentation demos the approach and shows how 
learning about dynamic-geometric dependencies is displayed in a data 
excerpt. 

Research Context and Problem: Guiding Students 
to Math Cognition 

he contemporary fields of science, technology, engineering and mathematics 
(STEM), in particular, require a mindset that emerged historically within the 
community of ancient Greek geometers (Heath, 1921). For many people, 

learning basic geometry still represents a watershed event that determines if an 
individual will or will not be comfortable with the cultures of mathematical cognition. 
GeoGebra provides a promising tool for supporting transformational mathematical 
thinking.  

T 
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At the Math Forum (www.MathForum.org), we have embedded GeoGebra in 
an online collaboration environment (Stahl, 2009) and converted it to a multi-user 
version (Stahl, 2013), so that groups of students can construct and drag figures 
together, while chatting about what they are doing. To guide student exploration, we 
have developed a cohesive curriculum focused on the construction of figures with 
geometric dependencies (Stahl, 2015b)—for use by student teams as well as in teacher 
professional development. Collaborative GeoGebra is now available for iPad, tablets 
and laptops (vmtdev.mathforum.org). The curriculum is in a GeoGebraBook 
(http://ggbtu.be/b154045), which is not yet multi-user.  

In this paper, we demo collaborative GeoGebra and illustrate how we analyze 
case studies of students engaged over multiple sessions with our online collaboration-
learning environment: multi-user GeoGebra, challenging topics and inquiry pedagogy. 
For the past decade, such analysis of student usage has been driving the iterative 
design of our approach. We want to indicate how student teams under these 
conditions display that they are learning fundamental insights about dynamic 
geometry. 

Theory of Collaborative Dynamic Geometry: 
Group Cognition and Dependencies 
Learning is often conceived as a change in propositional knowledge possessed by an 
individual student. Opening up an alternative to this view, Vygotsky argued that 
students could accomplish knowledge-building or learning tasks in small groups 
before they could accomplish the same tasks individually—and that much individual 
learning actually resulted from the earlier group interactions (Vygotsky, 1930/1978), 
rather than the group being reducible to its members as already formed individual 
minds. Vygotsky conceived the group interactions as mediated by artifacts, such as 
representational images and communication media. More recently, educational 
theorists have argued that student processes of becoming mathematicians or 
scientists, for instance, are largely a matter of mastering the linguistic practices of the 
field (Lemke, 1993; Sfard, 2008). 

Our pedagogical approach emphasizes collaborative learning through discourse 
in small groups (Stahl, 2015c). Carefully designed topics guide student exploration 
and bring in historically developed concepts from the mathematics community. 
Teachers prepare students before sessions and discuss findings and conjectures in 
whole-class discussions after the collaborative sessions. The group cognition (Stahl, 
2006) that takes place in the group work can lead to learning by individual students in 
their zones of proximal learning, based on their joint meaning making and task 
accomplishments. 
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Our curriculum focuses on learning to construct geometric dependencies (Stahl, 2013) 
in GeoGebra, a challenging but important skill. While much classroom use of dynamic 
geometry today merely uses it as a visualization tool, to allow students to drag existing 
diagrams around, the technology has a greater potential: to empower students to 
construct their own diagrams, to build their own dependencies into the objects and 
even to fashion their own custom construction tools. Then they can view Euclid’s 
propositions as guides to designing and constructing their own interesting 
mathematical objects, rather than as impersonal eternal truths to be memorized.  

Research Method: Sequential Interaction Analysis 
The data we collect from hundreds of students using our system each year includes a 
complete record of their interactions, which we can replay just as it appeared to the 
students. We also have detailed logs generated automatically. 

 
Figure 6: The interface of the collaboration environment, showing multi-user GeoGebra and 
text chat. 

We use methods of interaction analysis or conversation analysis (Jordan & 
Henderson, 1995; Schegloff, 2007), adapted to our online math-education setting. 
This looks at how student groups engage in shared attention, joint representation and 
intersubjective meaning making. Although we recognize that processes at different 
levels are inextricably intertwined in reality, we focus methodologically on the group 
unit of analysis, which is where individual learning, group becoming and community 
practices are often most visibly displayed (Stahl, 2015c). 
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Findings: Collaborative Learning of Dynamic 
Geometry Core Principles 
In our case study for this presentation, three 14-year-old girls engaged in our 
environment for eight hour-long sessions (Stahl, 2015a). In their sixth session, they 
worked on the problem shown in Figure 1, constructing inscribed squares. They had 
previously solved the challenge of constructing inscribed triangles, but had never 
constructed a square. We follow their explorations, which led to an elegant 
construction of a square. They were then able quickly and collaboratively to construct 
the inscribed squares, based on their previous experience with inscribed triangles. 
They displayed their group and individual learning through their GeoGebra actions, 
text chat and building on each other. They explicitly discussed the need to construct 
various geometric dependencies to accomplish this task. 

Conclusions: Designing an Integration of Software, 
Curriculum and Practices 
The Virtual Math Teams (VMT) Project (http://gerrystahl.net/vmt) at the Math 
Forum (www.MathForum.org) has been researching the integration of: an online 
collaboration environment, multi-user versions of GeoGebra, sequences of curricular 
units, data analysis methods and pedagogical approaches for over a decade. We now 
believe that a collaborative approach to dynamic geometry can support the learning 
of core components of mathematical cognition. Our approach integrates online 
software (for all browsers on computers, tablets, iPad), student-centered collaboration 
(with text chat), teacher orchestration of student teams and a carefully scripted 
sequence of curricular units (emphasizing exploration, reflection and group 
mathematical discourse). The curriculum is aligned with Common Core standards and 
focuses on the mathematical notion of dependency and techniques for constructing 
dependency in GeoGebra. Dependency is central to dynamic geometry, to deductive 
thinking and to student understanding of explanatory proofs. The dependencies 
constructed with GeoGebra tools—often following Euclid’s procedures—result in 
figures with desired invariants. We have shown that even young students in groups 
can begin to understand, analyze, design and construct dynamic-geometric 
dependencies with GeoGebra. 

The tablet version of multi-user GeoGebra with chat has just become available 
(vmtdev.mathforum.org). Teachers and groups of students can use it for free. A set 
of 50 GeoGebra activities (in a GeoGebraBook: http://ggbtu.be/b140867) 
introduces student teams to the role of geometric dependencies in exploring, 
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articulating, creating and explaining dynamic-geometry figures and relationships—
within a gaming-like context of sequenced challenges. 
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9. Working Group: 
Developing Comprehensive 

Open-Source Geometry 
Curricula using GeoGebra 

Gerry Stahl, Stephen Weimar, Annie Fetter, Anthony 
Mantoan 

Abstract. Imagine combining the best characteristics of  your favorite new 
geometry textbook with GeoGebraTube. It would cover all the material 
required for your ideal version of  a full course on geometry, easily accessible 
and usable by teachers and students. However, it would also be free, flexible, 
up-to-date, easily revised and downloadable as needed by teachers and 
students. It would include activities tested in diverse classrooms, reviewed 
by teachers and flexibly adaptable to different languages, cultures or 
pedagogical preferences. Perhaps most importantly, it would take full 
advantage of  GeoGebra for a dynamic, hands-on, visual, drag-able, 
constructible, personalizable exploratory-learning approach to geometry. 
The currently missing piece for moving GeoGebra into the center of  
contemporary mathematics education is the availability of  comprehensive 
curriculum aligned with standards. GeoGebraTube provides a medium for 
shared resources, but requires coordinated efforts to develop model 
curricula and an interface for flexible, collaborative usage. 

Working Group Goal 
he goal of this working group is to stimulate development of comprehensive 
geometry curriculum centered on student use of GeoGebra. This will support 
the use of GeoGebra by geometry teachers around the world by helping them 

to integrate student use of GeoGebra into their classroom activities, enhancing the 
pedagogy. This working group is only intended to start the process. Perhaps it will 
stimulate people thinking seriously and strategically about possible approaches and 

T 
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put them in contact to pursue next steps. Success with basic geometry could provide 
a model for other areas of mathematics. 

Problem Statement 
While some new textbooks and the US Common Core standards recommend use of 
dynamic-geometry environments to “provide students with experimental and 
modeling tools that allow them to investigate geometric phenomena,” they put the 
burden on the teacher of realizing this in the classroom. However, curriculum 
development and the construction of the corresponding well-designed GeoGebra 
files is a sophisticated and time-consuming task. Teachers have neither the time nor 
the resources to do this on their own for a whole course on geometry. They need well 
worked out curricula that they can choose from and adapt to their local needs. 

Curricular items are currently made available through GeoGebraTube. However, 
that software does not support the assemblage of comprehensive, well-organized and 
easily adapted curricula. Nor does it support collaborative usage by student teams. 
GeoGebraBook can be a first step, but more is needed. 

Curriculum in GeoGebraTube is currently unorganized; it is not systematic or 
comprehensive; it is not tied to progressive pedagogies. The consequence of this is a 
serious under-utilization of the potential of GeoGebra in typical classrooms. Without 
well-tested tutorials and curricula for important topics like construction, proof or 
custom-tool programming, teachers tend to fall back on using GeoGebra for fancy 
visualizations, and students use it to create pretty pictures. The power of dynamic 
geometry to stimulate mathematical thinking and cognitive development of students 
is barely touched. 

Working Group Focus 
This working group will focus on enumerating the major issues and the main tasks 
that need to be addressed initially. The central question is how to support the 
integration of GeoGebra into geometry courses around the world. This includes 
approaches to both collaborative learning in small groups and individual learning. A 
particular opportunity of the Internet-based single-user and multi-user versions of 
GeoGebra is their use by online schools and for networking home-schooled students 
or students in countries with dispersed populations. Although intended to be useful 
for students world-wide, the curriculum might be aligned with the US Common Core 
standards as a framework. Although it is not necessary that GeoGebra be used for 
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every aspect of school geometry or other math courses, the target curriculum should 
support a strategic, systematic approach to the aspects that it does address. 

Background Information 
The Virtual Math Teams (VMT) Project (2003-2014) developed an online 
environment for collaborative dynamic geometry using a multi-user version of 
GeoGebra and text chat. (Stahl, 2006; 2009; 2013). It developed an associated mini-
curriculum focused on collaborative learning of construction of geometric 
dependencies. This curriculum has been tested and revised each year. A version is 
now available as a GeoGebraBook (Stahl, 2015); it focuses on developing an 
understanding of how to construct geometric dependencies based on the beginning 
of Euclid’s Elements and explores many notions recommended by the Common Core 
for middle school. This active book lets students work on 50 individual challenges in 
GeoGebra. Unfortunately, it is not multi-user, it is not persistent, there is no chat and 
it is not instrumented for researcher analysis, student learning analytics or teacher 
supervision. 

An earlier project, the Teachers Curriculum Assistant (TCA) designed in 1994, 
explored the possibility of searching and browsing a database of curricular materials 
even before the Web existed (Stahl, 2006, Ch.1; Stahl, Sumner & Owen, 1995). It 
focused on five principles for a shared repository of constructivist educational 
resources, which could be applied to GeoGebraTube as follows: 

1. Carefully structured summaries (meta-data) of the resources must be defined 
(when they are uploaded) and maintained, to support search. 
(GeoGebraTube begins to do this.) 

2. The search process should be supported through a combination of query and 
browsing tools that help teachers explore what is available. (GeoGebraTube 
provides a simple search.) 

3. Adaptation of tools and resources to teachers and students is critical for 
developing and benefiting from constructivist curriculum. (GeoGebraTube 
allows editing, but not versioning.) 

4. Resources must be organized into carefully designed curricular units to 
provide developmental learning sequences. (GeoGebraTube has tags and 
Books, which are a start for this.) 

5. GeoGebraTube should be a medium for sharing and combining curriculum 
ideas, not just accessing them. (In GeoGebraTube, “sharing” is just sending 
a link through social media.) 

The following components of TCA were designed: a Profiler, Explorer and 
Versions (see first figure below) as well as a Planner, Editor and Networker (other 



Essays in Collaborative Dynamic Geometry 

      

131 

figure). They are suggestive of useful functionality. These allow curriculum developers 
and teachers around the world to search for resources, try them, edit, annotate and 
store new versions. They also facilitate the aggregation and structuring of coherent 
sequences of curricular resources into course modules adapted to local needs of 
specific countries, schools, teachers or students.  
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A MOOC Model for Collaborative GeoGebra 
Massive Open Online Courses (MOOCs) and sites like Khan Academy provide useful 
educational resources, but they generally involve passive watching of video lectures, 
rather than engaged social learning. The VMT approach suggests a collaborative 
model, integrated with local classrooms and teachers. GeoGebra Institutes can 
provide teacher professional development in the proposed curricula. Then teachers 
can adapt the curriculum to integrate with their courses. Teachers organize small 
groups of their students to work collaboratively on GeoGebra curriculum, motivating 
each session in advance, then sharing group findings in whole-class discussions. The 
teachers guide the exploratory-learning trajectory and manage the grading (with 
automated support from the software). This overcomes the problems of MOOCS, 
takes advantage of large-scale resources and supports local mathematics education. 

Discussion Structure 
The author team will begin by (a) motivating and illustrating the topic with the 
example of the VMT Project, its pedagogical approach to exploratory collaborative 
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learning, and its sample GeoGebraBook curriculum. It will then (b) facilitate open 
discussion, starting with the questions and topics listed below. Finally, there will be 
(c) a wrap-up enumerating priorities, next steps and potential participants. 

• How can comprehensive curriculum advance teaching and learning with 
GeoGebra?  

• What new features should be designed into GeoGebraTube and GeoGebraBook 
to support meta-data, searching, browsing, adapting, annotating, reviewing, 
linking etc.? 

• How should GeoGebra Institutes be involved? Should there be a form of 
MOOCs? 

• Can curriculum be designed to support and assess both collaborative learning and 
individual learning? 

• How can teachers be supported to adapt curricular units to their classrooms and 
how can they be involved in evolution of the materials? 

• How can examples of teacher approaches, student work, assessment instruments, 
etc. be integrated into the materials? 

• What resources are currently available and what further resources—such as 
research funding—should be sought? 

• Who is interested in collaborating in further work on this? 

References 
Stahl, G. (2006). Group cognition: Computer support for building collaborative knowledge. 

Cambridge, MA: MIT Press. Web: http://GerryStahl.net/elibrary/gc.  
Stahl, G. (2009). Studying virtual math teams. New York, NY: Springer. Web: 

http://GerryStahl.net/elibrary/svmt.  
Stahl, G. (2013). Translating Euclid: Designing a human-centered mathematics (paperback & 

ebook ed.). San Rafael, CA: Morgan & Claypool Publishers. 221 pages. Web: 
http://GerryStahl.net/elibrary/euclid.  

Stahl, G. (2015). The construction crew game. Web: http://ggbtu.be/b154045. 
Stahl, G., Sumner, T., & Owen, R. (1995). Share globally, adapt locally: Software to 

create and distribute student-centered curriculum. Computers and Education. 
Special Issue on Education and the Internet. 24(3), 237-246. Web: 
http://GerryStahl.net/cscl/papers/ch05.pdf. 

 



Essays in Collaborative Dynamic Geometry 

      

134 

Notes 
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