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Introduction

students from a stylus-and-clay-tablet corpus of historical theorems to
a stimulating computer-supported collaborative-learning inquiry
experience.

f I \ranslating Euclid reports on an effort to transform geometry for

The origin of geometry was a turning point in the pre-history of informatics,
literacy, and rational thought. Yet, this triumph of human intellect became
ossified through historic layers of systematization, beginning with Euclid’s
organization of the Elements of geometry. Often taught by memorization of
procedures, theorems, proofs, geometry in schooling rarely conveys its
underlying intellectual excitement. The recent development of dynamic-
geometry software offers an opportunity to translate the study of geometry
into a contemporary vernacular. However, this involves transformations
along multiple dimensions of the conceptual and practical context of learning.

Translating FEuclid steps through the multiple challenges involved in
redesigning geometry education to take advantage of computer support.
Networked computers portend an interactive approach to exploring dynamic
geometry as well as broadened prospects for collaboration. The proposed
conception of geometry emphasizes the central role of the construction of
dependencies as a design activity, integrating human creation and
mathematical discovery to form a human-centered approach to mathematics.

This book chronicles an iterative effort to adapt technology, theory,
pedagogy, and practice to support this vision of collaborative dynamic
geometry and to evolve the approach through on-going cycles of trial with
students and refinement of resources. It thereby provides a case study of a
design-based research effort in computer-supported collaborative learning
from a human-centered informatics perspective.
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Chapter 1. Vision: The

Cognitive Potential of

Collaborative Dynamic
Geometry

Chapter Summary

This opening chapter provides an overview of the book.
It suggests that an approach to collaborative dynamic
geometry can be designed to transform the teaching of
Euclidean geometry from a rigidified procedural
approach based on memorization of authoritative texts
to a human-centered exploration of a foundational
source of informatics and rigorous thinking. It
introduces a research project to explore the proposed
translation of geometry education. This example of the
redesign of a subfield of human-centered informatics
involves multiple inter-related dimensions, including
cognitive history, contemporary philosophy, school
mathematics, software technology, collaborative
learning, design-based research, CSCL theory,
developmental pedagogy, and scaffolded practice.

geometry into the contemporary vernacular of social networking,

computer visualization, and discourse-centered pedagogy? The birth
of geometry in ancient Greece and its systematization by Euclid played an
important role in the development of deductive reasoning and science. As it
was translated and refined over the centuries, however, geometry lost some
of its cognitive power and its very nature became obscured. Recently,
computer-supported versions of dynamic geometry have been developed,
which afford visualization, manipulation, exploration, conjectures about
constraints and construction of dependencies. Particularly within a context of

I I ow should one translate the classic-education approach of Euclid’s
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computer-supported  collaborative  learning, a  dynamic-geometry
environment may be able to facilitate the experience of mathematical insight
and understanding that was traditionally the hallmark of geometry.

How should one translate the
classic-education  approach  of
Euclid’s  geometry  into  the
contemporary vernacular of social
networking, computer visualization,
and discourse-centered pedagogy?

The Virtual Math Teams (VMT) Project is pursuing a research-based
approach that integrates design of technology and pedagogy with research
into their effectiveness in actual practice. Focusing on the core elements of
collaborative dynamic geometry that are now within reach, it operationalizes
social networking as online collaboration, computer visualization as
exploration through dynamic dragging and dynamic construction, and
pedagogy as discourse about dynamic dependencies.

The effective path for translating Euclidean geometry is not apparent. The
original inspiration of the geometric enterprise is lost behind layers of
distortion and concealment, and cannot be retrieved in its historical form. The
path of reinvention—following a design-based research approach—involves
countless cycles of trial and error, with evolution of a new model guided by
careful analysis of intermediate effects and bursts of technological invention.
Above all, students must be supported in the disruptive learning process that
can break them free of the restrictive practices of traditional schooling. They
will need a variety of learning resources to aid them in developing new
collaboration practices and math practices.

This book presents an argument about computer-supported collaborative
learning of mathematics that has grown out of an on-going research agenda.
It incorporates a number of specific investigations written during the current
research phase and extends them as part of an integrative reflection that
became much more than the sum of its individual contributions.

The purpose of this volume is to set out an argument that was too complex to
be spelled out persuasively in a conventional conference paper, journal article,
or book chapter. The argument builds on historical and philosophical
background as well as empirical evidence and analysis. It requires the reader
to be transported along a path of imaginative vision and conceptual discovery,
leading to a new perspective on educational research. The turns of this path
have only recently emerged from the work reported in this publication.
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In particular, the argument for the importance of teaching students to design
their own dynamic-geometric constructions translates the focus on
dependencies from mathematical theory to classroom practice and the
analysis of interactional resources supports that by providing a conceptual
perspective on how to present collaborative dynamic mathematics. Spanning
both these themes, the ontology of creative discovery points the way to
transform our thinking into a human-centered informatics.

Much focus and clarity about these themes was achieved in the translation
from focused discussions, reports on individual trials or topical essays into
the genre of a more integrative volume.

Translation

The term “translate” has multiple meanings. Within geometry, it is a
technical term meaning to move an object a certain distance and direction,
perhaps indicated by a vector of a given length and orientation (see Figure
1-1). As a form of rigid transformation, the translation of an object should
result in an object precisely congruent with the original object—that is
retaining the same length and angle measurements.

Within linguistics, translation moves a text from one language into another,
presumably without changing the message. As geometry has been transported
through the epochs of history, its texts have been translated from language to
language. In these translations, the social practice of geometry and the
understanding of its texts have, however, changed—with weighty intellectual
consequences.

The principles of hermeneutics (Gadamer, 1960/1988)—which study the
effects on interpretation of shifting historical horizons and linguistic
reformulations—teach us that we cannot hope to remove bias and
misunderstanding by returning to some purported original meaning, but must
reinterpret within our own situation, taking into account the history of a text’s
effects. Therefore, we must return to the murky origins of geometry and trace
the broad outlines of the subsequent evolving traditions of geometry study.
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Then we must carefully design a revised approach, based on findings of
research specifically targeted to this aim.

The attempt discussed in this book to work out a vision of geometry education

Figure 1-1: Translating from the era of the clay tablet to the age of the
digital tablet.

that is human-centered has been underway for a decade. It follows an iterative,
evolving approach of design-based research, which never really reaches an
end-point. Along the way, it involves many collaborators, a variety of
disciplines, and an assortment of concepts. Necessarily interdisciplinary, the
project implicates many dimensions, corresponding to various academic
fields, addressed in the different chapters of this book. Moving between
chapters, the discussion is translated from one conceptualization to another.
Table 1-1 may help to keep track of the key terminology used in each chapter.
The terms in different rows generally indicate distinctions between levels of
analysis.
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Table 1-1: Dimensions of translations from chapter to chapter.

Ch2 Ch3 CH4 Chs Ché Ch7 |Ch8 Ch9 Ch10 Ch 11
historical |cognitive |mode of | resource unit of activity |meaning techniqu |mode of  |mode of
era level creation analysis e learning  |being
Platonic  |individua |visualize |dynamic individual |explore |interpretation |inquiry |observatio |presenc
Idea | dragging n e
cognition

learner  |group  |represen [dynamic small make [intersubjectiv |design |discourse |co-
co- cognition |t construction |group sense |e shared presenc
creation understandin e

9
systemati [social  |define |dynamic communit |establis |member proof knowledge |math
c practice dependencie |y h methods, building  |content
procedura S definitio |math
| corpus n practices,

resources

Following an overview of the argument in Chapter 1, the historical origins of
the discipline of geometry—as defined in school mathematics—is reviewed
in Chapter 2. Here we see that the discoveries of geometry were conceived as
involving objects and truths from a Platonic realm of Ideas, rather than as
results of human creative inventiveness. This was further reified into a
systematic corpus of propositions and procedures to be memorized. A review
of philosophical reflections on this history in Chapter 3 indicates that, in
parallel with this reification, an ideology of individualism held sway, which
focused on mental phenomena of individuals to the exclusion of cognitive
processes at the group level and of social practices at the community level.
Collaborative learning is viewed as an antidote to the traditional fixation on
the individual.

The approach of dynamic geometry suggests a focus on dependencies among
geometric objects as a key to learning and understanding geometry. This is
presented in Chapter 4, where one can see the importance of visualizing
geometric configurations, representing relationships among the constituent
parts and defining dependencies among objects. Then Chapter 5 describes the
dynamic-geometry software in terms of its three primary functions: dynamic
dragging, dynamic construction, and dynamic dependencies.

In order to support a collaborative-learning approach to the use of dynamic
geometry, the GeoGebra (www.geogebra.org) software application was
integrated into the Virtual Math Teams (VMT) collaboration environment. As
described in Chapter 6, this involved significant technical changes to make
GeoGebra multi-user, so teams of online students could work together on the
same constructions and discuss what they were doing. Rather than geometry
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tasks being done by individuals, they could now be accomplished by small
groups; the results of the group work could then be shared in a larger
classroom and be compared with accepted results in the school-math
community. Chapter 7 provides several interaction analyses of such work:
Individuals on a team each explore a problem by dragging points; the group
makes sense of what is observed; and they are then able to explore
dependencies through construction and to relate their group understanding to
canonical definitions.

Chapter 8 proposes a theory of how the levels of individual cognition, group
cognition, and social practices can be connected by boundary-spanning
resources: linguistic expressions, graphical representations, software tools,
mathematical objects, etc. The primary resources for dynamic geometry
involve the practices of dragging, construction, and determining
dependencies. These resources may take the form of social practices that are
taught, group practices that emerge during collaboration, or individual skills
that develop through guidance and collaboration with others. While
individuals must interpret for themselves what takes place in the group, the
centerpiece of collaborative learning is the creation of intersubjective shared
understanding at the small-group level.

Given the math content, collaborative technology, and theory of resources,
how can effective pedagogy be designed? Chapter 9 reviews the multiple
dimensions that have to be kept in mind for supporting teams of students, who
must simultaneously deal with learning dynamic geometry, interacting online
with peers and using new technologies. This includes supporting student
inquiry, the design of geometric figures and the explanation or the proof of
results. Then Chapter 10 presents sample topics to guide virtual math teams
in exploring the basics of collaborative dynamic geometry. In the current
phase of the VMT Project, this approach is being tried in a number of schools,
in collaboration with teachers who received professional development
training for this. Analysis of student interactions looks at how groups are
observing dynamic figures, engaging in productive mathematical discourse
and building geometric knowledge. As Chapter 11 discusses, this is part of
the design-based research process in which multiple stakeholders engage in
frequent trials to advance technology, theory, pedagogy, analysis, and other
aspects of the research. Integration of the manifold aspects is important. The
activities designed for students must balance maintaining their individual
presence as involved in the mathematics, supporting their co-presence in
working collaboratively and relating to valuable content of the field of
geometry.
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That is the book in a nutshell. The rest of this chapter foreshadows each
chapter in somewhat more detail.

The Classic Potential

A small community of geometers in ancient Greece established a set of
discourse practices and inscription methods that defined subsequent literate
rational thought in the West. Since the golden age of Greece, geometry and
rationality have gone through many transformations. To approach the
question of what form mathematics education should take in the 21* century,
it is helpful to first understand what took place historically to allow geometric
reasoning to unfold as an early form of rational thinking.

A cognitive history of this accomplishment is documented in Netz (1999).
Latour (2008) reviewed Netz’ analysis and suggested some of its significance.
According to Netz, the discourse of the early geometers involved innovations:

(1) In physical inscription technology,
(i1) In specialized textual forms and
(iii))  In the communication and memory of propositions.

These emerged within the intellectual ferment of ancient Greece, although
somewhat at the periphery of that society.

The inscriptions. Using very primitive technology—ephemeral sketches in
the sand and more persistent and portable diagrams inscribed on papyrus,
wood, wax or clay tablets—Euclid’s predecessors constructed intricate
geometric figures using just straightedge and compass. The diagrams
(graphical drawings representing the ideal geometric figures) consisted of
points, line segments and arcs or circles. Construction sequences were used
to establish dependencies among the components of constructed figures.
Importantly, components were labeled with letters. The labels allowed
accompanying texts to reference specific components, thus providing a clear
visible connection between the elements of the inscription and specific
statements in the text.

The texts. The textual discourse of the early geometers consisted of a highly
stylized, formulaic language. The language of geometry was derived from
everyday written Greek, but required specialized training to be used. The
language was geared to stating parts of propositions and proofs, such as the
statement of given conditions, or well-known propositions that contributed to
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the proof, or steps of construction and of proof conclusions. Presentations of
geometric propositions consisted primarily of proofs with their accompanying
labeled diagrams.

The propositions. In addition to mastering the inscription and discourse
practices, a mathematician had to be very familiar with the corpus of
established propositions. The knowledge of these propositions was probably
passed down through apprenticeship in small, distributed communities of
geometers. Only later, Euclid compiled the theorems systematically,
providing a persistent and literate basis for this knowledge, which spread
around the world for thousands of years. Originally, geometry was a hobby
of aristocrats with the time to concentrate on the mastery of a challenging
task.

The content of geometry—definitions of basic geometric objects, common
notions, logical equivalencies, postulates, and previous propositions—was
assumed in the presentation of proofs. Also implicit in the geometric texts
was a practice of rational thought, which made the proof persuasive as
necessarily true. That is, for instance, that the truth of a theorem was not
dependent upon the particularities of the diagram, the construction process,
the set of referenced theorems or the text of the proof. Rather, the diagram,
construction, propositions, and argumentation were merely means for
bringing the reader to a transcendent mathematical truth. Geometry invented
the sense of “apodictic” or deductive truth: a form of truth that was evidenced
by the procedure of the geometric proof.

While we know very little about the people who developed geometry in the
5™ and 4™ centuries BCE, we can try to imagine the intellectual effort that was
required. Geometry was probably practiced by a small number of aristocrats
scattered around the Mediterranean. Although individual proofs were
circulated with labeled diagrams and proof texts, the comprehension of each
new proof required accurate memory of a growing corpus of previous proofs,
which the new proof relied upon in various ways. The text of the proofs was
in Greek, but in an arcane written version of the everyday spoken language.
Proofs could be quite involved and demanding, but the written language made
them even harder to parse, as written words were not then separated by spaces.
The language of geometry was a spin-off of the early stages of written
language using an alphabet. It is striking that the use of the alphabet to label
geometric objects was so powerful that mathematicians still use Greek letters
in their diagrams.
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“At the age of eleven, [ began
Euclid, with my brother as my tutor.
This was one of the great events in
my life, as dazzling as first love. [
had not imagined that there was
anything so delicious in the world.”
— Bertrand Russell

Geometry represented a towering intellectual accomplishment in the history
of human society and has provided a profound inspiration ever since. It
defined and epitomized logical argumentation and rational thinking—even
providing the template for the earliest philosophic reasoning. Throughout
history, mathematicians and philosophers have cited their first experiences
with geometry as pivotal for their intellectual careers. The study of geometry
long provided a cornerstone of a classic education: a training ground for
rigorous thinking. In particular, the experience of the Eureka moment of
insight into the key connection in a geometric proof seems to have inspired
people for millennia.

The Failed Potential

Unfortunately, geometry is not so often experienced as an exhilarating
activity by most students today. Many people say that they dislike
mathematics, they are not good at it, and they prefer to avoid the challenges
that it presents. They have either not had the experience with geometry that
mathematicians praise or they have not valued it in the same way. Of course,
the fascination with geometry as an exciting way of thinking has probably
never been widespread in the population at any time. However, it seems that
the way that it is commonly presented in school misses much of the impetus
that was there at the start. Let us see how that could have come about and
consider how we might regain the original excitement in a way that is
appropriate for our times.

A major watershed in the history of geometry was the organization,
systematization and cataloging of the propositions and their proofs. As long
as the core knowledge of the known propositions relied on word-of-mouth
apprenticeship and the circulation of occasional documents, access to this
knowledge was limited to a small number of people who had the time and
passion to devote to this study. Eventually, there were attempts to support the
learning of geometry by compiling volumes of proofs and organizing them so
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that they built on each other sequentially. The most important of these efforts
was Euclid’s Elements (300 BCE/2002). His set of volumes began with a list
of important terms and assumptions, making explicit some of the tacit
knowledge that had been passed down among the early geometers through
personal demonstration.

By reading a sequence of the assembled proofs, one could gain proficiency in
the geometric practices. This facilitated the dissemination of geometry.
Consequently, the compilation by Euclid was widely circulated through the
centuries and translated into various languages. In the process, the
presentation was reinterpreted in keeping with the different cultures (e.g.,
Roman) and languages (e.g., Latin). It became increasingly formalized and
procedural.

Reading an edition of Euclid’s Elements was considered a cornerstone of a
classic education until the era of public education. Throughout Western
history, more people have read Euclid’s book than any other book, except the
Bible. Contemporary geometry textbooks for high school can still be seen as
variations on Euclid. During the intervening 2,300 years of codification, the
practices of geometric discourse, inscription, labeling, construction, and proof
have lost much of their cognitive freshness. Not all students of geometry still
experience the sense of rational necessity as an exhilarating discovery.

A number of prominent philosophers of the 20™ century have identified broad
intellectual changes, of which what happened with geometry could be seen as
symptomatic. One tendency is for the products of creative human effort to be
treated as eternal, unchanging objects that are not connected to human needs
and activities. Another is to reduce all cognitive phenomena to mental
contents of individuals. Together, these result in an ahistorical and
individualistic view of knowledge and learning. It becomes impossible to
consider geometry as an historical product of a creative community; instead,
this perspective pictures geometry as a set of fixed facts associated with the
individual mathematician, Euclid. The implication for learning is that
individual students have to accept and be able to give back verbatim the
propositional and procedural knowledge of geometry, based on acceptance of
traditional authorities (Euclid, teachers, textbooks). Even proof—which was
a major development of Greek geometry and which should put the path to
determining validity into every student’s hands—becomes a non-creative
procedure to be followed dogmatically.
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The Vision of Potential

To mathematicians since Euclid, geometry represents the archetype of
creative intellectual activity. Its methods set the standard throughout Western
civilization for rigorous thought, problem solving, and argumentation. Many
educators teach geometry in part to instill in students a sense of deductive
reasoning. Yet, too many students—and even some math teachers—end up
saying that they “hate math” and that “math is boring” or that they are “not
good at math” (Boaler, 2008; Lockhart, 2009). They have somehow missed
the intellectual math experience—and this may limit their lifelong interest in
science, engineering, and technology.

Perhaps it is time to re-invent the practices of geometry in the computer age.
This would involve reformulating each of the practices of discourse,
inscription, labeling, construction, and proof. This would not be the first time
that the presentation of geometry has been reinterpreted, but could be a
decisive opportunity for rejuvenating it.

“Euclid alone has looked on Beauty
bare.” — Edna St. Vincent Millay

The vision behind attempting this is that geometry can be turned back into a
creative enterprise. A number of developments have taken place recently that
can contribute to achieving this potential. One is the appearance of dynamic-
geometry software. This software lends itself to a constructivist approach, like
that of Logo (Papert, 1980) in the recent past. Another is the practice of
computer-supported collaborative learning or CSCL (Stahl, Koschmann &
Suthers, 2006) using networked digital devices, which are gradually
becoming broadly available even in schools.

A look at how Euclid’s propositions can be translated into dynamic geometry
reveals that geometric findings do not have to be seen as eternal verities from
some otherworldly realm. They can be seen as the product of visualizing the
problem by exploring it through dragging points of a figure around the screen,
representing relationships among objects by construction and designing the
proper dependencies into the construction. If such a tool is put into the hands
of groups of students working together, perhaps what took place on the shores
of the Mediterranean 2500 years ago can be duplicated around the networked
globe now.

With the development of dynamic-geometry and dynamic-mathematics
software environments like Geometer’s Sketchpad, Cabri, Cinderella, and
GeoGebra, there has been a resurgence of interest in basic geometry around
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the world. The free availability of open-source GeoGebra has resulted in a
burgeoning user community, primarily of math teachers. Although dynamic
mathematics encourages active learning and student construction of meaning,
these technologies have not been designed to support collaboration.

While the importance of collaborative learning for online education may be
obvious to CSCL researchers and its possible advantages have been well
documented in cooperative-learning (Johnson & Johnson, 1989; Slavin,
1980) and CSCL research for decades (Sawyer, 2006), support for
collaboration is still not always designed into new educational platforms. For
instance, the latest hot approach to university instruction—massive open
online courses or MOOCs—are generally based on the lecture paradigm,
where students passively watch talking-head videos of famous professors and
are not given any sanctioned opportunities for interaction with peers.
Similarly, the acclaimed Khan Academy offers thousands of YouTube videos
explaining detailed topics in school mathematics, but students have no
support for interactively exploring the topics themselves or discussing them
with other students. These technological opportunities are generally not
designed to incorporate constructivist learning principles (Bransford, Brown
& Cocking, 1999).

As noted above, the primordial math experience around Greece in 5™ and 4"
century BCE was based on the confluence of labeled geometric diagrams
(shared visualizations) and a language of written mathematics (asynchronous
collaborative discourse), which supported the rapid evolution of math
cognition in a small community of math discourse, profoundly extending
mathematics and Western thinking. Can this Greek model of asynchronous
collaborative communities be translated into a vision of computer-supported
collaborative learning?

What if one could today foster stimulating communities of math discourse in
networks of math teachers, in classrooms of K-12 math students and in online
communities? Is it possible to leverage the potential of networked computers
and dynamic math applications to catalyze groups of people exploring math
and experiencing the intellectual excitement that Euclid’s colleagues felt—
refining and testing emerging 21% century media of collaborative math
discourse and shared math visualization to support math discourse in both
formal and informal settings and groupings?

Educators who teach math teachers—and others—have found that many
people teaching K-12 math have had little experience themselves
participating in processes of mathematical exploration and discovery (Krause,
1986; Livingston, 1999; Silverman & Thompson, 2008). It is necessary to
provide teachers with first-hand experiences and to mentor them in guiding
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their students to engage in rich math discourses that go beyond generating
numeric answers to supply math reasoning and to draw conceptual
connections.

The learning sciences have transformed our vision of education for the future
(Sawyer, 2006). New theories of mathematical cognition (Bransford, Brown
& Cocking, 1999; Brown & Campione, 1994; Greeno & Goldman, 1998; Hall
& Stevens, 1995; Lakatos, 1976; Lemke, 1993; Livingston, 1999) and math
education (Boaler, 2008; Cobb, Yackel & McClain, 2000; Lockhart, 2009;
Moss & Beatty, 2006), in particular, stress collaborative knowledge building
(Bereiter, 2002; Scardamalia & Bereiter, 1996; Schwarz, 1997), problem-
based learning (Barrows, 1994; Koschmann, Glenn & Conlee, 1997),
dialogicality (Wegerif, 2007), argumentation (Andriessen, Baker & Suthers,
2003), accountable talk (Michaels, O’Connor & Resnick, 2008), group
cognition (Stahl, 2006) and engagement in math discourse (Sfard, 2008;
Stahl, 2008a). These approaches place the focus on problem solving, problem
posing, exploration of alternative strategies, inter-animation of perspectives,
verbal articulation, argumentation, deductive reasoning and heuristics as
features of significant math discourse (Maher, Powell & Uptegrove, 2010;
Powell, Francisco & Maher, 2003; Powell & Lopez, 1989).

To learn math is to participate in a mathematical discourse community (Lave
& Wenger, 1991; Sfard, 2008; Vygotsky, 1930/1978) that includes people
literate in and conversant with topics in mathematics beyond basic arithmetic.
Learning to “speak math” is best done by sharing and discussing rich math
experiences within a supportive math discourse community (Papert, 1980;
van Aalst, 2009). By articulating thinking and learning in text, students make
their cognition public and visible. This calls for a reorientation of the teaching
profession to facilitate dialogical student practices. It also requires the
development of content and resources to guide and support the student
discourses. Teachers and students must learn to adopt, appreciate, and take
advantage of the visible nature of collaborative learning. The emphasis on
text-based collaborative learning can be well supported by computers with
appropriate computer-supported collaborative-learning software.

The Key Dependency

The key to understanding dynamic geometry is not the memorization of
terminology, procedures, propositions, or proofs. It is dependencies. This is
not a well-recognized fact. Dependency is built into dynamic-geometry
software at its most fundamental technical and conceptual levels. However,
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research on the use of this software barely mentions it and rarely discusses its
key role. Both the research literature and the practitioner research stress the
ability to move—or “drag”—points and other objects around the screen to
observe variations in geometric figures. For instance, Scher (2002), Healy et
al. (1994) and Holzl (1996) focus on dragging, as do most articles on dynamic
geometry written for teachers. There are exceptions, such as Noss et al. (1994)
and Jones (1997), which are concerned with construction, while Jones (1996)
and Holzl et al. (1994) are among the very few who discuss dependencies.
There are also reflections on how dynamic geometry can support thinking
about proofs (deVilliers, 2003; deVilliers, 2004; Hoyles & Jones, 1998;
Laborde, 2000). For a broader review of the literature, including trade-offs on
the different approaches, see Powell and Dicker (2012) and Sinclair (2008).

The key to understanding dynamic
geometry is not the memorization of

terminology, procedures,
propositions, or proofs. It s
dependencies.

Dynamic geometry can be understood in terms of three important activities
that it supports:

(1) Dynamic dragging,
(i1) Dynamic construction and
(iii)  Dynamic dependencies.

Problem solving in this medium generally involves an integration of these
activities. One should explore a problem through dragging to observe
dynamic behavior as objects are varied. Then one should investigate new
arrangements through construction of new geometric figures. The
construction should be guided by the attempt to build in certain dependencies
among the objects, such as that the second and third leg of an equilateral
triangle should be constructed in a way that their lengths are dependent upon
the length of the base sidle—even when the length of the base changes through
dragging.

Experience dynamic geometry

To understand this book, it is necessary to have personal
experience with dynamic geometry. Take a few minutes
now at a computer to try GeoGebra. If you can do this
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collaboratively, discussing each step with a friend, that
would be ideal.

1. First, watch a two-minute video on constructing an
equilateral triangle in GeoGebra, such as the one at
www.youtube.com/watch?v=ORIaWNQSM _E.

2. Then download GeoGebra from www.GeoGebra.org
and open it up.

3. Try the basic geometry tools. Construct a point with
the point tool. Use the move tool to drag it around.
Construct a line segment with the segment tool and drag
it. Construct a circle with the circle tool. Construct a
new point on your line segment and one on your circle;
drag these points. What happens? Move your line to
cross your circle and construct a new point where they
intersect (see point H in Figure 1-2. Can you move your
new point directly or indirectly?

Figure 1-2. Free, constrained, and dependent points.

4. Try to construct an equilateral triangle yourself. Use
the “File” | “New” menu item to clear the work area.
Start with a base side AB. Then draw circles of radius
AB centered on endpoints A and B, respectively.
Construct point C at an intersection of these circles. Use
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the polygon tool to construct triangle ABC. Drag the
vertices—this is the “drag test.” Do you see why the
triangle remains equilateral dynamically? The position
of point C is dependent upon the circles, which are
dependent upon the segment AB.

5. Now download the file inscribe.ggb from
www.GerryStahl.net/vmt/inscribe.ggb or from
www.geogebratube.org/material/show/id/43056.
Follow the directions (as in Figure 1-3.) Drag points A
and D to explore the figure and discover its built in
dependencies. How would you describe the geometry
of this figure?

R Jl{e* L] L3 P O] o] [ ] 0 o
UL |

Drag vertex A of triangle AEC ®
and vertex D of triangle DEF. £\

Think about dependencies / \
you notice and what you U/ \ F
wonder about this figure. x / \

,-"f \'\. {'/, \"\.
Construct a triangle inscribed , ‘u\\ ;.,f' ‘
in a triangle that behaves the 4 N B
same as this one. E

Figure 1-3. The inscribe challenge problem.

6. The challenge is to create a figure like this. Your
version should behave dynamically the same as the
given figure. Use the drag test to see if it does. This is a
challenging problem. Do not worry if you cannot do it
now. You will see later in the book how various groups
figured it out.

32
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7. Hint: You already know how to create the outer
triangle, ABC. Start with that. Construct a point on one
side of the outer triangle. This will be one vertex of the
inner triangle. Can you use the same method to create
the inner triangle? Try it. Does it satisfy the required
dependencies?

The dependencies that are constructed into a figure determine its
characteristics. These characteristics hold even under dragging. Sometimes a
figure might look like it has certain characteristics: a triangle may look
equilateral. However, when a vertex is dragged, it will not remain equilateral-
looking unless the proper dependency was constructed in it. That is why
students are taught to use the “drag test” to make sure that an apparent
characteristic is dynamically valid.

Dragging is easy and fun for students. By comparison, proper construction
can be tricky and frustrating. Designing a figure to have the right
dependencies can be particularly straining. Learning to do dynamic geometry
requires time, concentration, and guidance. Many teachers decide that they do
not have the time in their classroom to help students develop the skills in
construction and dependencies. In fact, often the teachers may not have the
time to develop such skills themselves. Therefore, it is common practice to
provide students (and teachers) with ready-made constructions. Then the
students can just drag points and observe the behaviors. Taking it a step
further, teachers might do the dragging themselves and project it for the
students to watch passively. In such cases, dynamic geometry is largely
reduced to illustrating facts from Euclidean geometry. It may even be
restricted to serving as a teacher’s drawing tool for static, but precise figures.

The vision pursued here for collaborative dynamic geometry is one in which
students work together to develop and apply the skills of dragging,
constructing and designing dependencies. This is not a new vision. It follows
naturally from the availability of dynamic-geometry software—Ilike
Geometer’s Sketchpad, Cabri, and GeoGebra—and collaborative-learning
software. For instance, Gadanidis et al. (2002) wrote a white paper based on
the Knowledge Forum asynchronous collaborative knowledge-building
environment, calling for a synchronous online math environment. Reis and
Karadag (2008) and McDougall and Karadag (2008) proposed methods for
tracking student learning in such a system. The effort described in this book
pursues those goals in a comprehensive way.
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Read today, Euclid’s Elements (300 BCE/2002) in effect provides
instructions for dynamic-geometry constructions. The “elements” of
geometry are not so much the points, lines, circles, triangles and
quadrilaterals, but the basic operations of constructing figures with important
relationships, such as congruence or symmetry. Just as Euclidean geometry
contributed significantly to the development of logical, deductive, apodictic
cognition in Western thought and in the formative minds of many prospective
mathematicians, so collaborative experiences with dynamic geometry may
foster in students ways of thinking about dependencies in the world.

Virtual Math Teams

The Virtual Math Teams (VMT) Project was conceived in 2002 as a way of
providing through the Math Forum an online environment for the
collaborative learning of mathematics. It started out simply using a
commercial text-chat (AOL chat) system and asking small groups of students
to work on the Math Forum’s Problem of the Week together. It has been
growing from that ever since. By 2009, the VMT environment was quite
complex, with Java chat rooms including shared whiteboards, web browsers,
a wiki and social-networking functions. It could thereby support work by
individuals, small groups, and whole classes. Information could be moved
back and forth between these levels. The approach to VMT grew out of
research reported in (Stahl, 2006). A collection of research reports on the
project by team members and international collaborators was then published
in (Stahl, 2009).

The VMT Project is motivated by a belief in the power of collaborative
learning. This belief is founded on a variety of theoretical and empirical
findings:

. Collaborative learning is a foundational mode of learning generally.
Toddlers learn from interacting with members of their immediate
family and with peers—imitating and starting to communicate with
others. Vygotsky (1930/1978) documented how the acquisition of most
human cognitive skills takes place first through collaboration, and only
later becomes an individual mental faculty.

. When one carefully investigates knowledge building, it often takes
place in small-group interactions in which participants build on each
other’s contributions in ways that the resultant knowledge cannot be
attributed to any individual, but only to the group.




Translating Euclid 35

. Collaborative interactions often serve to train the perceptions of
individuals to see something as others see it, that is, in new ways. This
is related to the larger point that collaboration brings together different
perspectives on a topic. The confrontation of different perspectives may
cause productive “cognitive conflict” or otherwise stimulate innovative
resolutions or syntheses.

. Community practices are disseminated and revised as they are taken up
in the concrete collaborative interactions of small groups within the
community.

. In general, collaborative interactions frequently confront problems and
respond to questions, negotiating differences and producing
resolutions.

. In these ways and others, interactions at the small-group level
contribute to making the problem-solving power of a small group more
than the sum of its parts.

After the first trials of the VMT Project with the simple chat tool, it was
apparent that collaborative mathematics required a shared graphical space that
participants could point to. While a generic whiteboard with simple drawing
tools facilitated some impressive collaboration among students, the drawings
were quite primitive. It took too long to make some of the drawings and it was
sometimes hard for the other students to interpret them.

Meanwhile, mathematics software was being widely used in schools. In
particular, many teachers were starting to use Geometer’s Sketchpad or
GeoGebra in geometry classes. Thus, the idea arose to integrate dynamic-
geometry software into VMT in order to provide increased mathematical
functionality.

The integration of two rather complex pieces of software—VMT and
GeoGebra—turned out to be possible, but challenging. GeoGebra had
originally been designed from the ground up for single-users. Creating a
multi-user system involved not only re-thinking the software architecture, but
also re-designing how dynamic geometry should work for groups.

Group Cognition

The VMT Project was closely associated with the theory of group cognition.
That is an approach to the study of collaborative learning and knowledge
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building that focuses methodologically on the small-group unit of analysis. It
uses techniques of interaction analysis to follow group processes of problem
solving and joint meaning making. It takes analytic tools of video analysis
and Conversation Analysis from face-to-face informal conversation among
dyads and adapts them to online, computer-mediated communication about
mathematics in small groups.

Because the VMT Project proceeds by means of constant iterations of trial
and analysis, it was necessary to carry out relatively quick case studies. The
purpose of the case studies was to see what took place in the chat rooms, how
successful interactions were carried out, and what problems arose. In order to
design effective software for supporting the kind of interactions that were
desirable in the project, it was important to understand the nature of such
interactions and the variety of problems that could get in the way. Reliance
on established theories from psychology and education was unreliable, since
they were generally based on face-to-face interaction or on models of
individual learning. The design-based research approach of the VMT
Project—which never reaches a final end-state—is driven by on-going
formative assessments, rather than being confirmed by a summative
assessment. The focus is on understanding how the group interactions and
knowledge building are mediated by the latest version of technology and
pedagogy, rather than on comparing individual learning outcomes before and
after interventions.

Resources Theory

Taken within the context of other theories popular in CSCL, the theory of
group cognition implied a view of learning, problem solving and knowledge
building as taking place on three primary units of analysis: individual, small-
group and community. It appeared that some phenomena of importance to
CSCL took place on one of these levels and some on the others. Different
methods of analysis were applied at the different levels. However, it was also
clear that these three levels were intimately intertwined and influenced each
other in essential ways. For instance, concepts from the highest socio-cultural-
historical levels of mathematical knowledge could be introduced into group
discussions, play a creative role in the meaning making there, and eventually
be internalized into individual skills.

A problem for the project was, on the one hand, to introduce content from the
community level into group-collaborative activity and, on the other hand, to
see that shared intersubjective understanding developed at the group level




Translating Euclid 37

resulted in learning at the individual level. One way to think about this was in
terms of resources (or artifacts or practices), which could traverse the different
levels and thereby provide connections between them.

For teaching dynamic geometry, among the most important resources are the
practices of dragging objects, constructing figures, and building
dependencies. These practices are acquired at the group unit through guided
collaboration. Community-level math content, the culture of doing
mathematics and the effective practices of mathematics are introduced into
group activities, for instance in the form of scaffolded resources defining
topics of discussion and exploration. Through participation in group practices,
individuals can then develop the corresponding personal skills.

Design of Resources

A set of principles for the design of dynamic-geometry resources was
compiled based on experience through many iterations of trials in the VMT
Project, a long history of resource development for math teachers and math
students at the Math Forum, training materials for different dynamic-
geometry systems, textbooks, governmental learning standards and Euclid’s
Elements. These principles enunciated several dimensions that had to be
considered and balanced.

The goal was to design resources to improve the following skills in math
teachers and students:

e Collaboration: To work effectively together to explore dynamic
geometry.

e Dragging: To explore mathematical phenomena by varying visual
representations.

e Construction: To construct mathematical figures embodying
relationships.

e Dependencies: To notice, wonder about, and form conjectures about
mathematical dependencies, using them to justify, explain and prove
mathematical findings.

e Math content: To understand core concepts, relationships, theorems, and
constructions of basic high-school geometry.

e Discourse: To engage in significant mathematical discourse.
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Introductory Resources

The principles of resource design evolved through formulating topics for
group work, creating activities and instructions around the topics. As new
resources were developed, they were tried out: first by the developers, then
by groups of research-team members, then by volunteers and teachers, and
finally by groups of students. Every year, sets of resources would be designed
and would evolve through many versions.

The current set of resources for dynamic geometry gradually introduces
students to the elementary objects of the field: points, lines, circles, triangles,
polygons. It guides them in how to effectively drag objects, construct figures,
and build dependencies in collaborative GeoGebra. There are topics devoted
to standard content in high-school geometry, like congruent triangles, but also
open-ended mini-worlds and challenge problems to encourage creativity.

Design-Based Research

Human-centered informatics is about treating the sources of information,
software, logic, and mathematics as products of human creative discovery.
Collaborative dynamic geometry can provide a model for this, just as
geometry provided a model for compelling argumentation during the birth of
Western civilization. However, to do so, students must begin to see the
objects, constructions, and dependencies of dynamic geometry as creations of
their own collaborative efforts and discoveries of their joint explorations.

Students must begin to see the
objects, constructions, and
dependencies of dynamic geometry
as  creations of their own

collaborative efforts and
discoveries of  their  joint
explorations.

Equilateral triangles, constructions of parallel lines and dependencies among
centers of triangles are not otherworldly mysteries that must be accepted on
authority, but products of people working, inquiring and talking together—
products of their joint creativity, design and investigation. The basic modes
of dynamic-geometry activity—dragging, constructing, and dependencies—
can together form a model of creative discovery, illustrating the general
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interplay between human agency and reality’s resistance. The discovery of
geometric propositions through the creation of geometric dependencies can
stand as a metaphor for the interplay of people and data in human-centered
informatics.

To effectively convey this experience to students involves a combination of
theory (about collaborative learning, dynamic geometry, resources), design
(of pedagogy and geometry activities), technology (to support collaborative
dynamic geometry), research (into how students enact resources), and
practice (to see what works and what does not over time and in various
contexts). Balancing these multiple dimensions requires an interdisciplinary
team engaged in design-based research. This book reports understandings
gained from the design-based research of the VMT Project during the period
2010-2012.
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Chapter 2. History: The Origin
of Geometry

Chapter Summary

Geometry started out as an evolving creation of a
creative intellectual community. However, over time,
the objects and practices of geometry have come to be
understood as otherworldly ideals to be accepted on
authority, rather than as elements of human imagination
and exploration. The history of geometry from the early
Greeks, to Euclid’s systematization, to modern
axiomatic systems and to contemporary schooling can
be seen as a process of the successive obscuring of the
origin of geometry in human activity.

to go back to its origins in ancient Greece. Geometry is solidly rooted

in the history of Western civilization. It developed at the same time as
some of the most important cultural developments: the beginnings or high
points of written history, philosophy, drama, logic, sculpture.

f I \o understand the plight of geometry education today, it is informative

Folk Geometry

Ever since people stopped wandering and settled down on patches of land,
they have probably had ways to measure out the land (“geo-metric”), build
structures in various shapes and conceive of various visual forms. Look at the
intricate patterns woven into fabrics or carved into rocks, pottery, and jewelry
in pre-literate cultures. Here, the designed objects carried aesthetic and social
values. They had not yet been quantified and made comparable based on a
universal system of equivalences—see the literature of ethno-mathematics
and Alexander (1964).
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Throughout history, there have always been developments in practical
mathematics, which interact with the pure or academic mathematics of
professional mathematicians. The practical approach to geometry as
techniques for dividing plots of land or calculating distances goes back at least
to Egypt. It dominated textbooks in the Middle Ages, following the lead of
Fibonacci’s Practica Geometriae published in 1220. For instance, the
practical navigational needs of ship captains in the era of global exploration,
colonization and world trade drove the invention of complex algorithms,
detailed numeric tables and computational instrumentation (Hutchins, 1996).
As an example, a 15™ century Venetian method for correcting a ship’s
bearings after being blown off course by the wind provided tables based on a
drawing (see Figure 2-1) and trigonometric computations (Long, McGee &
Stahl, 2009). This, in turn pushed the development of logarithms in
mathematics and even the design of early computers (Gleick, 2011).

Formal, systematic geometry first emerged from common practice in the pre-
Socratic days of Greece, from which few artifacts survive to tell the story. It
developed the method of deductive reasoning and helped to transform the
nature of literacy, science and human cognition (Husserl, 1936/1989; Netz,
1999).
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Figure 2-1: Course correction via the marteloio method. Reproduced from
http://brunelleschi.imss.fi.it/michaelofrhodes/navigate toolkit basics.html.
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The First Geometers

In the 5™ and 4™ centuries BCE, a small, distributed network of members of
the Greek upper class developed a highly formalized version of geometry.
Theirs was one of the first specialized applications of writing using an
alphabet. They combined a formalized subset of written Greek with related
line drawings. Significantly, the endpoints and intersections of the lines and
arcs of the drawings were labeled with letters, which were used to reference
them in the text. They created a genre combining text and diagram that
spanned oral and literate worlds—incorporating the urge to persuade using
words while pointing to objects—with the tools of the literate minority.

We barely know a few names of these early geometers; surviving copies of
their work are reproductions, translations, or interpretations from hundreds of
years later. Although their work was not particularly highly valued in the
mainstream Greek culture, the “hobby” of doing geometry employed
impressive intellectual skill. The tightly argued texts—circulated around the
Mediterranean on parchment scrolls and clay tablets—were written in a
minimalist style that was hard to follow. The newly invented discourse of
proofs relied on an abstraction of geometric configurations to formal
abstractions, such as that “a line is breadthless length”—i.e., a line has no
thickness or any other characteristics other than its measurable length. To
follow the argument of a proof—Iet alone to formulate a new proof—one had
to be able to recall and understand an extensive corpus of previous definitions,
postulates, and propositions.

In order to structure their proofs effectively as self-contained and
incontestable arguments, geometers had to reduce their subject matter to
purely formal aspects, such as the length of lines. In addition, they laid out
the proofs themselves in a clearly structured order, which made explicit the
goal of the argument and the fact that the goal was achieved in the end. Each
proof consisted of several discrete steps—sometimes as many as 40. The steps
of a proof were restricted to formal relationships, such as that one line or angle
was equal in measure to another.

The argument uniting the steps to arrive at the stated goal unfolded through
reliance upon a small set of transitive connections, such as that if A=B and
C=B then A=C and A, B and C are all equal. These connections were accepted
from the start as part of the geometry enterprise. The standardization of the
minimal language of geometry made it clear that only these established
connections were being used to make the deduction. Their transitive nature
ensured that a proof that followed the conventionalized rules would be a valid,
convincing deduction.
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The frequent reliance on the transitive property of equality in Euclid’s
presentation is striking. The first item in his list of “common notions” is,
“Things which are equal to the same thing are also equal to one another”
(Euclid, 300 BCE/2002, p. 2). The strategy which frequently occurs in his
proofs is to show that two magnitudes such as the lengths of two line segments
are both equal to the same thing like the length of a third line segment. For
instance, in his very first proposition, on the construction of an equilateral
triangle, Euclid argues that since the lengths of each of the legs of the triangle
are equal to the length of the base (because the respective leg and the base are
radii of the same circle by construction and all radii of a circle are equal by
definition of a circle), all the sides are equal to each other (p. 3).

The transitive property of equality is valid in mathematics. Its use provides
much of the glue that allows Euclid to build up complex proofs. As long as
each element of the proof (i.e., that A=B and that C=B) is valid then the
conclusion of the large proof (that A=C or that A, B and C are all equal) will
also be “apodictically” valid as long as the argument is connected by logical
principles like the transitivity of equality.

Geometry is confined to a system of objects and procedures for which such
validity is maintained. Of course, in the broader social life, one cannot count
on this kind of validity. For instance, in interpersonal relationships like a
romantic triangle, if person A loves person B and C also loves B, it is not
often true that A loves C. Love is not transitive; it is more complicated.

The history of mathematics can be viewed as an on-going process of defining
math objects and rules in ways that produce elegant, consistent, rigorous
proofs (Lakatos, 1976); Greek geometry is a prime example of this. The
definitions of abstract points, lines and circles allowed one point to stand for
any point and one line to be equivalent to any other, except for length and the
points that it passed through. Furthermore, the rules of deduction were simple
and easily combined to build up deductions that are more complicated without
introducing problems. As long as one restricted one’s discourse to this small,
carefully crafted, well defined, and orderly domain of geometric objects, a
controlled vocabulary and transitive rules, one’s proofs could be unassailable
and universally persuasive.

The early Greek geometers proved propositions about geometric objects that
go far beyond today’s high-school geometry in insight and complexity. This
would surely have been impossible without the use of diagrams. Even the
simplest geometric arguments are difficult to follow without studying
diagrams. The human mind is severely limited in its ability to handle long
sequences of utterances and to keep track of many inter-related objects within
short-term memory. The diagrams allow people to take advantage of their
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powerful visual analytic skills. The lettered labels on the objects in the
diagram provide deictic references to the objects intended by specific written
phrases, effectively integrating the visual situation and the linguistic
deduction. Through the coordination of formal proof discourse with labeled
diagrams, the Greeks could prove and communicate rather involved
propositions.

Plato’s Academy

The cognitive importance of geometry was well recognized from the
beginning. Plato (428 BCE to 348 BCE) certainly felt that the study of
mathematics was good training for philosophy. Above the entrance to Plato’s
Academy was inscribed the phrase “Let none but geometers enter here.”
Plato’s mentor, Socrates, is shown in one of Plato’s early dialogs
demonstrating a geometric proof to a servant named Meno (Plato, 350
BCE/1961). Plato’s successor, Aristotle, made original contributions to
geometry, as well as conceptualizing deductive logic.

Above the entrance to Plato’s
Academy was inscribed the phrase
“Let none but geometers enter
here.”

The Socratic dialog with Meno is instructive about Plato’s epistemology. In
the dialog, Socrates walks an unschooled servant boy through the steps of a
geometric proof, eliciting the boy’s assent at each logical move. Socrates’
conclusion is that since the boy never saw the proof before in his life and was
never taught about it yet understood and agreed with it in detail, he must have
remembered this knowledge from before he was born. While Plato developed
a sophisticated theory of knowledge in his later dialogs, this principle
remained. There was no source of new knowledge in the world (like
experience or creativity). All people are born with complete knowledge.
However, they do not remember almost any of it. All learning is a process of
remembering. Education is a matter of reminding; the word ‘education’ is
derived from “leading forth,” e.g., from memory. Therefore, the source of
knowledge is neither discovery in the world or creation through human
activity and interaction, but in some otherworldly source that is dimly
recalled. It is like people living in a cave amongst shadow memories of a
forgotten world that exists outside in the sunshine (Plato, 340 BCE/1941).
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Human knowledge consists of faulty memories of Ideas, which exist outside
our world in an eternal, ideal form. The prototypes of such Ideas are the
concepts of mathematics, like numbers, points, 7.

While Plato did not engage directly in the practice of geometry in his
surviving writings, there seems to be a complex interaction between his
philosophy and the nature of Greek geometry. Latour (2008) argues that Plato
wanted to use the deductive power of geometry to support his philosophic
claims. Plato was in intellectual competition with the Sophists, who used
rhetoric to convince their audience, and with the political leadership, who
called upon established authority and the gods. Plato questioned authority,
brought his audience to a sense of aporia (awe, based on puzzlement in the
face of an impasse in the usual approach to a topic) and then tried to convince
through logical argument, modeled to some extent on the new deductive style
of the geometers.

However, Latour claims that Plato could not succeed at adopting the geometry
model because the success of geometry’s deductive power flows from its
formalism, its rejection of all content, whereas Plato needed to retain the
content because he was interested in content-full topics like the Good, the
True and the Beautiful. These topics are based on the richness of everyday
language and cannot be reduced to well-defined meanings, relations of
equivalence and limited language.

Perhaps Plato was pushed in the direction of his doctrine of Forms or Ideas
by the model of geometry. If he could say—as he certainly did in his early
dialogs—that he was not talking about a specific just act, but about the
concept of justice itself, which applies to all just acts without having any of
the specifics of any one such act, then perhaps he could formalize his concepts
so that his arguments about them would have the deductive power of
geometry: the characteristic that they cannot be doubted and are self-evidently
true. Unfortunately for Plato, he was determined to discuss broad, complex
topics based on vague terms of everyday language, whereas the success of
geometry relied upon radically restricting its discourse. Plato wanted his
deductions to apply to life, not to be confined to abstract objects like ideal
points.

As Heidegger puts it, the philosophic experience that follows awe is intended
to change one’s view. Philosophy has aims and methods that differ essentially
from those of mathematics:

In philosophy, propositions never get firmed up into a proof. This
is the case, not only because there are no top propositions from
which others could be deduced, but because here what is “true” is
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not a “proposition” at all and also not simply that about which a
proposition makes a statement. All “proof” presupposes that one
who understands—as he comes, via representations, before the
content of a proposition—remains unchanged as he enacts the
interconnection of representations for the sake of proof. And only
the “result” of the deduced proof can demand a changed way of
representing, or rather a representing of what was unnoticed up until
now. (Heidegger, 1938/1999, p.10)

Following a proof step-by-step involves the manipulations of formal
components, re-presenting things in terms of abstract symbols, illustrative
diagram elements, standardized terminology, and transitive comparisons.
However, a philosophic argument cannot reduce its topic to a representation
of the topic, like a geometer can reduce a line to a labeled diagram of a line.
Even the idea, form, or concept of justice is not a representation of justice, but
a rich understanding of what all just acts are about. Further, the point of a
philosophic argument is not simply to deduce a truth, but to persuade the
audience about how they should live a good, just, and beautiful life by
gradually transforming their thinking and actions.

Euclid’s Elements

It is assumed that Euclid lived shortly after Plato, c. 323 to 283 BCE. It is
possible that Euclid studied in Plato’s Academy in Athens and it is likely that
mathematics was studied in the Academy. In one of the few surviving
references to Euclid, it is noted that Apollonius (developer of the theory of
conics and irrational numbers) “spent a very long time with the pupils of
Euclid at Alexandria, and it was thus that he acquired such a scientific habit
of thought.” By “scientific,” we can assume Apollonius primarily meant
systematic. Not much else is known of Euclid as a person, other than this
indirect reference.

It is not known if Euclid actually proved any new propositions or if he just
compiled well-known proofs, working in the great library of Alexandria, an
early gathering place of the world’s knowledge. There had been some
previous attempts to compile the propositions of geometry, but none were
considered of comparable power to Euclid’s. Euclid published 13 volumes of
geometry, in which the propositions were not only organized based on their
subject matter, but built on each other systematically.
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Euclid’s presentations of the propositions all followed a similar template from
statement of goal to declaration of conclusion, and they were apparently all
accompanied by clear, labeled diagrams corresponding to the steps of the
proof. Although the inter-relationships among the propositions were implicit
in their individual original proofs, it must have taken a deep understanding
and overview to put together all the propositions so systematically and to
preface them with a clear statement of the assumed definitions, postulates and
common notions. Euclid’s presentation of geometry has since then stood up
to scrutiny for 23 centuries and has inspired and influenced scientific and
mathematical thought in the Western world more than any other text.

Roman and English Translations

Unfortunately, we have no extant copies of the Elements as written by Euclid.
We must rely on translations of translations and copies of copies of those.
Each translation is necessarily an interpretation, and many copyists tried to
“improve” the presentation. The standard English version now is a recent
republication (Euclid, 300 BCE/2002) of Heath’s 1908 translation of
Heiberg’s 1883 scholarly Greek version. The earliest printed Greek version is
from 1533, predated by a printed Latin version from 1482.

Each edition made different changes: eliminating whole sections from each
proof to avoid redundancies, adding clarifying phrases, etc. For instance, the
introductory list of definitions, postulates, and common notions was not
originally broken down into numbered lists (as it is now), or even into separate
sentences. It provided a general introduction to the terminology, rather than a
set of axioms that could be referenced in the proof (as they are now). In
addition, translations—most significantly from the original Greek to the
Roman way of thinking, which strongly influenced Western scientific
thinking when Latin was the lingua franca—transformed syntax and changed
tenses and ways of referencing. It is particularly unfortunate that we have no
exemplars of ancient diagrams, only medieval and modern versions.

Organization and systematization seem to be inherent in the practice of
geometry. The notion of rigor in proof entails meticulous step-by-step
procedures, precisely formulated and carefully built upon one another. In
classical education, training in geometry was considered a means of
disciplining unruly minds. Moreover, the birth of geometry may have
contributed significantly to the rationalization of the Western mentality.
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The historical development of geometry following its birth further refined its
systematic nature. Where Socrates was a free spirit intellectually and Plato
sought after the essences, their follower, Aristotle was more of a systematizer,
initiating a tendency that led to the great system builders in philosophy and
the hierarchical thinking of the Neo-Platonist church, which dominated the
medieval mentality. The library of Alexandria, where Euclid presumably
assembled the Elements of geometry, was an historic effort to compile and
categorize written knowledge. Such efforts were part of the strivings of
secular and religious state leadership (like Alexander the Great) to establish,
manage, and control increasingly large and complex civilizations. This was
an early effort at informatics and the management of “big data.” The
formalization, systematization, and bureaucratization of knowledge
paralleled that of the military, politics, faith, and the economy. Geometry
provided a model for the other fields, and it was itself in turn transformed
further in that direction by the general tendency in society, which it fostered.

Pappus of Alexandria (340, Book VII) was an organizer of mathematical
knowledge—Ilike Euclid, but 600 years later. Perhaps the last major classical
Greek mathematician, Pappus drew the important distinction between
analysis and synthesis. Analysis is Euclid’s method. It starts from “what is
sought as if it were existent and true” and works back to the given conditions
and previous propositions. It then reverses the sequence to present a deductive
proof derivation. Synthesis is a form of exploration that begins from the given
conditions and previous propositions and investigates their implications. As
Livingston (1999) argues, the process of proving is a winding synthetic
discovery process, later disguised in a linear analytic presentation. The nature
of work in dynamic geometry—which we will characterize below as a
creative-discovery process—is more naturally a synthetic approach as
contrasted with a classical Euclidean paradigm of analytic proof.

Axiomatic Geometry

People—including many mathematicians—tend to think of mathematical
objects as some kind of “otherworldly” abstractions, as mental constructs that
have no physical characteristics but obey logical rules (axioms and their
corollaries). This view may be indirectly derived from Plato’s doctrine of
Ideas as a realm of essences divorced from the physical world—a view
furthered in philosophy by Descartes (with his strict separation of mind and
body, the mental and the physical), and perhaps motivating the formal
axiomatization of mathematics. As mentioned previously, Plato may have
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been influenced by early geometry; now the influence is fed back from his
philosophy to mathematics. One consequence is that the geometric diagram
is now viewed as a rather arbitrary and secondary illustration of the abstract
ideas discussed in a proof. This may be an unfortunate distortion of the central
role of the figure in the work of the first geometers. It may also obscure the
important role of diagrams in the learning, exploration and understanding of
geometry in schools today (Livingston, 1999).

The geometric diagram is now
viewed as a rather arbitrary and
secondary illustration of the
abstract ideas discussed in a proof.

By the twentieth century, mathematics was viewed as an axiomatic system.
This began in a vision of systematic logic by Leibniz and was worked out by
Frege and other logicians, culminating in Russell and Whitehead’s detailed
system. Although Gddel’s and Turing’s work established surprising limits to
this vision, the influence on geometry was significant. Euclid’s proofs are
now read as axiomatic procedures. Over the centuries, the prevailing
paradigms of hierarchy, logic, and axiomatization have ineluctably continued
the interpretive transformations of Euclid’s texts.

The historical development of reason, in which geometry has played a key
role, can be considered from many perspectives. In terms of individual
personal development, Piaget (1990) identified the child’s transition from
concrete to abstract stages of thinking as pivotal. The educational role of
geometry (and algebra) has always been seen as an important means for the
training of abstract thinking. On a societal level, the movement from orality
to literacy (Ong, 1998) can be seen as a primary watershed in human
cognition. As discussed, the origin of geometry was an integral part of the
emergence of literacy, including practices in visual representation,
mathematics, and deduction.

The rise of rationality has brought problems as well as progress (see Chapter
3). Philosophic analyses as different as those of Heidegger (1979) and Adorno
and Horkheimer (1945) trace the origin of totalitarian fascism in the Second
World War all the way back to the early Greeks. The tendency to reduce the
richness of nature and interpersonal living to quantifiable representations is
not only empowering, but also distorting of healthy human relationships. This
historic tendency includes the emphasis on quantification and calculation in
the rise of capitalism and bourgeois organizational management, rational
planning and the exploitation of nature or human labor as disposable
resources (Swetz, 1987). The emergence and development of geometry has




Translating Euclid 50

been an integral element of the historical development of rational reason—
although it has not often been analyzed in this context. The view dominating
contemporary thought—for instance in cognitive science and artificial
intelligence—has been attributed by Hutchins (1996, p.370) to “a nearly
religious belief in the Platonic status of mathematics and formal systems as
eternal verities rather than as historical products of human activity.”

Changing Approaches to Teaching Geometry

In recent decades, the teaching of geometry in public schools has moved away
from the presentation of proofs in bureaucratized Euclidean style, in an
attempt to make the basic concepts of the field more accessible. However, the
underlying mathematics has changed very little.

The major innovation in American educational philosophy was that of Dewey
(1938/1991). He argued that education should be based less on the transfer of
facts and more on processes of inquiry. Recent research in the learning
sciences (Sawyer, 2006) has expanded this approach, arguing for the
importance of helping students to construct knowledge themselves through
processes of active meaning making. However, the institutions of schooling
are highly resistant to fundamental changes. While they often take on the
trappings and instruments of reform efforts, they integrate them into the
established practices, undermining the core intention. Thus, teacher-centric
classrooms and teaching to tests of factual information counteract the impact
of inquiry or constructivist learning.

Within mathematics, the most radical attempt at educational reform in the US
was the “new math” movement. This was an attempt by mathematicians to
revise the traditional math curriculum, which was largely based in medieval
approaches, with foundational concepts of 20" century mathematics, such as
set theory. One approach along similar lines within geometry was to
foreground transformational geometry as a central conceptualization (Morris,
1986). For instance, rather than defining an isosceles triangle in terms of equal
sides or angles, to define it as having one leg the result of a reflection
transformation of the other leg about a line of symmetry. Of course, the new
math experiment was publically perceived in the US as a colossal failure,
resulting in a strong “back-to-basics” backlash. Although techniques like
transformations were subsequently included in the geometry curriculum, they
were reduced to yet another topic of factual and procedural knowledge, rather
than a foundational inquiry approach.
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Somewhat later, dynamic geometry was developed and offered as a new
approach to geometry learning. It, too, has an interesting history of acceptance
and adaptation within schools. While it offered the promise of a radically
different, inquiry-based, constructivist approach, it was largely integrated into
the classroom in ways that dulled its reformist impact.

The history of geometry education in public schooling is complicated, with
various initiatives and tensions reflected in educational policies, textbooks,
and teaching in different countries. For a review of this history in the United
States, see Sinclair (2008). Our concern in the current book is focused on the
role that a human-centered approach using dynamic geometry can play within
this larger picture—which is certainly not to deny that the focus and the
context are intricately intertwined.

The development of a computer-based approach to geometry had a logic of
its own. The graphical user interface of personal computers allows one to
create objects and move them around. This takes advantage of certain
technological developments, such as the difference between a “draw”
program that uses vector graphics and may be programmed in an object-
oriented way, as opposed to a “paint” program that uses pixel graphics. In a
paint program, when the user draws something, the affected points or pixels
on the drawing surface are simply colored to show where the user indicated.
There is no representation of objects, which could be subsequently
manipulated, such as the area now colored purple. In a draw program, the user
specifies an object, such as a circle, and indicates its size and position on the
surface. This information is stored internally for the draw program in terms
of an object with variable properties (e.g., shape=circle, center at x=14/y=-5,
radius=3, fill-color=red, line-color=black). The user can change these
properties by dragging the object or selecting from menus. Given this
capability of software on personal computers, geometry environments could
be developed that allowed students to explore visual geometric relationship
by dragging objects around the screen. For instance, one could see what
happens when one drags a circle to make its radius longer.

The problem that immediately arose for someone programming a system for
dynamic geometry was that of changing all the related objects when one
object changed. For instance, when a user changes the radius of a circle, what
happens to a chord that crosses the circle, a line that is tangent to it, or a
triangle that is inscribed inside it? They must all have their properties changed
in very specific ways because their positions and sizes are dependent upon the
circle’s position and size. The whole idea of dragging is to observe how the
relationship of the circle to its chord, tangent or inscribed figure is valid for a
range of circle sizes and positions, not just for the particular circle first drawn.
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The solution for the programmer is to create an internal representation of
dependencies among the objects created. For instance, the positions (x and y
coordinates) of the endpoints of a chord are dependent on the center and radius
of the circle, such that the endpoints are always located somewhere on the
circle’s circumference. Similarly, the defining points of a tangent line or an
inscribed triangle are dependent on the circle’s center and radius: those
defining points must all be automatically adjusted by the software whenever
the circle changes. In a complex geometric figure, this leads to a whole
hierarchy of dependencies; various objects can be dependent upon the chord
that is dependent on the circle, and so on.

Dependencies are at the core of dynamic geometry. They must be defined
when objects are created. They must be maintained when objects are dragged.
Without the dependencies, dynamic-geometric constructions would not make
sense. Without the dependencies, dragging would not reveal anything of
Interest.

Dependencies are at the core of
dynamic geometry. They must be
defined when objects are created.
They must be maintained when
objects are dragged.

Yet, dependencies are not always emphasized in classrooms that use
dynamic-geometry software. The dependencies lie hidden in the software.
They are an obscured mystery, invisible to the students. This is largely
because learning to construct figures in the software and to think about how
to construct the appropriate dependencies into one’s own dynamic-geometry
figures takes time. Teachers often feel they cannot devote the required
classroom time to something that is not directly related to required content
and standardized tests. The teachers themselves may not have time to engage
in the necessary learning. Furthermore, learning to do constructions and to
design dependencies is a trial-and-error process, which involves failures.
Teachers may feel that their students will become frustrated with such failure
experiences. As a result, the use of the software in classrooms is generally
reduced to observing figures being dragged. Often, the students do not even
drag the objects themselves, but passively observe the teacher dragging,
projected on a screen or smartboard. Frequently, the students do not see the
construction taking place—it is pre-constructed.

We shall explore the potential of dynamic geometry at length in this book.
We shall try to formulate a way of presenting dynamic geometry—including
its incorporation of transformational geometry—to teachers and students that
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will retain its potential by involving the students in construction and
dependencies as well as dragging. This may help to translate the experience
from one of passively accepting already existing geometric truths to one of
the creative discovery of geometric phenomena through actively constructing
them based on their own designs of dependencies.
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Chapter 3. Philosophy: The
Obfuscation of Geometry

Chapter Summary

The wellsprings of human creativity and logical
thinking that flowed forth in the origins of Greek
geometry were progressively covered over and
transformed into regulated procedures and otherworldly
objects. Twentieth-century philosophy frames this
cover-up as a paradigmatic example of the over-reach
of rationalization. In the sequence of world-historic
epochs, successive reification of phenomena of
geometry and more generally of the being of objects
altered the relation of people to reality. These
transformations are associated with the rise of
rationalism and an ideology of individualism. Although
these changes brought powerful advantages, they now
need to be balanced by an approach of human-centered
informatics, which guides students to understand the
principles of geometry as products of human creative-
discovery.

Having reviewed the history of geometry, we now put this history into a larger
perspective, which is concerned with the unintended negative consequences
associated with historical progress.

Epochs of Ontological Translation

In this chapter, we shall reconsider the history of geometry in terms of the
story told by the philosopher Heidegger in his later writings (e.g., Heidegger,
1979). According to his analysis of the history of philosophy, the early Greeks
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had a keen sense of the world around them, as articulated in their language.
Unfortunately, through the development of Plato’s philosophy and its
influence on subsequent thought—as it was successively translated into
different languages and cultures (e.g., Roman bureaucracy, medieval
theology, modern technology)—this experience of reality was increasingly
covered over. Rather than things appearing the way they did for the Greeks,
they later appeared as, for instance, products of artisanship, of God or of
technology. If we apply this view to the objects of geometry, we can see that
although they were originally creative products of communities of
geometers—resulting from their collaborative interaction mediated by labeled
drawings and written propositions—the elements of geometry took on
different appearances. They became objects of Platonic Ideas, of Roman
rules, of medieval dogma or of modern logic.

In the field of human-computer interaction (HCI), Heidegger is known for his
analysis of tools (e.g., of the hammer as being handy, not just spatially
present) and of the phenomenon of breakdown (as revealing the nature of the
tool as useful for certain projects)—(see, e.g., Dourish, 2001; Dreyfus, 1991,
Ehn, 1988; Winograd & Flores, 1986). But the analysis of tools is really just
a detail within his much more encompassing early phenomenology of human
existence in Being and Time (Heidegger, 1927/1996), where he lays out an
analysis of human being-in-the-world with other people and tools. (We will
discuss this again in Chapter 8. on the theory of resources.)

The point about breakdown 1is that when tools are being used
unproblematically, our understanding of them and of how to comport
ourselves with them in the service of our projects is an implicit or tacit kind
of knowledge. When there is a breakdown of some kind in this smooth
functioning, then we become aware in the sense of developing a more explicit
and developed interpretation of the tool as a resource to be used for our
projects... and we become aware of the fact that it is not working that way.
We only need to develop our awareness up to the point where we can fix the
problem and get on with the work. In this way, the breakdown serves to
uncover something of the nature of the tool, which was previously not
apparent. The tool is brought out of its disclosure and made visible as a tool
usable for doing such and such. Its significance is established within a
network of significance that is projected by our life goals.

Heidegger’s philosophy has a strong temporal dimension. We are strongly
oriented to the future. That opens up new possibilities, structures our
understanding of our situation and our resources, and provides meaning. The
future is always a finite one, with significant temporal limitations, ultimately
established by our eventual death. Within this temporal dimension, we find
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ourselves at any particular moment already thrown into an existing, complex,
meaningful, and shared world. That is the past, which constrains us, provides
resources for us and delimits our possibilities. Stretched between past and
future, we are situated in the present, in which we care for things and people
within the limitations of our understanding.

The fact that the characteristics and uses of tools are uncovered in breakdown
situations is important for research—hence its interest to HCI. It means that
computer systems, curricula, and other resources—which have been designed
to be enacted by students—can be studied by looking at problematic
occurrences. Take, for instance, a curricular activity that is intended to teach
a student how to construct a perpendicular line. If we observe an individual
student doing the activity without any difficulty, we learn little as researchers.
However, if we observe a group of students trying to accomplish the activity
and discussing what they are trying to do when they run into various
challenges, then we can learn much. We see how the students are taking the
designed resources, how they are enacting them, how they are trying to use
them and what is going wrong with all of this (at least from the designer’s
perspective). The breakdown discloses the tool as what it is, i.e., how it is
used.

If we observe a group of students
trying to accomplish the activity and
discussing what they are trying to
do when they run into various
challenges, then we can learn much.

This is an argument for design-based research (DBR) (Barab, 2006; Brown,
1992). To design effective resources, we must intervene in realistic use
situations with our prototypes, run trials, analyze results (especially in
breakdown cases), revise the prototypes accordingly, and iterate this process
many times. DBR integrates the design of an educational technology or
intervention with research about how learning takes place with various
versions of that resource. Such integration involves vision, theory,
implementation, experimentation, creativity, working with teachers, domain
knowledge and pedagogy—and it evolves over time, in iterative cycles.

The theory of breakdown is also an argument for students having to dis-cover
knowledge themselves through usage—hands-on exploration. This is
probably a large part of what is going on in “productive failure” (Kapur &
Bielaczyck, 2012; Kapur & Kinzer, 2009), an important recent discovery
within CSCL research. Failure often appears to occur when a group of
students does not succeed in solving a challenging problem. Their approach
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breaks down and in response they develop their understanding further. While
they may not have time in a classroom or test setting to put this new
understanding to use in time to avoid failure in the short term, they now have
the increased understanding that other student groups have not developed, so
that they can achieve more in the long run.

Heidegger’s view of disclosure in the life of a person is part of his historical
theory of un-concealment (Unverborgenheit). He develops an ontological
history, a temporal analysis of Being. Just as the nature of a tool is concealed
for an individual using the tool in the smooth pursuit of his or her goals, so
the nature of reality more generally is obscured within the way reality is
perceived during each historical epoch. Heidegger’s early analyses were
focused on the individual. Although he conceptualized human existence as a
social being-there-with-others in a shared meaningful world, Heidegger cut
short the analysis of the shared world, reduced it to a politically conservative
critique of popular culture and focused on the individual’s being toward its
own finitude. In his later work, Heidegger took a more world-historical view,
although he still clung to an impoverished concept of history and
methodology for historical analysis (Nancy, 2000; Stahl, 1975a; 1976). This
had tragic consequences for his own political action.

Whatever the faults, limitations and dead-end paths his thinking may have
had, Heidegger succeeded in uncovering some questionable assumptions and
perspectives that have held sway at least from Plato to well beyond Descartes.
His writings influenced most of the creative, critical thinkers since his
publications. He problematized many of the prevailing distinctions and
assumptions, which over the eons have congealed into our common sense.
One of these sets of suppositions concerns causation or the proposition that
everything must have a reason. For instance, Descartes argued that he must
exist because to question if he exists is to think, and “if I think, therefore I
must exist” (“cogito, ergo sum’). This assumes that if a thought exists, there
must be a thinker who caused the thought to exist. Similarly, medieval
theologians argued that if there is a universe, there must have been a creator.
Our sense of causality derives from the model of mechanical causation
(pulling and pushing by ourselves or by machines) and personal agency. Our
sense that there must be a cause or reason derives from our experience of
craftspeople producing useful products and our bodies exerting influence in
our physical surroundings.

Heidegger developed a radically new way of looking at how things influence
each other and how history unfolds. Artifacts like shoes, bridges, paintings,
poems, and buildings each have their own appropriate ways of being in which
they appropriate aspects of the physical, spiritual, and human world. On a
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world-historical scale, these ways of being themselves evolve as the defining
character of the epoch changes. Heidegger has some detailed analyses of the
historical changes in the history of philosophy and some descriptions of
artifacts as world-revealing and world-concealing actors (Stahl, 1975b;
1976). This is not the place to go into detail about Heidegger’s view, which
is notoriously difficult to articulate.

The Dialectic of Reification

Heidegger’s teacher, Husserl, was concerned in the 1930s with the philosophy
of science and mathematics, which were both considered to be in crisis then.
Perhaps in response to some of Heidegger’s ideas, Husserl wrote an essay on
“The Origin of Geometry” (Husserl, 1936/1989). Here he coined the term
“sedimentation” to describe how an informally used word or phrase could
coalesce into an established technical term. In this essay, Husserl imagined
the early Greek geometers as engaging in investigations, details of which
became accepted mathematical practices through repetition over time.

Husserl’s metaphorical term itself became sedimented as a technical term to
describe how a casual discourse move could become a routinized social
practice. For instance, in his recent study of collaborative learning in the
Navy, Hutchins (1996) analyzed the discourse during a breakdown situation
and identified a phrase by one person that was picked up on and used
repeatedly in the discourse and took on a fixed meaning and role. He said that
that phrase could have been sedimented into an established technical term
within the large corpus of procedures and practices in naval navigation.
Similarly, Hutchins and Palen (1998) show how aspects of the
instrumentation used by airplane pilots and gestures associated with them can
take on specific, sedimented meanings over time.

Like the moves of Husserl’s geometers or Hutchins’ sailors and pilots,
common words, tools and actions can become resources with significance and
influence far beyond their original, immediate context. Latour and his
colleagues have described many examples of mundane objects and
unselfconscious practices participating in what he calls actor networks
(Latour, 2007). In his view, historical change does not take place as the result
of causation by large social institutions acting under rational choices, but
rather as the unintended consequences of networks of innumerable mundane
actors of all kinds—not primarily people or institutions—exerting constraints
on one another. Latour’s actor networks have interesting parallels to dynamic
geometry’s dependency networks and collaborative learning’s discourse
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networks—which are also not to be conceptualized as logical deductions of
rational individual minds.

The concept of sedimentation is closely connected to that of reification. In the
sedimentation process, independent grains of sand are compressed into hard
rock. In reification, something relatively fluid, abstract, or amorphous is
transformed into a tangible object, or a thing (Latin: rei), as though it were
material.

In her theory of the history and the learning of mathematics, Sfard (Sfard,
2000; 2008; Sfard & Linchevski, 1994) discusses the role of reification. She
sees it playing a central role in the history of mathematics, much like what
Husserl attributed to the early development of geometry. Actions in local
contexts become reified: tried, repeated, refined, and fixated. A risky creative
attempt becomes transformed into a valued discovery, eventually taken as a
pre-existing truth (for examples, see Lakatos, 1976). Perhaps a long-shot
attempt by an individual or small group to solve a tricky problem or to deal
with a seeming contradiction is catapulted into an historical advance for
humanity. This is how mathematics expanded, for instance with the addition
of complex numbers, infinitesimals or non-Euclidean geometries. Then
ontogeny recapitulates phylology; the individual student learning follows the
steps of the field’s development.

For Sfard, reification is a helpful and necessary process. A concrete instance
of a math object, the naming of something or a procedure followed becomes
a significant new mathematical element or practice. Something that was
closely tied to a specific context becomes generalized, freed from its situation
of origin. Henceforth, it is available for everyone, applicable to a range of
problems. It gains status and acceptance. It is taken as the discovery of
something that must have always been true in the otherworldly realm of
mathematics; we just had not seen it and had to have someone discover it (or
uncover it for Heidegger, or remember it for Plato).

While reification drives forward progress in mathematics, it has its down side
as well. It obscures the origin of new concepts and procedures in the creative
work of people. Although there are some traces of human creation in names
like the “Pythagorean Theorem” or the “Euler segment,” these are taken as
nods to the discoverers of eternal geometric objects or relationships inherent
in geometric objects, rather than as products of creative human work.

This is the “dialectic of enlightenment” (Adorno & Horkheimer, 1945):
progress in rational thinking brings with it the danger that important
phenomena become obscured, misunderstood, forgotten, repressed.
Rationalization of society can lead to fascism, totalitarianism, or mindless
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bureaucracy. In mathematics, it can lead to deadening memorization in place
of insight—in the name of efficient training.

Progress in rational thinking brings
with it the danger that important
phenomena  become  obscured,
misunderstood, forgotten,
repressed.

If we assume that the first geometers—of whom we have no historical record
because they predated written history—experienced some form of primordial
intellectual fascination as they created geometry and discovered its principles,
then we might wonder why students encountering geometry today do not
share that experience. Of course, some of the answer is the setting. The Greeks
may have been sipping a jug of fresh wine with their friends on the sun-
drenched shores of the Aegean Sea while sketching triangles in the warm
sand. The students in schools may be feeling deprived of sleep, food, music,
video, fresh air and free interaction with their peers while being required to
step through meaningless procedures, which they will be tested on. In
addition, the nature of the enterprise and the experience has changed
essentially through processes internal to the subject matter, such as the ancient
reification, which turned adventures in imagination into propositions of
geometry, and the layers of scholarly translation that followed.

Geometry is a social product. The processes of reification take place primarily
at the community level, where something that arose in small-group
interactions—or in the internalized voices of an individual’s mind—is made
available more widely. The reification of geometric elements, terms,
practices, and symbols are part of the dialectic of enlightenment. They
contribute to intellectual progress while simultaneously obscuring their
origins.

Adorno and Horkheimer (1945) showed that this dialectic is pervasive in
Western culture, with its roots in ancient Greece. Central to this culture is an
ideology of individualism. In the ancient Greek epic tales of Ulysses and other
mythic heroes, one can already see the emergence of the individual out of the
earlier focus on nature and the tribe. In the early period of capitalism, the
individual took on the form of the rational thinker and entrepreneurial actor.
In the subsequent industrial age, knowledge—including knowledge of
geometry, considered key to rational thinking by individuals—became a
commodity to be consumed by a future workforce. The nature of
mathematics, knowledge, learning, and thought went through a series of
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translations, reflected in the theories and philosophies of the times. The
ideology of individualism was central to these historic transformations.

Beyond the Ideology of Individualism

The history of theory can be tracked in terms of the following issue: At what
unit of analysis should one study thought (cognition)? For Plato (340
BCE/1941), in addition to the physical objects in the world, there are concepts
that characterize those objects; philosophy is the analysis of such concepts,
like goodness, truth, beauty or justice. Descartes (1633/1999) argued that if
there is thought, then there must be a mind that thinks it, and that philosophy
should analyze both the mental objects of the mind and the material objects
to which they refer, as well as the epistemological relation between them.
Following Descartes, rationalism focused on the logical nature of mental
reasoning, while empiricism concentrated on the analysis of observable
physical objects. Kant (1787/1999) re-centered this discussion by arguing that
the mechanisms of human understanding provided the source of the apparent
spatio-temporal nature of observed objects and that critical theory’s task was
to analyze the mind’s constructivist structuring-categorization efforts. Up to
this point in the history of theory, cognition was assumed to be an innate
function of the individual human mind.

Hegel (1807/1967) transcended that individualist assumption. He traced the
logical/historical development of mind from the most primary instinct of a
living organism through stages of intentional-consciousness, self-
consciousness, and historical-consciousness to the most developed trans-
national spirit of the times (Zeitgeist). To analyze cognition henceforth, it is
necessary to follow through its biological unfolding and go beyond to the
ultimate cultural understanding of a society. Figure 3-1 identifies Hegel’s
approach to theory as forming the dividing line—or watershed—between
philosophies or theories based on the individual and those oriented to a larger
unit of analysis.
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Figure 3-1: The historical dividing line between individualistic and social theories.
Adapted from (Stahl, 2006, p. 289, Fig. 14-1).

Philosophy after Hegel can be viewed as forming three mainstreams of
thought, following the seminal approaches of Marx (critical social theory),
Heidegger (existential phenomenology), and Wittgenstein (linguistic
analysis). As taken up within HCI, one can trace how these approaches
established extended units of analysis.

Marx (1867) expanded upon Hegel’s recognition of the historical self-
generation of mankind and analyzed this historical process in terms of the
dialectical co-development of the social relations of production and the forces
of production. His analysis took the form of historical, political, and economic
studies of the world-historical processes by which human labor produces and
reproduces social institutions. Here, the study of the human mind and its
understanding of its objects becomes reformulated at the epochal unit of
analysis of social movements, class conflicts and transformations of economic
systems.

Heidegger (1927/1996) radicalized the Hegelian dialectic between man and
nature by starting the analysis of man from the unified experience of being-
in-the-world. The Cartesian problem of a distinction between an observing
mind and an objective world was thereby reversed. Heidegger, instead, had to
show how the appearance of isolated minds and an external world could arise
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through abstraction from the primary experience of being-there—human
existence inseparable from the worldly objects that one cares for and that
define one’s activity. The primordial unit of analysis of cognition is the
involvement of people in their world, presumably including interaction with
other people.

Wittgenstein (1953) focused increasingly on language as it is used to
accomplish things in the world through interpersonal communication. He
rejected his own early view (Wittgenstein, 1921/1974), which reduced a
rationalist conception of propositional, logical language to a self-
contradictory position. Now, linguistic meaning no longer dwelt in the heads
of users or the definitions of the words, but in communicational usage.
Echoing the lived world of phenomenology, Wittgenstein acknowledged the
role of the human form-of-life. He also conceptualized language as the playing
of language games, socially established forms of interaction. The unit of
analysis shifted from mental meanings to interpersonal communications in
the context of getting something done together.

Marx, Heidegger and Wittgenstein initiated the main forms of post-Kantian,
post-Hegelian philosophy and scientific theory (Stahl, 2010b). Kant
represents the culmination of the philosophy of mind, in which the human
mind is seen as the active constructor of reality out of its confrontation with
the objects of nature, which are unknowable except through this imposition
of human structuring categories. With Kant—over two hundred years ago—
the human mind is still a fixed unit consisting of innate abilities of the
individual person, despite how much his philosophy differs from naive realist
folk theories, which accept the world as fundamentally identical with its
appearance to the human observer.

Hegel overthrows the Kantian view of a fixed nature of mind by showing how
the mind has itself been constructed through long sequences of processes. The
Hegelian construction of mind can be understood in multiple senses:

(i) As the biological development of the brain’s abilities as it grows from
newborn to mature adult;

(i1) As the logical development from simple contrast of being and non-
being to the proliferation of all the distinctions of the most
sophisticated understanding; or

(iii) As the historical development from primitive Homo sapiens to
modern, civilized, technological, and cultured person.

After Hegel, theory shifted from philosophy to science, to explore the
biological, logical and historical processes in more detail and to verify them
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empirically. Followers of Marx, Heidegger, and Wittgenstein adopted
approaches to this that can be characterized as social, situated, and linguistic,
respectively. They are all constructivist, following Kant’s insight that the
structure of known objects is constructed by the knowing mind. However,
they all focus on a unit of analysis broader than the isolated individual mind
of Descartes and Kant.

The social, situated and linguistic theories of Marx, Heidegger, and
Wittgenstein entered the discourse of HCI literature with researchers coming
from the various scientific traditions that went into forming these research
domains, including psychology, education, social science, design studies,
computer science and artificial intelligence (e.g., Dourish, 2001; Ehn, 1988;
Floyd, 1992; Schon, 1983). Although these fields each introduced various
theoretical perspectives, we can see the major philosophic influences largely
through several seminal texts, the most important of which for issues of
learning was Mind in Society (Vygotsky, 1930/1978).

Mind in Society is an edited compilation of Vygotsky’s writings from the early
1930s in post-revolutionary Russia, which has been influential in the West
since it appeared in English in 1978. Critiquing the prevailing psychology as
practiced by behaviorists, Gestalt psychologists and Piaget, Vygotsky did not
try to fit psychology superficially into the dogmatic principles of Soviet
Marxism, but rather radically rethought the nature of human psychological
capabilities from the developmental approach proposed by Hegel and Marx.
He showed how human perception, attention, memory, thought, play and
learning (which others conceived of as mental faculties) were all products of
developmental processes—in terms of both maturation of individuals and the
social history of cultures. He proposed a dynamic vision of the human mind
in society, as opposed to a fixed and isolated function.

Vygotsky proposed a dynamic vision
of the human mind in society, as
opposed to a fixed and isolated
function.

The Hegelian term, mediation, was central for Vygotsky, as it is to HCI. Even
in his early years still talking about stimulus and response, Vygotsky asked
how one stimulus could mediate the memory of, attention toward or word
retrieval about another stimulus (p. iii). In Hegelian terms, this is a matter of
mediating (with the first stimulus) the relation (memory, attention, retrieval)
of a subject to an object (the second stimulus). This is fundamental to HCI
because in human-computer interaction, the learning of students or the work
of professionals is mediated by computers.




Translating Euclid 65

Another popular term from Vygotsky is the zone of proximal development
(pp- 84-91). This is the learning distinction and developmental gap between
what individuals can do by themselves (e.g., on pre- and post-tests) and what
they can do in collaboration (e.g., situated in a small group). A group of
children may be able to achieve cognitive results together that they will not
be able to achieve as individuals for a couple more years. This is consistent
with Vygotsky’s principle that people develop cognitive abilities first in a
“social” context—supported or mediated by peers, mentors, or cognitive aids
like representational artifacts—and only later are able to exercise these
cognitive abilities as individuals. Vygotsky’s theory, if carried beyond where
he had time to develop it, implies that collaborative learning provides the
foundation upon which all learning is built. Methodologically, it argues
against judging the outcomes of collaborative learning by evaluating or
assessing individuals outside of their collaborative settings.

Vygotsky used the term social in an ambiguous way when he said that
learning takes place socially first and then later individually. Almost everyone
else treats the term ambiguously as well. The word “socially ” can refer to two
people talking, as well as to transformations of whole societies. For the sake
of distinguishing levels of description or units of analysis in HCI, it seems
important to make clear distinctions. Table 3-1 suggests sets of different
terms for referring to phenomena at the individual, small-group, and societal
levels. The distinction of these three levels has previously been argued for in
(Rogoff, 1995), (Dillenbourg et al., 1996), (Stahl, 2006) and elsewhere. We
start with these three levels, which seem particularly central to much HCI
work, although other levels might also usefully be distinguished, such as
“collective intelligence” at the classroom level or “collective practices” at the
school level (Guribye, 2005; Jones, Dirckinck-Holmfeld & Lindstrom, 2006;
Looi et al., 2011). Perhaps consistent usage of such terminological
distinctions would lend clarity to the discussion of theories. Table 3-1
includes many of the terms and categories that will play important roles in
this book.
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Table 3-1: Terminology for phenomena at the individual, small group and
community levels of description. Adapted from (Stahl, 2010a, p. 27, Table 2.1).

Level of Individual Small group Community
description
Role Person/student | Group participant | Community
member
Adjective Personal Collaborative Social
Object of analysis | Mind Discourse Culture
Unit of analysis Mental Utterance response | Socio-technical
representation pair activity system,
mediating
artifacts
Form of Subjective Intersubjective Cultural
knowledge
Form of meaning | Interpretation Shared Domain
understanding, vocabulary,
joint meaning artifacts,
making, common institutions,
ground norms, rules
Learning activity Learn Build knowledge Science
Ways to Skill, behavior Discourse, group Member methods,
accomplish methods, long social practices
cognitive tasks sequences
Communication Thought Interaction Membership
Mode of Constructed Co-constructed Socially
construction constructed
Context of Personal Joint problem Problem domain
cognitive task problem space
Context of activity | Environment Situation Society
Mode of Presence | Embodiment Co-presence Contemporary
Referential system | Associations Indexical field Cultural world
Form of existence | Being-there Being-with Participation in
(Heidegger) (Dasein) (Mitsein), Being- communities of
there-together at practice (Volk)
the shared object
Temporal Subjective Co-constructed Measurable
structure experiential shared temporality | objective time
internal time
Theory of Constructivist Post-cognitive Socio-cultural

cognition
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Science Cognitive and Group cognition Sociology,
educational theory anthropology,
psychology linguistics

Tacit knowledge Background Common ground Culture
knowledge

Thought Cognition Group cognition Practices

Action Action Inter-Action Social praxis

The theoretical priority of collaborative learning is the philosophic motivation
for insisting that geometry education emphasize mathematical discourse in
small groups of students who are creating and discovering together, dragging,
and constructing as a group.

Dynamic Geometry as Human Centered

In order to translate geometry into a form appropriate for the current age, we
propose to re-focus the study of geometry on dependencies in collaborative
dynamic geometry. This requires a coordinated shift of an entire worldview,
or Weltanschauung as Heidegger called it. Rather than treating geometry as a
matter of shapes (young children), of mysticism (Pythagoras), of ideal objects
(Plato), of propositions (Euclid), of axioms (formalized math), of proof
(school textbooks), or of logic (Frege), we treat it as centrally concerned with
dependencies. This focus is associated with corresponding shifts in cognitive
history, contemporary philosophy, school mathematics, software technology,
collaborative learning, design-based research, CSCL theory, developmental
pedagogy, and scaffolded practice—as presented in the chapters of this book.

Above all, however, the focus on dependencies emerged from the author’s
exploration of dynamic geometry. Dependencies increasingly seemed central
to this form of mathematics. The fact that looking at reality in terms of
dependencies seems more appropriate to the contemporary world than
authority, mechanistic causation, or rational deduction led to the human-
centered characterization.

Dependencies involve the core dimensions of dynamic geometry: dragging
and constructing. Dynamic dragging discovers dependencies and dynamic
construction creates dependencies. The integration of discovery and creation
in human-geometric creative-discovery produces dynamic geometry. In order
to grant a semblance of universality to this production, it is important for the
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creative-discovery to be a collaborative process, involving mathematical
discourse and intersubjective meaning making. The group-level work has to
be integrated with individual-level and community-level processes. Group
practices, individual interpretations, community institutions, and interactional
resources serve to ground virtual math teams in the real world.

While it is ultimately necessary to integrate individual learning, group
cognition and community knowledge building, our project focuses on the
group level, because attention has been aimed mostly at the other levels for
the past two thousand years. In a school setting, textbooks and paper exercises
serve the individual learners, and teacher-orchestrated class discussions serve
the local community. Sometimes the VMT Project provided teacher
professional development in collaborative dynamic mathematics to stimulate
activity in classrooms. In subsequent trials with student groups, we found that
teachers often quite naturally engage in preparation and debriefing sessions
about the virtual-math-team work with their classes. However, the missing
collaborative experience of geometry takes place primarily in the small-group
interaction in the VMT chat rooms, as we will see above all in Chapter 7. .

In the previous chapter, we caught a glimpse of how our common sense about
the nature of geometric objects and the reasons for their relationships evolved
over the centuries. Let us now consider how the notions of creation and
discovery apply to geometry in different eras.

What is a geometric point? It is not a pencil mark, a blob of ink, a small set
of pixels. Is it a location on a two-dimensional grid, the limit of a circle as its
area goes to zero, or an undefined term in a set of axioms? These are all
modern mathematical or logical conceptions, not something the ancient
Greeks could have conceived of. They are the results of a long historical
development and corresponding series of conceptual translations from then
until now. Why are the sides of an equilateral triangle the same length? Why
do the three bisectors of a triangle’s angles all meet at one point? Why does
the Euler segment have the characteristics it has? These are questions central
to geometry. One potential answer is that we constructed things that way;
another is that we can prove the result logically; another is that certain
dependencies determine it—that that is simply the way the world of
mathematics is and we must discover its true character.

Dynamic geometry can involve experiences of creative-discovery: creativity
through construction and discovery through dragging—resulting in insight
about dependencies. The concept of creative-discovery overcomes the
traditional distinction between idealism and realism: whether the world is
created through our imposition of meaning or discovered as it is given by
brute reality. Already in the philosophy of Kant (1787/1999), there is a notion
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that one cannot know things apart from the way they are structured by our
minds, involving time, space and causality. Recent debates in HCI have
refined this interaction between how people discover affordances (Dohn,
2009) and create instrumental genesis of tools (Rabardel & Beguin, 2005).

Dynamic geometry can involve
experiences of creative-discovery:
creativity through construction and
discovery  through  dragging—
resulting  in  insight  about
dependencies.

Acts of creation involve discovery; they butt up against the strictures of
reality. For instance, no one could realize that the Euler segment would exist
and have such interesting properties just from thinking about the
dependencies in a triangle. It is something that one has to discover as one
drags different triangle centers. As long as one encapsulates construction
processes in custom tools for constructing the different centers, one is not
aware of the constraints introduced by the construction into the Euler
segment. However, once one explores by dragging the triangle and discovers
the invariances in the segment, one can go back and identify dependencies.
Then one can create figures that exploit and explore the phenomenon,
essentially building the basis of a proof of the segment’s properties. It is not
that the Euler segment lies implicit in the nature of the simple triangle, waiting
to be discovered in its eternal essence. Rather, the carefully designed
construction of the various points that define the Euler segment creates the
dependencies that are reflected in Euler’s conjecture and that are apparent in
the dragging of those specially constructed points.

A philosophy of creative-discovery can provide an appropriate perspective
for a human-centered mathematics. Fields of math are human products. They
even have strong roots in the nature of the human body (Lakoff & Nuiiez,
2000). Nevertheless, a field like geometry also has surprises that do not follow
in an obvious way from the definitions; they must be discovered as
unanticipated consequences of the creative initiative. While dynamic
geometry is a human creation—with a long history—it is also the result of
rigorous discovery. Students should understand geometry as a human-
centered product of this historical process of creative-discovery.
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Chapter 4. Mathematics:
Demythologizing Geometry

Chapter Summary

This chapter considers several geometric phenomena
that are typically presented as Platonic ideals of
otherworldly origin and reinterprets them as human
creations that can be discovered through human
construction. For instance, equilateral and isosceles
triangles are not special phenomena to be memorized,
but simply two possible combinations of constraints for
triangles. Similarly, the existence of an incenter of a
triangle is not a mysterious occurrence, but a
straightforward consequence of its construction. These
reinterpretations can be structured as activities for
students of collaborative dynamic geometry.

Hierarchies of Triangles and Quadrilaterals

Children are brought up to recognize the shapes of certain prototypical
geometric figures. From infancy onward, they are taught to recognize and
name triangles, squares, rectangles, and circles. In school, they are presented
with special three-sided or four-sided shapes: equilateral, isosceles, and right
triangles or square, rectangular, trapezoidal, rhomboid, and parallelogram
quadrilaterals.

However, these different shapes are not arbitrary graphical forms to be handed
down through cultural traditions and memorized. Rather, they can be
understood as part of the set of results from considering all the possibilities of
three- and four-sided figures. Given, for instance, three line segments, there
are different constraints that one can impose on them, resulting in different
kinds of triangles:

e None of the lengths of the segments are equal, yielding a scalene triangle.
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o The lengths of two of the segments are equal, yielding an isosceles
triangle.

e The lengths of all three segments are equal, yielding an equilateral

triangle.

None of the angles at the vertices are equal, yielding a scalene triangle.

Two of the angles at the vertices are equal, yielding an isosceles triangle.

The angles at all three vertices are equal, yielding an equilateral triangle.

The angle at one of the vertices is a right angle, yielding a right triangle.

No angle is larger than a right angle, yielding an acute triangle.

One angle is larger than a right angle, yielding an obtuse triangle.

One angle is a right angle and the other two are equal, yielding a right

isosceles triangle.

e One angle is larger than a right angle and the other two are equal, yielding
an obtuse isosceles triangle.

Similarly, one can generate a set of different kinds of quadrilaterals by
considering all the possible figures generated by allowable constraints on
number of equal sides, number of equal angles, number of right angles,
number of parallel pairs of lines. It is also possible to specify constraints in
other ways, such as in terms of lines of symmetry and characteristics of side
or angle bisectors.

The point is that the variety of polygon shapes can be understood in terms of
constraints imposed in the construction of the figures. This provides logical
insight into what would otherwise be a rather arbitrary collection of forms
with obscure Greek names, which has to be memorized and taken on
authority. In general, geometry makes much more sense when one
understands it in terms of the constraints that are introduced through
geometric constructions.

Euclid’s proofs can be understood as instructions for imposing constraints on
constructions of figures. For instance, Proposition 1 is entitled “On a given
finite straight line to construct an equilateral triangle.” The reason that the
resultant triangle has equal length sides is that the two legs of the triangle are
constructed with the constraint that they be the same length as the base of the
triangle (the “given finite straight line”). This is accomplished by drawing a
circle around each endpoint of the base (say, A and B) with a radius equal to
the length of the base (AB). The legs (say, AC and BC) are then constructed
to also be radii of the circles, thus having the same length as the base. The
intersection of the two circles is a point that is constructed to be equidistant
from the two endpoints of the triangle’s base. The construction ensures that
the lengths of the constructed legs (AC and BC) will be dependent upon the
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length of the base. As Euclid argues, AC=AB and BC=AB, so AC=BC and
the three sides are all equal.

Understanding  the  constraints
designed into the construction
process makes the proof of the
equality of all three sides of the
triangle obvious.

Understanding the constraints designed into the construction process makes
the proof of the equality of all three sides of the triangle obvious. A student
can be encouraged to memorize the construction of an equilateral triangle.
Alternatively, a student can take the proposition as a lesson in the construction
of new segments constrained to be the same length as the given segment. In
the procedural approach, the student is likely to find the exercise meaningless
and can easily forget the procedure. In the construction approach, the student
may comprehend what Euclid was doing and may thereby acquire a cognitive
tool that can be used in subsequent geometry problems. That Euclid treated
Proposition 1 as a lesson in construction is confirmed by the fact that
Propositions 2 and 3 continued this approach, demonstrating how to copy a
given segment length to another point and then on to another line.

The Mystery of the Triangle Incenter

Perhaps it is clear in the case of Euclid’s first proposition that one is imposing
constraints through the construction that account for the result of the sides
being equal length. However, are there not some geometrical relationships
that just inhere to certain shapes and are not built into figures by the
dependencies of our constructions?

What about the surprising fact that the three bisectors of the angles of any
triangle all meet at one point? It does not seem like we have built this property
in through some construction constraints—it is simply a property of any plain
triangle (see Figure 4-1). Furthermore, the point of concurrency of the angle
bisectors—called the “incenter” of the triangle—happens to be exactly
equidistant from the three sides of the triangle. It turns out interestingly that
the incenter is always inside the triangle, for any kind of triangle (unlike some
other special points of triangles). Moreover, if one constructs a circle
inscribed in the triangle, it will happen that the center of the circle is precisely
at the incenter (see Figure 4-1). These all seem to be mysterious properties
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of the ideal geometric object, triangle; it is assumed that they must be
deductively proven from axioms and other propositions to convince us of the
generality of these relationships, their Platonic truth

Figure 4-1: A triangle ABC with incenter and angle bisectors meeting at the
incenter. The incenter is equidistant from the three sides and is the center of a
circle inscribed in the triangle.

Let us investigate—using dynamic geometry—the standard belief that the
relationships associated with the incenter are inherent characteristics of
triangles that are not imposed by constraints designed into the construction,
but are properties of triangles to be discovered, whose validity is to be
deductively proven. Rather than starting from the completed figure, let us
instead proceed through the construction step by step.
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Figure 4-2: The construction of the incenter, I. The bisector of angle BAC, ray
AF, is constructed so that any point on it lies between AB and AC and is
equidistant from sides AB and AC.

As our first step, we construct one of the angle bisectors (see Figure 4-2). We
actually construct the angle bisector by constructing a ray AF that goes from
point A through some point F that lies between sides AB and AC and is
equidistant from both these sides. The constraint that F is the same distance
from sides AB and AC is constructed as follows: First construct a circle
centered on A and intersecting AB and AC—call the points of intersection D
and E. Construct perpendiculars to the sides at these points. The
perpendiculars necessarily meet between the sides—call the point of
intersection F. Construct ray AF. AF bisects the angle at vertex A, as can be
shown by congruent right triangles ADF and AEF. (Right triangles are
congruent if any two sides are congruent because of the Pythagorean
relationship, which guarantees that the third sides are also congruent.)

As our second step, we similarly construct the bisector of the angle at vertex
B. First construct a circle centered on B and intersecting side AB at point D—
call the circle’s point of intersection with side BC point G. Construct
perpendiculars to the sides at these points. The perpendiculars necessarily
meet between the sides—call the point of intersection H. Construct ray BH.
BH bisects the angle at vertex B, as can be shown by congruent right triangles
BDH and BGH.
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Now mark the intersection of the two angle-bisector rays AF and BH as point
I, the incenter of triangle ABC. Construct segment CI. We can see that CI is
the angle bisector of the angle at the third vertex, C in Figure 4-3. We
construct perpendiculars 1J, IK, IL from the incenter to the three sides. We
know that I is on the bisector of angles A and B, so [J=IK and IJ=IL. From
those two equations (and Euclid’s favorite transactivity), we know that
IK=IL, which means that I is also on the bisector of angle C.

B L G

Figure 4-3: The incenter, I, of triangle ABC, with equal perpendiculars 1J, IK, and
IL, which are radii of the inscribed circle.

We have now shown that point I is common to the three angle bisectors of an
arbitrary triangle ABC. We can also construct a circle centered on the incircle,
with radii 1J, IK, and IL. The circle is inscribed in the triangle because it is
tangent to each of the sides. It is not shown here, but the vertex points of the
triangle were dragged to show that all the discussed relationships are retained
dynamically. Therefore, the fact that the bisectors of the three angles of a
triangle are all concurrent is not a mysterious surprise, but a direct
consequence of the dependencies we imposed when constructing the
bisectors.
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The incenter of a triangle is not
some mysterious property of the
triangle, but a consequence of the
dependencies constructed into the

figure.

The incenter of a triangle is not some mysterious property of the triangle, to
be discovered by deductive proof from a given figure like Figure 4-1, but a
consequence of the dependencies constructed into the figure, such as the
constraints imposed by constructing the bisector of the angle in Figure 4-2.

If we had “constructed” ray AF as the bisector of angle A in GeoGebra by
simply using the built-in angle-bisector tool, we would not have noticed that
we were thereby imposing the constraint that DF=EF. It was only by going
step-by-step that we could see what dependencies were being designed into
the figure by construction. The packaging of the detailed construction process
in a new tool would have obscured the imposition of dependencies. This is
the useful process of “abstraction” in mathematics: While it allows one to
build quickly upon past accomplishments, it has the consequence of hiding
what is taking place in terms of imposing dependencies. The abstraction of
the construction experience into a fixed process and then into a “black box”
tool is an example of reification.

While dragging figures that have already been constructed and even
constructing with a large palette of construction tools can be extremely
helpful to students for exploring geometric relationships and coming up with
conjectures to investigate, such an approach can give the misimpression that
the relationships are abstract truths to be accepted on authority and validated
through routinized deduction. It is also important for students—at least for
those students who want a deeper understanding of what is going on—to be
able to construct figures for themselves, using the basic tools of straightedge
(line) and compass (circle). They should understand how other tools are built
up from the elementary construction methods and should know how to create
their own custom tools, for which they understand the incorporated
procedures.

Of course, simply constructing figures is not enough. One must be able to
reflect upon what is being accomplished in the construction and what one is
trying to accomplish—and that involves discourse. Within a social setting of
collaboration, students will want to share their ideas, questions, conjectures,
and discoveries with their friends, generating occasions for geometric
discourse and collaborative learning. In order to work together on tasks and
benefit from each other’s perspectives, they will have to exchange
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constructions and custom tools, which incorporate and preserve their creative
insights. In a multi-user environment, small groups of students can explore
dynamic drawings together and discuss the construction process as they work
on it as a team.

Topics to Explore Triangles and their Incenters

In later chapters (see Chapter 10. ), we will describe the VMT Project’s
approach to collaborative learning of dynamic geometry and curricular topics
designed for virtual math teams. Here we see some simple sample activities
for exploring the kinds of triangles and quadrilaterals that are possible in
terms of the constraints used to construct them.

IN] oA / /'_{7 e ’\. ABC| e{» Move
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1. Take turns dragging each vertex of each triangle.

Can you tell what constraints each of these
triangles was constructed with? A
2

2. How many different triangles can be constructed?
* Some have different number of equal sides.

* Some have different number of equal angles.

“ Some have different number of right angles.

* Some have different number of lines of symmetry.

3. Which of these triangles can be dynamically dragged
to match which other ones? Can polyl match all the others?
Does everyone on the team agree about the matches?

Figure 4-4: A topic about constraints for different kinds of triangles.

The topic in Figure 4-4 encourages groups of students to explore a number
of triangles that were constructed with different constraints. The students can
drag the vertices of the triangles to see which sides and angles are dependent
upon other sides and angles. The students are prompted to consider what
different constraints and combinations of constraints are possible. Polyl,
which is a scalene triangle with no constraints on the sizes of its sides and
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angles, can be dragged on top of other triangles and be dragged to match them
by exactly covering them. This can provide a highly visual and literally
graspable sense of the otherwise abstract sense of congruence.

The situation with quadrilaterals is more complicated than with triangles.
There are a lot more possibilities, as shown in Figure 4-5. This topic is similar
to the previous one in supporting the interactive and collaborative exploration
of possible constraints and the variety of forms that the constraints can impose
on polygons.

Figure 4-6 allows students to construct the incenter of a triangle using the
built-in tool for bisecting angles at the triangle’s vertices. The students can
then drag the vertices of the triangle to observe the behavior of the incenter
point. They can create their own custom incenter tool, for quickly locating the
incenter of any given triangle. While this gives the students a sense of the
incenter by being able to drag triangles and observe their incenters, it does not

5 A p> 1Y . . e . B = + Move
N g % ol (] |E [ 2 ABC _a:2 o
. . —=3 Drag or select objects (Esc)
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Can you tell how each of these

uadrilaterals was constructed?

Figure 4-5: A topic about constraints for different kinds of quadrilaterals.

provide the insight into the constraints that cause the incenter’s properties as
described in the previous section. This illustrates the limitations of certain
approaches to dynamic geometry, particularly those that emphasize dragging.
Of course, this topic just provides a first acquaintance with incenters. The
students have not yet even seen how the incenter functions as the center of an
inscribed circle. Future topics can come back to explore and expose the
mystery of the incenter.
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To construct the incenter of a triangle, construct the
bisectors of the three vertices (you can use the Angle
Bisector tool for this).

Construct the Point where these Lines intersect.

(Note that all three Lines intersect at the same location,
S0 you can use the intersection of any two Lines.)

Now create a custom tool to automatically construct
the incenter given the three vertices of a triangle.

B Create some different triangles and their incenters.
Drag the vertices of the triangle and observe how the
incenter behaves. Is it always inside the triangle?

~__

—

Figure 4-6: A topic for constructing the incenters of triangles, including creating
a custom tool.
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Chapter 5. Technology:
Deconstructing Geometry

Chapter Summary

Dynamic-geometry software applications such as
Geometer’s Sketchpad, Cabri, and GeoGebra are
described in this chapter as computer-supported
environments for exploring an innovative approach to
geometry. This approach is characterized in terms of
dynamic dragging, dynamic construction, and dynamic
dependencies. These characteristics distinguish it from
traditional paper-and-pencil geometry in ways that can
make visible the human-centered nature of geometry.

The Origin of Dynamic Geometry

Dynamic geometry emerged from the potential of personal computers to
provide interactive diagramming tools with embedded computational support.
The core technology actually considerably predates personal computers with
Sutherland’s (1963) SketchPad software, which provided a graphical user
interface with an object-oriented draw program before there really were
graphical user interfaces, object-oriented programming or draw programs.
Video games developed the technology further—and largely drove the
personal computer market from its start.

In the late 1980s, Nicholas Jackiw, the designer and programmer of
Geometer’s Sketchpad, began working with Eugene Klotz on one of the first
instances of a dynamic-geometry program at the Visual Geometry Project, a
forerunner of the Math Forum (Scher, 2000). At about the same time, Jean-
Marie Laborde began Cabri, in France. The developers of Geometer’s
Sketchpad and Cabri shared ideas in the mid 1990s. In 2002, Markus
Hohenwarter launched GeoGebra as an open-source dynamic-mathematics
environment.
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These programs have subsequently become popular around the world.
Although each of the programs has subtle differences in their geometric-
construction paradigms and somewhat different functionality, they are
fundamentally similar in their affordances for students of geometry. They
make geometry dynamic by allowing a person using the system to construct
a geometric diagram with labels and then to move the interconnected
geometric objects by dragging their points around. As objects are moved, they
maintain dependencies that were part of the construction process. This should
be clear in the following example.

An Example of Dynamic-Geometry
Construction

Figure 5-2: Inscribed equilateral triangles.
Figure 5-1: Inscribed equilateral triangles after dragging point D.

In Figure 5-2, we see a construction in which equilateral triangle DEF has
been inscribed in equilateral triangle ABC'. Figure 5-1 shows the same
construction after point D has been dragged upwards. A user can move Point
D by placing the cursor on point D and dragging the point in the construction.
However, the movement of point D is constrained by the construction to

! This construction was suggested by (Oner, 2013).
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always remain on line segment AC and to not go past its endpoints. This is
characteristic of dynamic geometry.

Notice that in addition to point D moving, points E and F also moved when
point D was moved. The line segments connecting these points and forming
triangle DEF have moved with their endpoints, effectively rotating triangle
DEF. This is because of how the inscribed triangles were constructed. They
were constructed in a special way in order to preserve the equilateral
characteristic of triangle DEF. The larger triangle ABC can also be rotated by
dragging one of its vertex points, such as point A or B. No matter how any of
the points in the construction are dragged, the other points will move in ways
that maintain the equilateral character and inscribed relationship of the
triangles.

By studying Figure 5-2 and Figure 5-1, it may be possible to figure out how
to construct the triangles so that they will maintain their equilateral character
dynamically. We can construct triangle ABC to be equilateral by following
Euclid’s first proposition. Starting from an arbitrary line segment AB, we
construct a circle centered on point A and going through point B. Then we
construct a second circle centered on point B and going through point A.
These two circles intersect above and below AB and we mark one of the
intersections as point C (see large arcs in Figure 5-3). We then construct
triangle ABC, connecting the points. We know that triangle ABC is
equilateral because (as Euclid argued) its three sides are equal in length to line
segment AB because they are radii of the same circles. If one subsequently
drags point A or B, changing the length of AB, then the circles with radius
AB will both change, moving point C in precisely the right way to keep ABC
always equilateral. We can say that the lengths of AC and BC—and thus the
position of point C—are “dependent” upon the length of AB. Consequently,
triangle ABC is defined by this dependency. Constructing dependencies is
fundamental to dynamic geometry. As in the example we just went through,
these dependencies are implicit in Euclidean geometry, but become visible in
the construction and manipulation of dynamic geometry.
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Note that sides AC and BC are dynamically dependent upon side AB in the
sense that if the length of AB changes, then the lengths of AC and BC will
change correspondingly, maintaining the constraint of equality no matter how
points are dragged or other changes are made. This goes significantly beyond
the static constructions of Euclid, in which AC and BC are only guaranteed
to be the same length as AB when AB is the specific length that it has in the
drawing. Of course, Euclid’s drawings were intended to be understood as
general. Thus, AC and BC were understood to be the same length as AB—no
matter what length AB was given to start with. In Euclid, one could only
imagine different lengths for AB, but in dynamic geometry, one can actually
change the length of AB dynamically and watch how built-in constraints are
maintained.
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Figure 5-3. Constructing the dependencies for inscribed equilateral triangles.

Having constructed a dynamically equilateral triangle ABC, how do we
construct an inscribed dynamically equilateral triangle DEF? That is the
challenge of the given problem. We can place points D, E, and F on the three
sides of ABC, but they will not be constrained to stay at equal distances from
each other. If we try to use Euclid’s Proposition 1, again we run into problems.
Say we construct line segment DE (connecting a point D on side AC and a
point E on side AB) and then construct circles of radius DE around D and E.
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The intersection will not fall along line BC. Even if it did happen to fall there,
we could not locate point F at the intersection of three lines because that
would be over-constrained. (According to Euclid, a point is defined by the
intersection of two lines, not by the intersection of three lines.) Also, if the
intersection just happened to fall on side BC, it would not stay on there when
the figure was dragged.

We need a different approach. By dragging the triangles in Figure 5-1, we
might notice that the distance of the vertices of the smaller triangle are always
at equal distances from the corresponding vertices of the larger triangle. In
other words (or symbols): AE=BF=CD. In fact, if you specify that these three
line segments are equal, it is easy to prove by Euclidean methods that the three
triangles formed between the two equilateral triangles are all congruent. This
ensures that the sides of the inner triangle are equal if the sides of the outer
triangle are equal. Thus, if we can impose the constraint that AE=BF=CD,
then we can construct a dynamically equilateral triangle DEF inscribed inside
of an equilateral triangle ABC.

Figure 5-1 shows how the inscribed triangles are constructed within
GeoGebra. Point D is placed on line AC. A circle is constructed with
GeoGebra’s compass tool, with center at C and going through D. The circle
is moved to be re-centered on point A and point E is constructed where this
circle intersects side AB of triangle ABC. The radius of the circle centered on
point C and going through point D is the distance CD, so that when it is moved
to point A it constrains the distance AE to be equal to CD. The same thing is
done to construct point F. This establishes the dependency in the construction
that AE=BF=CD. Triangle DEF is then constructed as a dynamically
equilateral triangle.

In this example, we see how visualization (drawing) and conceptualization
(proof) are so intermingled in dynamic geometry. By dragging the
construction, you discover how to construct it—and you can then prove why
that works. GeoGebra provides tools to explore, to construct, and to impose
dependencies on the construction.

Defining Custom Tools

The toolkit of GeoGebra reflects some of the refinements (reinterpretations)
of Euclidean geometry in recent math pedagogy. For instance, it distinguishes
as different kinds of objects: “lines” (infinite straight lines passing through
two defining points), “segments” (finite line segments terminated at the two
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endpoints that define them), and “rays” (infinite lines starting at one endpoint
and passing through a second defining point). Euclid called these all “straight
lines.” GeoGebra also provides a “compass” tool (used in Figure 5-3). This is
based on the idea that Euclid used a straightedge and compass for his drawing
and that one can fix the opening of a compass and draw circles with the same
radius by locating the compass at different centers. However, Euclid does not
do this in his proofs. After showing how to make equal-length line segments
using a circle to construct an equilateral triangle in his first proposition, Euclid
dedicates his second proposition to demonstrating how to copy a length from
one line to another given point. Figure 5-4 (left) shows how to do this using
GeoGebra, following Euclid’s procedure. In this way, all of Euclid’s
constructions are built up from the basic principle that all radii of a circle are
equal.

In Figure 5-4, the length of segment AB is copied to ray CD using the dozen
steps of Euclid’s Proposition 2 (detailed below). Then a custom tool is created
to automate this process, much as the compass tool does. In addition, a custom
tool is created to automate the construction of an equilateral triangle Figure
5-4 upper right). The construction is then recreated using the new custom
tools: the base of the larger triangle is defined by two points, L and M, to
which the new custom triangle tool adds point N. An arbitrary point O is next
provided on LN as a vertex of the inner triangle. Using the new custom copy
tool, the length of NO is copied onto LM, defining P, and the length of LP is
copied onto MN, defining Q (Figure 5-4 lower right). Triangle OPQ), inscribed
in LMN, is equilateral and can be dragged without losing its equilateral
character.
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Figure 5-4: (Left) Copying a length, AB, from segment AB to
segment CH on ray CD. (Upper right) Identifying the third vertex for
an equilateral triangle IJK. (Lower right) Duplicating Figure 5-1
with the use of custom tools.

Copying a segment length

Here is how segment AB was originally copied onto ray
CD, using the procedure in Euclid’s second proposition
plus an extra circle to align the length along the ray:

The goal is to place at a given point along a given line a
straight line equal to a given straight line.

Let C be the given point on ray CD, and AB the given
straight line (Figure 5-4). Thus it is required to place on
ray CD starting at C a segment equal in length to
segment AB. Let the equilateral triangle ACE be
constructed on AC (using the construction procedure of
Proposition 1). Let ray EA and ray EC be produced,
extending out from the triangle. Let a circle centered on

86
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A and through B be produced, with point F at the
intersection with ray EA. Again, let a circle centered on
E and through F be produced, with point G at the
intersection with ray EC. As Proposition 2 argues,
EF=EG and EA=EC, so CG=AF; but AB=AF, so
CG=AB and the length AB has been copied to point C.
Now let a circle be produced with center C going
through G and let point H be at the intersection of this
circle and ray CD.

Then, CH=CG, so also CH=AB and the length AB had
been copied to segment CH along ray CD.

This illustrates how the tools of construction in dynamic geometry are
intimately related to the procedures in Euclid’s proofs. Once a valid
construction procedure has been proven, one can define a tool to encompass
that procedure, such as GeoGebra’s compass tool for copying a line length in
accordance with Proposition 2. Gradually, one can expand the construction
toolkit with new custom tools—paralleling the way propositions build on one
another systematically in Euclid’s Elements. GeoGebra provides a toolkit of
dozens of tools, which can be derived from straightedge and compass
constructions in accordance with Euclid’s propositions. Users can define their
own versions of these or build further upon them. Once a student understands
how a construction guarantees the relevant dependencies (such as that the
length of CH is dependent on the length of AB), it is practical for the student
to use a tool that conveniently automates that construction (copying a line
segment).

Dynamic Dragging

Dynamic geometry differs from previous presentations of geometry in at least
three significant features: dynamic dragging, dynamic construction, and
dynamic dependencies.

The ability to drag points is the most immediately striking characteristic of
dynamic geometry. Most academic research on dynamic geometry has
focused on this feature. Most classroom usage of dynamic geometry also
centers on this feature, providing students with pre-constructed dynamic
diagrams and encouraging them to explore the diagrams by dragging points.
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Previous media for diagrams have not allowed one to vary the figures except
in imagination. Papyrus, clay tablets, parchment, books, pencil on paper, and
chalk-on-blackboard were not interactive media. The most one could do was
to stare at the fixed diagram and imagine moving points or lines to vary the
configuration. This meant that one rough graphical representation might have
to illustrate infinite possible variations. For instance, a proof concerning
equilateral triangles might apply to equilateral triangles of all sizes, rotated at
all possible angles, while the illustrative diagram itself had a fixed size and
inclination.

Dynamic dragging changes the nature of geometry. In Euclid, a point is a
fixed location. In dynamic geometry, a point is at a location, but can always
be dragged to an infinity of different locations, depending upon whether it is
constrained or dependent. This creates three classes of points: those that are
completely free to move, those constrained to stay on a line (segment, circle,
etc.), and those dependent on an intersection and not able to be dragged
directly (but moved in response to the movement of other geometric objects
based on dependency relations). The ability to drag points dynamically has
fundamental implications throughout the mathematical system of dynamic
geometry. Dragging shows its relevance to construction in the importance of
the “drag test.” It affects the methods of proof by emphasizing the use of
superposition and spatial transformations. Even the definitions of geometric
objects have to be defined differently since, for instance, a scalene triangle
can be dragged into appearing like an isosceles or equilateral triangle.

In the preceding example (Figure 5-2), for instance, it would have been hard
to know important features of the diagram without being able to drag the
vertices of the two triangles. Through dragging point A, one can easily and
naturally discover that the two triangles remain equilateral and inscribed as
the size and orientation of the larger triangle is varied over arbitrary ranges
(but DF is not necessarily parallel to AB and D is not a midpoint of AC).
Through dragging point D, one discovers as well that the inner triangle can
remain equilateral and inscribed with point D anywhere along AC, including
at the endpoints. One may also notice that the area of triangle DEF varies
continuously from a minimum when point D is centered on side AC to an area
equal to that of triangle ABC when point D is at an endpoint of AC.
Significantly for the example, one may notice while dragging point D that
AE=BF=CD remains true.

With fixed diagrams, it took a certain “professional vision” (Goodwin, 1994)
of mathematicians to see important mathematical relationships in diagrams.
Certain features of geometric configurations are visible even in fixed
diagrams. For instance, it is visibly apparent in the drawing of ABC in Figure
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5-3 that the circles centered on A and B of radius AB actually do intersect (at
some point C). Whether this remains true for any configuration of A and B
may be ascertained by staring at the diagram and imagining different locations
for A and B. Dragging makes relationships easier to see—providing a way to
train students to see like mathematicians.

Dragging  makes  relationships
easier to see—providing a way to
train  students to see like
mathematicians.

Another traditional skill of mathematicians is to design a diagram to be
effective for a given proof. For instance, Figure 5-2 illustrates a proposition:
that an equilateral triangle can be inscribed in another equilateral triangle.
However, it illustrates a special case, which might not generalize: the base
AB is roughly horizontal and the point D is roughly at the midpoint of AC.
Figure 5-1 may represent the general case better. It also makes more salient
the fact that AE=BF=CD. An experienced mathematician might decide to use
the later diagram. However, in dynamic geometry, one can start with either
and then drag it into the other. The ability to drag offsets the need for the
traditional skill of carefully designing illustrative diagrams. It makes it easy
for students to drag a figure to explore what special cases exist and what
relationships seem to persist in general as specifics change. It is no longer
crucial to select a “representative” case since an arbitrary view can be dragged
through whole ranges of possible variations.

Of course, it is possible that students will not drag a construction into every
possible case or even that a given dynamic construction cannot be dragged
into every case covered by a specific proposition. However, dragging can
provide the mediated experience of apprenticeship in geometry that can lead
to the ability to conduct what Husserl (1929/1960) called “eidetic variation”
in one’s imagination to reveal constants under change. Having engaged in
dynamic-geometry experiences of variation through dragging, students may
subsequently internalize this visualization into variation in their imagination.

Dragging also gives students a hands-on, visceral sense of the constraints and
characteristics of a geometric diagram. It enhances the bodily involvement of
the interaction between person and diagram in which “creative discovery” can
take place (Merleau-Ponty, 1955). Perhaps this will be even further
heightened when tablet computers fill the role that clay tablets originally
played. Exploration through dragging is intertwined with the possibilities of
construction. As a student learns to initiate various kinds of constructions, she
starts to see new possibilities for dragging, for seeing constraints and patterns
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and possibilities. As her body is extended by the computer interface into the
digital world, she gains a sense of how to move within that world, to live and
perceive in a dynamic-geometry world (Merleau-Ponty, 1961/1964). Then, as
the student starts to look at the dynamic environment through the eyes of a
designer of structural dependencies, she can see constraining relationships at
work, as well as interesting potential transformations of them. Such
embodied, skilled vision produces targets or hunches (informal conjectures)
to explore through purposeful dragging.

Dynamic Construction

Previous media for diagrams not only limited variation, they required the
diagrams to be completely constructed prior to the presentation of the proof.
Thus, where Euclid’s Proposition 2 begins in the English translation, “Let A
be the given point” (Euclid, 300 BCE/2002, p. 3), this is actually stated in the
original Greek in the perfect imperative (as already having been done): “Let
the point A have been taken” (Netz, 1999, p. 25). The proof then proceeds to
point to the already existing diagram and to describe the relationships within
it. The text often relies on the pre-existence of the diagram for its sense. As
an example, after Euclid specifies line AB in Proposition 1, he says, “With
center A and distance AB let the circle BCD be described” (Euclid, 300
BCE/2002, p. 3). Point B has been defined as an endpoint of line AB and point
D is simply an unspecified point anywhere on the new circle. But point C
cannot be defined in the text until another circle is described, which intersects
the first circle at point C, thereby specifying point C. It is only because the
whole diagram already exists and includes point C that the text of the proof
can use the label C as part of the designation of the first circle.

As Netz (1999) documents with numerous examples, Euclid’s texts often rely
upon the pre-existing diagrams for their sense. On the other hand, the
diagrams rely on the texts for their interpretation. Text and diagram are
mutually determinative, with the labels of points relating the two. Dynamic
geometry overcomes the necessity of completing one before the other. The
diagram can be constructed in parallel with the unfolding of the textual
argument—at least in a live presentation. (In this printed document, we are
limited to viewing static screenshots interspersed in the text.)

Livingston (1999) analyzes in detail the significant difference between how a
conjecture is explored and how its proof is presented. One must first discover
an interesting relationship and then piece together an argument. This usually
proceeds through exploration, with its trials, deadends and backtracking. The
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final presentation is then orchestrated as a logical deduction, straight from
givens to conclusion with the minimum necessary steps. The conclusion is
presented as though it necessarily always existed—rather like the refined
diagram that pre-existed the proof.

The past perfect tense has always characterized mathematics. Even as new
objects were created in history—conics, irrational numbers, logarithms,
infinitesimals, imaginary numbers, hyper-spheres—they were always taken
as having always already existed. They were not treated as newly created
human artifacts, designed for their interesting properties, but as discovered
ideal objects in an otherworldly realm of mathematical objects (Lakoff &
Nuiiez, 2000). Whether or not this view motivated Plato’s theory of Forms,
subsequent mathematics generally adopted a Neo-Platonic attitude, obscuring
the important role of exploration and invention in the practice of mathematics.

Dynamic geometry can reverse this obfuscation. Students can now construct
diagrams as an integral part of their exploration of geometric relationships.
Using the construction tools of dynamic geometry, students can explore
mathematical conjectures through trial constructions. The bureaucratic format
that Euclidean proofs have evolved into can be replaced with active
exploration, which does not assume the diagram is complete beforehand,
treats mathematical objects as human artifacts designed to have interesting
features, leads to moments of aporia and breakthroughs of insight as
deduction unfolds as a creative form of discovery.

The ability to construct dynamic diagrams that present intriguing puzzles—
which support exploring conjectures and which illustrate proofs—is itself a
subtle skill, a skill that must be learned through instruction, apprenticeship
and practice. This skill can be developed as part of the process of learning
geometry content. For instance, the geometric objects like points, lines, circles
and triangles are also graphical objects in dynamic-geometry environments;
students can learn the characteristics of the objects by constructing and
dragging the graphics. In fact, much of Euclid’s Elements can be read as
instruction in construction:

e Proposition 1, how to construct an equilateral triangle;

e Proposition 2, how to copy a line segment of a given length to another
position;

e Proposition 3, to measure off the length of a shorter segment along a
longer one;

e Proposition 9, to bisect an angle;

e Proposition 10, to bisect a line segment;
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e Proposition 11, to construct a perpendicular to a line at a point on it;

e Proposition 12, to construct a perpendicular to a line from a point not on
it; etc.

The art of construction has always been central to geometry, although it has
not always been stressed as a creative skill.

Dynamic Dependencies

The key to constructing for exploration is the construction of dependencies.
This is another potential implicit in Euclid, but not adequately recognized,
acknowledged or researched.

As we have seen, the construction in Proposition 1 demonstrates how to build
in the dependency that defines an equilateral triangle: that its three sides must
be of equal length. Given an initial side AB, Euclid adds circles centered on
points A and B, each of radius AB. He then labels an intersection of the two
circles as point C, the third vertex of the constructed equilateral triangle,
ABC. The lengths of the new sides AC and BC are dependent upon the length
of side AB because they are radii of circles of which AB is a radius—and all
radii of a given circle are the same length by definition of a circle. In a fixed
drawing, we might just say that AC and BC have been constructed to be the
same numeric length as AB. However, in a dynamic construction, one can
drag point A or point B and change the length of AB. If the dependency has
been properly constructed, then point C will move in response to the
movement of point A or point B precisely the right way to maintain the
equality of all three sides. The lengths of AC and BC are dependent upon the
length of AB—however that may change under dragging—and not just on its
current numeric value.

This role of dragging in dynamic geometry leads to the important “drag test.”
When someone constructs part of a drawing incorporating a constraint, they
should then drag the involved parts of the drawing to make sure that the
intended constraint is maintained. For instance, in constructing the equilateral
triangle, they may find out that point C fails to stay on both circles when point
A or B is dragged, thus revealing a fault in the construction. The drag test
unites dragging, construction, and dependencies by putting dragging at the
service of checking a construction to make sure that the intended
dependencies are maintained dynamically.
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The dynamic diagram in Figure 5-2 was constructed in such a way that it
remained a diagram of two inscribed equilateral triangles no matter how any
of'its points were dragged. The dependencies included that AB=AC=BC; that
points D, E and F remain on segments AC, AB and BC, respectively; as well
as that AE=BF=CD. The defined dependencies ensure that the two triangles
remain inscribed and both equilateral under any change in size or rotation of
either triangle or the dragging of any point. Note that there is no direct
specification that DE=DF=EF, although the fact that the interior triangle
remains equilateral is an indirect dependency of the construction

It is possible to have a computer whiteboard similar to Sutherland’s (1963)
original SketchPad in which lines and points can be drawn as movable
objects. One can draw an equilateral triangle on such a whiteboard by placing
three lines of equal length meeting at their endpoints. However, if one then
drags a vertex, the triangle falls apart entirely, loses its equilateral
characteristic, or fails to re-size.

A dynamic-geometry environment must implement computational
mechanisms behind the scenes to both maintain the desired dependencies and
at the same time to allow permitted manipulations. In fact, the first thing the
environment does is to keep track of:

e  Which objects are independent and can be dragged freely (like A and B);
e  Which are constrained and can only be dragged in limited ways (like D);

e And which are dependent, cannot be dragged directly at all, but just move
in response to the other points on which they are dependent (like C, E and
F).

It requires very special software to support dynamic geometry. The dynamic-
geometry applications we have today—such as Geometer’s Sketchpad, Cabri,
or GeoGebra—were carefully designed to maintain arbitrarily complex
geometric dependencies while making the user experience seem extremely
natural. This is the hidden power of dynamic geometry. Once one gets used
to the paradigm of dynamic geometry and thinks in terms of constructing
dependencies, everything automatically works the way that one would expect
it to. The user does not have to worry about the hidden software mechanisms.

Dependencies lie at the heart of Euclid’s geometry, but they have been largely
buried in the traditional understanding of geometry. This is a philosophic
issue. Heidegger might say that the being of the geometric objects was
concealed through the Greek and then the Roman and then the German and
then the English and then the American way of caring for and speaking about
the objects and their dependencies.
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The traditional understanding of geometry that has been passed down from
the Greeks through its subsequent translations, reinterpretations, and
refinements over the centuries confuses the causality of dependency and
proof. Consider the diagram of inscribed equilateral triangles (Figure 5-1).
One could start with equilateral triangle ABC in the completed diagram and
specify that AE=BF=CD. Then one could prove that triangle DEF must be
equilateral through a logical deduction, perhaps including an argument about
the three small triangles outside of DEF being congruent. This would establish
the truth of the equilateral nature of DEF. That is the traditional perspective.
Euclid’s proofs are commonly conceived of as such discoveries of existing
truths in the realm of Platonic ideas. Euclid’s Elements are now read as
building up an axiomatic system for proving these truths.

However, this reverses the causality. For, if we have constructed DEF by
using the constraint that AE=BF=CD, then we already know that we imposed
this constraint in order to construct an inscribed triangle that would be
equilateral. It is not a matter of discovering some mysterious otherworldly
truth; it is a matter of having intentionally built in the character of equal side
lengths into our construction of DEF. It is not a matter of a formal logical
deduction, which unfolds with necessary truth. The drawing of equal circles
at A, B and C is not originally a means for proving that the sides of an
equilateral triangle have “always already been” equal; the circles are part of
the construction of the dependency that itself ensures that the sides will be and
will remain equal.

The truth of the proof was built in by the construction. It was hard to see this
the way that geometry has been conceptualized throughout history, but easy
to see in dynamic geometry if one focuses on the construction of the
dependencies as an active, creative, inquiry process. We built in the
dependency as we constructed the diagram: that is why the triangles are
equilateral! Taking the diagram as already given before the proof is presented,
combined with the traditional assumptions about the nature of geometric
objects as divorced from human activity, hides what has transpired.
Experience with dynamic geometry—including dragging, constructing, and
designing dependencies—exposes the creation of objects, diagrams and
relationships by people.

Shockingly, the mathematics and education literature on dynamic math has
scarcely mentioned this central role of designed dependencies—and of the
ability to construct dependencies in dynamic geometry. Although
dependencies lie at the heart of proof and although dynamic-geometry
software is explicitly built on the maintenance of dependencies, very few
research publications discuss the role of dependencies in dynamic geometry,
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none in depth. In particular, they do not discuss the relationship of
dependencies to proof. This is a symptom of the extent to which the nature of
geometry has been obscured.

Few research publications discuss
the role of dependencies in dynamic
geometry... especially the
relationship of dependencies to
proof.  This is a symptom of the
extent to which the nature of
geometry has been obscured.

In a typical geometry proof, recognition of the central underlying dependency
is the key potential insight into why the proof works—the door to the “aha
moment.” The diagram illustrates some relationship not because of a
mysterious otherworldly truth, but because the diagram was constructed with
dependencies that built in that relationship. If students learn to think in terms
of dependencies, to construct diagrams around dependencies and to search for
dependencies, then geometry might be a lot more exciting and meaningful.
The students might consider themselves more successful as mathematical
thinkers.

While most classroom use of dynamic geometry today merely uses it as a
visualization tool, to allow students to drag existing diagrams around, the
technology has a greater power: to empower students to construct their own
diagrams, to build their own dependencies into the objects and even to fashion
their own dynamic construction tools. Then they can read Euclid’s Elements
as a guide to designing and constructing interesting objects and tools, rather
than as an old-fashioned compendium of irrelevant truths to be memorized.
Geometry can become an exciting design challenge, in which one creates
innovative mathematical objects and imposes interesting dependencies
through thoughtful construction.
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Chapter 6. Collaboration:
Group Geometry

Chapter Summary

The collaborative usage of dynamic geometry by teams
of students can make more visible its human-centered
nature. To support collaboration, the software must be
adapted, raising a number of issues in the design of a
multi-user environment. The GeoGebra dynamic-
mathematics software was incorporated into the VMT
collaboration environment. The process of turning
single-user GeoGebra into a collaborative version is
described here and a number of multi-user design issues
are discussed. The chapter reviews the major technical
issues that were addressed and discusses the benefits for
collaborative learning of integrating the GeoGebra
software into the VMT environment. 2

Supporting Collaborative Discourse and Action

The effort to support collaborative dynamic geometry among students who
may not be co-located involved embedding a dynamic-geometry software
system within an online collaboration environment. The Virtual Math Teams
(VMT) system—including the history of its development—has already been
described in (Stahl, 2009). The VMT system includes a Lobby for users to
create chat rooms, to invite other people to them and to browse through
existing rooms by project community, math subject, activity topic and student
team (see Figure 6-1). It supports learning by individuals, small groups, and
communities (e.g., the students in a course) with the incorporation of text-
chat, shared-whiteboard, wiki-sharing, and web-browsing media, which can
be configured in tabs when chat rooms are created (see Figure 6-2). Thus, it
is designed to support collaborative learning conceived as operating through

2 Anthony Mantoan contributed to an earlier draft of this chapter.
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processes, practices and resources that traverse levels of analysis, as will be
discussed in Chapter 8.

Research on early VMT usage suggested that the addition of a dynamic-
mathematics system would significantly enhance the ability of the VMT
software to support collaborative mathematical discourse in virtual math
teams. GeoGebra was selected because its source code was available as open
source and it had an extensive API (application programmer’s interface). The
first task was to embed the GeoGebra application in a VMT chat-room tab
(see Figure 6-3). Because both VMT and GeoGebra are programmed in Java,
this was conceptually straightforward. Math Forum programmers developed
a proof-of-concept integration in 2009 and 2010. In 2011 and 2012, the
integration was re-implemented, using the GeoGebra API. Use of the API
kept most of the new software separated from the GeoGebra source code so
that frequent updates of GeoGebra could be incorporated easily, allowing the
VMT system to take advantage of on-going open-source development of
GeoGebra. This development work was done in coordination with the
GeoGebra lead developers, so that they extended the API to meet the needs
of VMT. In the longer term, this will facilitate the GeoGebra developer
community in developing its own multi-user version, possibly for use on
tablets and mobile devices.
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Figure 6-1: The VMT Lobby interface.
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Figure 6-3: A VMT chat room with a GeoGebra tab.

Although embedding GeoGebra in a VMT tab was relatively easy, the real
problem was much deeper. GeoGebra was designed from the ground up to be
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used by a single user on a single computer. For online collaboration, we
wanted multiple users to be able to view the same figure and to observe each
other dragging its points and constructing new objects. We wanted this to
happen in real-time and to appear natural so people could experience co-
presence at the figure while they chatted about it. In order to support what
were described in Chapter 5. as the core dimensions of dynamic geometry—
dynamic dragging, dynamic construction and dynamic dependencies—we
needed to support co-presence, intersubjective shared understanding and
group cognition, as will be discussed in Chapter 8.

The first technical hurdle was to design a suitable software architecture for
multi-user engagement with GeoGebra. VMT implements a standard client-
server model, where software clients on the computers of students send
messages to the VMT server, which then distributes the messages to all the
clients (computers of students in the same chat room). No client—not even
the one that sent the message—takes any action until it gets the message from
the server.

This presented an immediate problem for embedding GeoGebra, which is
strictly single user. In contrast to the client-server model of VMT, each
instance of GeoGebra on each client builds and maintains its own independent
dynamic-geometry construction, which is not dependent on the server.
However, the construction on each client must be kept in sync with the other
clients, so that every student in the same chat room sees the same thing and
can discuss it and manipulate it. Furthermore, we want all action to appear
seamlessly instantaneous to a user dragging an object, so we cannot make
GeoGebra wait until a message goes to and comes back from the server before
the action is shown on the screen of the student who is taking the action.

This forced us to implement multi-user GeoGebra essentially as a peer-to-
peer architecture, using the VMT server as the communication channel
between the clients. When a user takes some action on a GeoGebra tab, the
GeoGebra action is implemented in that client’s GeoGebra tab. At the same
time, the VMT client sends a message to the server with a GeoGebra
command equivalent to the action that took place. The VMT server sends the
action to all clients (including the initiator). The initiator must ignore the
return message from the server since it has already performed the action. The
other clients then execute the command, which results in updating their
construction so that it matches the sender’s. In this way, all the clients are kept
in sync. Because the action of the original sender is performed immediately
without waiting for the message to go to the server and then come back, the
sender’s action appears immediately and seamlessly. As long as the delay
between one student taking an action and the other students seeing the results
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is a fraction of a second, the illusion of simultaneity and co-presence is
maintained for the whole team.

This solution allowed the display of GeoGebra figures and actions to be
handled primarily by the GeoGebra software on the student computers, and
the communication of actions to be handled by the VMT software on the
central server computer, which also communicated the chat and changes in
other VMT chat-room tabs. On the one hand, this kept the two software
modules relatively independent to facilitate software upgrades and
maintenance. On the other hand, the separation complicated the programming
of features that had to span the two areas. For instance, there are VMT features
like awareness messages, activity logging, the history slider, and the pointing
tool, which affect both the GeoGebra tab and the VMT wrapper. In addition,
the requirement of maintaining speedy communication among the clients
introduced mechanisms that spanned the two independent program code
bases.

Supporting Dynamic Dragging and Co-
Presence

To support the fluid use of dynamic dragging and the observation of points
and other geometric objects being smoothly dragged, the software system has
to respond quickly to user actions and has to display the results of actions
without noticeable or disruptive lags. As one drags a point in GeoGebra, a
number of messages are sent describing its new position many times a second.
This allows the drag to be duplicated on other clients quite accurately. At first,
we had tried just broadcasting the original start position of an object and then
its final position after a drag. Unfortunately, that gave too little sense of co-
presence and too little information about how the object was dragged to
clients observing another client’s actions.

However, the approach of broadcasting hundreds of intermediate locations of
a dragged point every second created too much messaging traffic across the
Internet. Imagine a student in Singapore dragging a 10-sided polygon with
interior line segments. Each point and line, along with all the dependencies in
the figure would have to have its description and location information
broadcast to Philadelphia and then that information would all have to be
broadcast back to each of the other students’ computers. Even if the school in
Singapore had considerable Internet bandwidth and the Math Forum server
were powerful, this volume of update traffic would soon result in response




Translating Euclid 102

delays that would interfere with effective collaboration. Even chat messages
would be delayed, so that students would not know if others were paying
attention.

In addition, all of the events that are broadcast are also saved as part of the
history of the chat room. When a student enters a room in which some activity
has already taken place, the history has to be loaded and all of the GeoGebra
construction and display mechanisms have to process and replay that history
in order to display its end state to the student. The same thing takes place
when a researcher or anyone else opens the VMT Replayer for that room. This
results in long delays in opening an existing room or viewing it in the
Replayer.

The first thing we did to address this was to make sure to only send necessary
updates. GeoGebra has independent objects and dependent objects. The
position and other characteristics of dependent objects can be calculated based
on the independent objects. Therefore, we only send out updates for
independent objects, and let each client recalculate the dependent ones,
essentially shifting much (and often most) of the work of updating to the
client’s local machine. For instance, if a 10-sided polygon is regular
(equilateral), then 8 of its vertices and all of its sides are dependent upon two
vertices. We can send the location of the two points and have the client build
the whole polygon from them.

The next thing we did was to implement “update throttling” in our clients. By
watching the mouse status the software can determine when updates are due
to objects being dragged. In that case, it skips a certain number of updates,
only broadcasting periodically. It also watches the mouse for a “button
release” event, so it can be sure to always broadcast the final position of the
objects. However, GeoGebra sends out updates for every single object that is
being moved. So we could not simply skip a fixed number of updates, since
that would result in certain objects in a construction being updated during a
drag event, and others not being updated. The effect is that the construction is
distorted until the user releases the mouse button, and the final update is sent
out to put everything in its final place. To solve that problem, the VMT
software gets a list of selected independent objects from the GeoGebra
software. It skips a number of updates for the entire group of objects, and then
sends out one combined update for the whole selection.

A challenge here is finding the right number of updates to skip. If too few are
skipped, the system will still become bogged down. If too many are skipped,
the movements of objects will look choppy and other users may not be able
to tell what the mover did. We have been experimenting with a variety of
numbers for this to try to find the right balance. One consideration is that the
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right balance for one task may not be the right balance for a different task. We
have set the default threshold for 10, so that only about one intermediate
position in 10 is broadcast. While dragging is not completely smooth at this
setting, it provides a good sense of the drag. Since in most rooms the majority
of actions are dragging, this setting reduces the number of broadcasts by
almost 90%.

In addition, we have provided a threshold button so that users can adjust the
setting. If they want to see more accurate dragging, they can decrease the
number skipped. If they are concerned about delays when dragging complex
figures, they can increase it. Along with several other measures to speed up
display of the GeoGebra tab, loading of used rooms, scrolling of history and
display of the Replayer, this threshold mechanism has solved the major
network-load problem and start-up delays.

Since GeoGebra maintains relationships between objects in the construction,
it must recalculate the construction when changes are made. For complex
constructions, these calculations can be time consuming, even for a modern
computer. The normal way VMT reloads chat rooms is to replay every event
that occurred, recreating the whole history. We found that rooms that had been
used extensively—say, for two hours or so—and had multiple GeoGebra tabs
could take many minutes to load. This was mostly due to GeoGebra having
to recalculate all those historical changes to the construction. Our solution
here is to save snapshots of the construction every time a user finishes a turn
in control of constructing in the GeoGebra tab. Now, when the room is loaded,
each event is loaded into the history, but it is not replayed in GeoGebra. When
all the events have been loaded the snapshot is selected from the last “Release
Control” event, and that is loaded in the GeoGebra tab. That cuts the load
times for extensively used rooms to less than a minute.
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Similar mechanisms were introduced in the history slider and the Replayer.
In addition, for the history slider and the Replayer, a threshold tool is

File Edit Chat GeoGebra

Add a tab £3
Triangles Squares | Hexagons Gerry

Edit View Options Window Help

[

° Take turns dragging vertex A
and vertex D of Triangle DEF

Y. R

Chat about dependencies yo
what you wonder about this fi

Construct a triangle inscribed 8
that behaves the same as thi SEEEEEEEREEEEN
B Chat about how you are cons'
Ae — .
. It might be helpful to look at
the other tabs for this Topic : |

® Take Control ' |nobody has ccr>rn'tro||7 < Move (

Figure 6-4: A VMT chat room with the “Take Control” button, the history slider and

provided. It allows the user to move through the history at different speeds,
either in the history slider of the GeoGebra tab or in the Replayer. For quick
browsing the user can set the threshold to “minimum,” for a detailed study to
“complete,” or somewhere in between.

The controls for some of these mechanisms are shown in the accompanying
figures. In Figure 6-4, you can see the “Take Control” button. This gives one
user the ability to engage in construction in the GeoGebra tab. All users who
are in the same chat room with the same GeoGebra tab open will be able to
see the GeoGebra actions taken by this user. A user who is not in control of
construction in the tab can scroll back through the history of GeoGebra
actions in that tab—notice the tick marks along the left of the tab lining the
history scrollbar. Also, notice in the chat pane the presence of small colored
squares. These each signal a GeoGebra action; they are color coded to
correspond with the user whose chat postings are the same color.
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Figure 6-5: The “Release Control” button, history threshold menu and “Event
Throttle.”

In Figure 6-5, the “Take Control” button has been pressed and the user sees
the message “you have control”; if someone else had control, then that user’s
login name would be shown. To the right is an indication of which
construction tool is currently active in the tab. Notice that the chat includes
messages when users change the tab they are displaying. In this way, everyone
in a team—i.e., in the same chat room—can tell where their team members
are looking, who currently has control of the construction and what
construction tool is active. They will be able to see any change to the
construction or dragging of objects practically as they are done. They can also
adjust the “Event Throttle” to avoid annoying delays in display updates and
they can “Share Your View” to adjust everyone in the team to the same level
of zoom and focus. Through these tools, displays and mechanisms, a sense of
co-presence at a shared geometric figure can be created and maintained.

The “Share Your View” option was introduced because users would get
confused when they did not see the same thing on their screen as other users
in the room. This was because GeoGebra does not distribute user actions that
are not related to the construction, but are just viewing adjustments. A user
can zoom in or out, scroll around the view, or turn the axis and grid on or off
without affecting what other users see. Consequently, one user may be
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constructing or dragging an object in an area that is off the screen for another
user. To help with this we implemented a “Share Your View” menu option.
Even if a user does not have control, they can select this option to “push” their
view settings out to the other users’ clients. Currently this only matches up
the zoom level and the view center point, but that is usually enough to avoid
misalignments of view, which cause some users to not see important objects
that others see and chat about.

A final tool for supporting co-presence is the VMT pointing tool. That was
always part of VMT, even before GeoGebra was introduced. This tool
allowed a user to reference from a chat posting to an object or area in the
shared whiteboard. When one typed a chat message, one could select an object
in the whiteboard or a rectangular area in the whiteboard. Then, when the
message was posted, everyone could see an arrow going from the posting to
the whiteboard object or area. This supported deixis, which is considered
important for co-attending to an object, a critical component of co-presence
(see Chapter 8. ).

There are many ways in which we have tried to foster awareness of what
people are doing in a VMT chat room with GeoGebra tabs. Some of these
mechanisms already existed in VMT in the past, others have been added.
Many have been changed to seem more natural or to avoid interfering with
the main interactions. It is hard to design awareness features so that they work
well in a wide range of different use cases yet do not become invasive under
other scenarios. Features that are effective for a dyad working on a simple
problem in one tab may not work well for a larger group of collaborators
engaged in a complex task involving jumping around between different kinds
of tabs. We have tried to implement reasonable defaults and provide for some
user control as well. Of course, adding user control makes the whole system
more complicated and harder to learn and to use. Testing with middle-school
students constantly reminds us of the dangers of designing too much
functionality into the core components of the system, although in areas like
the Replayer and assessment reports, we need to support more sophisticated
users, such as teachers, system administrators and researchers.

Supporting Dynamic Construction and
Intersubjective Understanding

A major aspect of dynamic geometry is that it supports a rich form of dynamic
construction by users. This area required careful design for a multi-user
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version. The VMT Project is the first sustained effort to produce a truly
collaborative form of dynamic geometry. Although it has not been widely
publicized, there were fleeting attempts by the creators of Geometer’s
Sketchpad, Cinderella, and GeoGebra to make their products multi-user
(personal communications, July 2012). However, none of these efforts
reached the point of actually having users try out the collaboration. This is not
surprising, given the complex issues that arise. There have also been attempts
to skirt the issues by embedding single-user systems inside of learning
management environments like Blackboard, Elluminate, or Moodle; these
were screen-sharing approaches, which turned out to be awkward at best.

The VMT Project is the first
sustained effort to produce a truly
collaborative form of dynamic
geometry.

A central problem with having multiple users working on a construction is to
make sure that two clients do not change the same part of the construction at
the same time. For example if one user is creating points for a polygon and
then another user moves one of the points or uses it to construct a different
object, the intended construction is destroyed. GeoGebra assigns labels to new
points in alphabetical order. If two users simultaneously create Point C, then
there is a conflict. This can easily happen because two clients can each create
a new point C before either receives notification of the other one. Suppose
that two points already exist and one user defines a line with them while
another defines a circle. Then the line and circle will be dependent upon each
other in a way that no one intended. Aside from users stepping on each other's
toes, GeoGebra can become confused and end up in an error state if multiple
users are adding to or deleting from the construction at the same time.

To prevent such conflicts, we implemented a “Take Control” button. Only
one user can take control at a time, and for all the other users, all creation
tools in GeoGebra are disabled. While this might seem to restrict users too
much, given that we want them to engage in construction, it actually has a
positive effect on collaboration. It prevents people from going off on their
own and ignoring the work of others. It forces them to communicate about
taking turns. This leads to the group paying attention to one person’s
construction activities at a time. Of course, everyone can engage in chat,
asking why the person in control is doing certain things, make suggestions, or
point out interesting things that occur. This promotes intersubjective shared
understanding (see Chapter 8. ), because the group is acting as a single agent.
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One thing that a user can do when someone else has control of construction
is to review past actions to recall what the group did in the recent past, other
things they tried and how they got to where they are now. This is supported
by the history slider (shown in Figure 6-4). The history slider was a useful
function in the shared whiteboard of the original VMT system and we wanted
to extend it to GeoGebra tabs. However, maintaining the history for each
GeoGebra instance requires some care. Since objects in GeoGebra have
relationships and a history that is maintained separately in each client, a client
cannot accept changes to the current construction from other clients, while
browsing through the history. The latest changes would not correspond to the
historical state of the construction being displayed. Our solution here is to
simply buffer updates until the user returns to the current state. Then all the
buffered events are processed in the order they were received.

In order to support dynamic construction by a team, we implemented the
control mechanism along with awareness displays indicating who has
construction control in a given tab, what tool they are using and who else is
viewing that tab. We also implemented a history slider to allow users to
browse past actions in the team construction without interfering with the
current construction.

Supporting Dynamic Dependencies and Group
Cognition

According to Chapter 5., a major goal of having students experience dynamic
geometry is for them to gain an understanding of dynamic dependencies.
Dynamic dragging can be used to provide a visual acquaintance with
behaviors resulting from hidden dependencies. Following that, dynamic
construction should incorporate into geometric figures specific dependencies
among their elements. An understanding of dependencies in geometry can
provide a basis for deep understanding of important relationships, enabling
students to explain reasons for their noticings and even proofs for their
conjectures.

One way to guide students to insightful experiences of dynamic dependencies
is to provide them with problems in which one can see relationships that are
maintained during variation through dragging and in which success in
constructing successful solutions is achieved through strategic building in of
dynamic dependencies. This can be approached through providing a set of
individually interesting problems.
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Perhaps a more effective approach—and this hypothesis is still being tested
in schools—would be to provide a systematic curriculum. Here, one activity
in dynamic geometry would build on the previous ones, much like Euclid’s
propositions relied for their proofs on earlier propositions, often in strategic
sequences. Furthermore, the activities and accompanying resources (images,
sample constructions, instructions, background materials) would be
systematically designed to emphasize and make visible and accessible the
dynamic dependencies involved. In a collaborative setting, groups of students
would have a scaffolded opportunity to discuss the dependencies involved
and to reflect on the role of these dependencies in the solution of problems,
in the formulation of explanations and as a basis for understanding
generalizable principles. The following chapters will explore this approach in
various ways.

One way of supporting the use of a systematic curriculum of dynamic-
geometry activities is to provide mechanisms for seeding chat rooms with
resources to guide the students. Different groups of students will enact these
resources in diverse ways, pursuing a variety of interpretations of the
“problem” and “goal,” as well as adapting experiences from prior sessions in
distinctive ways. Our curriculum (see Chapter 10. ) consists of a series of
topics, each presented in its own chat room. For instance, a student group
named “Group_3” would have their own chat room for each topic in their
curriculum. Each room might have several GeoGebra tabs. When the students
meet in a room, they will see the several tabs already containing some
materials for the topic. There might be textual instructions; there might be
geometric figures to drag; or there might be images of figures to construct.

The VMT environment includes tools for teachers or curriculum developers
to set up rooms with resources in GeoGebra tabs. In Figure 6-6, the interface
for “Create New Room” has been filled out to create nine chat rooms for nine
groups. The rooms will be named “Group_1” to “Group_9.” They will all be
part of the “WinterFest 2013” project, for topic “Topic 05 in the “Dynamic
Geometry” subject. Three GeoGebra tabs will be in each room, along with the
standard chat pane. GeoGebra files containing constructions have been
specified to be pre-loaded into each tab.

Another support for dependencies is custom tools. When a student group
comes to an understanding of a dynamic dependency that they want to be able
to use easily in the future, they can create a custom tool that embodies that
dynamic dependency. For instance, once a group understands how to
construct an equilateral triangle where the side lengths are dynamically
dependent upon the length of the first side, then they can save this
construction as a custom tool and add that tool to the tool bar. Similarly, when
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they understand how to construct a line perpendicular to another line and
passing through a given point, they can create a custom tool for quickly
generating perpendiculars. Some of these tools already exist among
GeoGebra’s hundred tools. However, by creating a custom tool, a group
learns how the tool works and what dependencies the tool enforces. In
addition, the process of creating a custom tool collaboratively and testing it
out can enrich the group’s understanding of design decisions made in the
details of the creation. There are many functions for which no tool exists in
GeoGebra. For example, there is no tool for a simple function like copying an
angle so that the new angle is dependent on the original dynamically. There
are also no tools for creating the various centers of a triangle, like an incenter.

While GeoGebra already supports custom tools, there were issues to be
worked out for implementing custom tools in a collaborative online
environment. The standard single-user GeoGebra saves a user’s custom tools
on the local hard disk. That means that a user who works on different
computers (e.g., in a school computer lab) has to save files with the custom
tools and transport the files around to retain use of the custom tools. In a group
context, we wanted the whole group to have access to a custom tool that any
one person created. In fact, that was necessary in order to have constructions
that use the custom tool be properly displayed in everyone’s client. So we had
to adjust GeoGebra’s support for using and managing custom tools to function
together in a workable and natural manner.
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Create New Room Manage Room Access

Room Info
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Select a Project: = WinterFest 2013
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Figure 6-6: Interface for creating rooms with loaded figures in tabs.
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Supporting Reflection, Assessment and
Research

Because VMT was developed as part of a research project, the chat rooms are
fully instrumented to capture a detailed and complete record of all the
interaction that takes place in them and to allow researchers to see and analyze
everything that the users themselves experienced of the interaction with each
other. While a researcher may not know what an individual student does off
the computer during or between sessions—such as writing on paper, talking
to someone physically present or browsing Wikipedia or Google—neither do
the other team members. Unless someone reports on their off-line activities
in the chat, those activities are not part of the collaborative interaction. Of
course, an individual student can use some information from those off-line
activities, but they can also use anything they might have come across at any
time in their life, and no researcher can know about all of that. So, VMT
captures about as much of the group interaction as is possible—without the
methodological and practical complexities of video capture and audio
transcription.

This has important consequences for the students and teachers as well as for
researchers. It means that students can look back and reflect on their work
together. For instance, a student can capture an excerpt from a chat log or
even a screen capture from the Replayer to include in a report on their group’s
work. They can also re-enter their chat room at any time; the rooms are
persistent and remain available. Then they can review the discussion and even
add to it or continue the work. The chat rooms, chat logs, and Replayer files
are available to everyone who has registered in VMT. The availability of the
rooms also means that students can compare what their group did with results
and behaviors of other groups. This can be a powerful learning experience.

Of course, the teachers have the same access to everything that took place.
Even though the teachers are typically not present in the chat rooms when
students are working, the fact that the students know that teachers and others
have access to the chat rooms and to their logs may temper some undesirable
behaviors that might otherwise take place. In addition, teachers can keep track
of how much each student participated in sessions and gather a sense of how
the class did on different topics. They can use these views to perform
formative assessments. This can lead to discussions that are more effective, if
the students are part of a face-to-face classroom. The teacher can decide what
aspects of the curriculum need more discussion and perhaps which students
can present accomplishments—either successes or failures—that warrant
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class discussion (Stein et al., 2008). Teacher reviews of how the sessions went
can also lead to revisions of the curriculum.

Building an environment for collaborative dynamic geometry includes
designing tools for reviewing and analyzing what took place in group
sessions. These display and visualization tools can serve students, teachers,
and researchers. We have some displays that have been part of VMT for years
and others that have been recently developed. Clearly, a lot more are possible;
learning analytics and visualizations are continuously under development and
testing. Experienced math teachers—who are taking professional
development courses as part of the project—are conducting student
assessments using the data saved in the VMT system and the tools and
displays available.

Because the multi-user system is a client-server system, all activity by people
anywhere in the world using the system passes through the central server
computer. All the interaction messages that are passed around the clients are
stored in the server. That allows researchers access to all of the history. The
down side of this is that it is hard to get a handle on who has done what and
where the interesting data lies. We are currently tying to compile this
information automatically in ways that can guide research. Our means of
displaying and reporting what has taken place include: a dashboard, logs in
different formats, Replayer files, pivot tables, visualizations, and case
profiles.
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Figure 6-7: The dashboard of reports on a chat room listed in the VMT Lobby.

The dashboard shown in Figure 6-7 is particularly useful for teachers to track
what is going on in student groups while the groups are active in chat rooms.
It can be displayed for any chat room and immediately gives a summary of
the activity in that room. A teacher can see which students are present and
how active they have been—without the teacher having to enter the room and
intervene in the student collaboration. A teacher can open several of these
dashboards and refresh the display periodically to know who is currently
active. At the bottom of the dashboard are buttons to produce reports. The
reports are immediately downloaded to the teacher’s desktop and reflect all
activity up to the moment the report was generated.

The downloaded reports include spreadsheet logs in different formats and the
Replayer file for the room. In addition, there is a pop-up chat log. The pop-up
chat log is particularly handy for quickly browsing the on-going chat. As
shown in Figure 6-8, it displays the activity spread across a column for each
student. This provides a good visual overview of how the work is shared and
how the discussion goes from student to student. Of course, one can also read
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the comments that students post and see what GeoGebra actions they are
taking.

Chat transcript for thq
Chat Time Start  Time of
Index Date Typing Posting cheerios fruiticops cornflakes o
1 03/01/2013 15:11:09 joins the room
2 03/01/2013 15:11:50 joins the rcom
3 03/01/2013  15:11:52 15:11:53 heyyyyyyyyyyyyyy
4 03/01/2013  15:13:04 15:13:05 hi
it [Taking control on tab
03/01/2013 15:13:26 Triangles |
.13 [changed Geogebra tool
03/01/2013 15:13:26 to Move |
5 0370172013 15:13:28 15:13:30 i will go first
S [moved item A on tab
03/01/2013 15:14:09 Triangles |
. [moved item D on tab
03/01/2013 15:14:20 Triangles ]
i [changed Geogebra tool
03/01/2013 15:14:22 to Move Graphics View ]
A [Releasing control on tab
03/01/2013 15:14:22 Triangles ]
03/01/2013 15:17:03 [Teking controt on: tab
Triangles ]
3 Sy [changed Geogebra tool
03/01/2013 15:17:03 to Move |
.17 [moved item A on tab
0370172013 15:17:22 Triangles |
03/01/2013 15:7:22 [moved item A on tab
Triangles ]
6 03/01/2013 15:17:25 joins the room

Figure 6-8: A pop-up chat log accessible from the dashboard.

An alternative display of the chat is shown in Figure 6-9. Here, the log is
consolidated in one column. This is useful for publication in reports (like Log
7-9 in this book). The “Event Type” column can be filtered to just include
specific categories of events, such as chat messages posted by students,
GeoGebra actions taken by the students or awareness and system messages
generated by the software. For chat postings, start and post times are both
given, to help figure out what previous post someone is responding to.
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A B C D E F G H
Line Date Start Time Post Time Duration Event Type User
1
2 (1 3/1/13 15:11:09 0:00:00 system fruitloops  joins the room
312 3/1/13 15:11:50 0:00:41 system cornflakes  joins the room
4 3 3/1/13  15:11:52 15:11:53 0:00:01 chat fruitloops  heyyyyyyyyyyyyyy
5 4 3/1/13  15:13:04 15:13:05 0:00:01 chat cornflakes  hi
3/1/13 15:13:26 0:00:21 Geogebra: cornflakes tool changed to Move
6 Triangles
7 |5 3/1/13  15:13:28 15:13:30 0:00:02 chat cornflakes i will go first
3/1/13 15:14:09 0:00:39 Geogebra: cornflakes updated Point A
8 Triangles
3/1/13 15:14:20 0:00:11 Geogebra: cornflakes updated Point D
9 Triangles
3/1/13 15:14:22 0:00:02 Geogebra: cornflakes tool changed to Move Graphics View
10 Triangles
3/1/13 15:17:03 0:02:41 Geogebra: fruitloops tool changed to Move
11 Triangles
3/1/13  15:17:22 15:17:22 0:00:00 Geogebra: fruitioops updated Point A
12 Triangles
13 6 3/1/13 15:17:25 0:00:03 system cheerios joins the room
3/1/13 15:17:40 0:00:15 Geogebra: fruitloops updated Point D
14 Triangles
3/1/13 15:17:43 0:00:03 Geogebra: fruitloops updated PointD
15 Triangles
3/1/13 15:17:46 0:00:03 Geogebra: fruitloops tool changed to Move Graphics View
16 Triangles
17 |7 3/1/13  15:17:50 15:18:09 0:00:19 chat fruitloops  when i move vertex a the whole triangle of abc moves
8 3/1/13  15:17:58 15:18:43 0:00:45 chat cornflakes when i moved point ¢ the triangle stayed the same
and either increased or decreased in size, butit was
18 equivalent to the original triangle
3/1/13 15:18:09 0:0:-34  Geogebra: cheerios tool changed to Move
19 Triangles
9 3/1/13  15:18:14 15:18:52 0:00:38 chat fruitioops  but when i tryed to move vertex d, it couldnt go
20 behond triangle abc
2/1 /12 JC. 182 31C Q.0 22 b b 4 & P3N d o AL et b i AVE

Figure 6-9: A spreadsheet with one column of chat log, which can be filtered by event
type.

A good report for browsing among rooms for activity is the pivot table shown
in Figure 6-10. Using this spreadsheet, one can “drill down” from the project
community level (Spring 2013) to math subject (Dynamic Geometry),
curricular topic (Topic 05), small group (Group 2), event type (chat),
individual student (Cornflakes), and posted data (detailed chat postings).
Information at the different levels can be sorted, filtered, and counted. Simple
statistics can be computed. This is a useful report for comparing the activity
of different groups and the students within the groups. For instance, in the
displayed view, one can see how much each student contributed to the chat,
how much each worked in the “Triangles” and the “Squares” GeoGebra tabs
in Topic 02 and who was the most active overall in this topic. Group 3 seems
to have been much less active than Group 2, but Group 1 was even more
active. One could now drill down to get a sense of what all the activity in
Group 1 was about.
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"
v Dynamic Geometry 27206
» Topic 00: Warm-up 68
» Topic 01 5933
» Topic 02 3675
» Topic 03 3006
» Topic 04 2650
v Topic 05 6972
» Group_1 1402
v Group_2 843
v cheerios 357
» awareness 7
» chat 43
» Geogebra:Squares 113
» Geogebra:Triangles 181
» system 13
v cornflakes 146
» awareness 6
» chat 27
» Geogebra:Squares 48
» Geogebra:Triangles 53
» system 12
» emilyL 15
v fruitloops 316
» awareness 10
» chat 55
» Geogebra:Squares 98
» Geogebra:Triangles 142
» system 11
» swampert 9
» Group_3 354
- » Group 4 EBZ
.

L v Dynamic y 27206
» Topic 00: Warm-up 68
» Topic 01 5933
» Topic 02 3675,
» Topic 03 3006
» Topic 04 2650
* Topic 05 6972

» Group_1 1402
v Group_2 843
» cheerios 357
v cornflakes 146
» awareness 6

¥ chat 27
2013-03-01 15:13:05 - cornflakes -> hi 1
2013-03-01 15:13:30 - cornflakes -> i will go first 1
2013-03-01 15:18:43 - cornflakes -> when i moved point ¢ the triangle stayed the 1
2013-03-01 15:22:54 - cornflakes -> yes 1
2013-03-01 15:23:53 - cornflakes -> sure 1
2013-03-01 15:24:23 - cornflakes -> yes 1
2013-03-01 15:26:41 - cornflakes -> ecf arent moving 1
2013-03-01 15:27:52 - cornflakes -> because they are sconstrained or restricted 1
2013-03-01 15:28:29 - cornflakes -> yea 1
2013-03-01 15:29:07 - cornflakes -> sure 1
2013-03-01 15:48:15 - cornflakes -> right 1
2013-03-01 16:20:06 - cornflakes -> agrreeed 1
2013-03-04 15:20:41 - cornflakes -> right 1
2013-03-04 15:23:48 - cornflakes -> yes you had to make the point between the d 1
2013-03-04 15:25:27 - cornflakes -> yea same thing 1

Figure 6-10: A pivot table of chat postings, for students in Topic 05.
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The pivot table is a flexible spreadsheet for exploring quantitative
relationships among groups and individuals. To get quick visual impressions
of comparisons among groups, we can use bubble graphs, like that in Figure
6-11. This image represents the activity of a group working for two hours. It
represents their activity in chat, the whiteboard, GeoGebra tabs, and other
actions during five-minute time slices.

OChat
ro—o0 oo &
) ’_600 ¢ Whiteboard
;OOO°°O° °00 °0000° 0000 OGeogebra
0 5 10 15 20 25 30 O SystemAwareness

Figure 6-11: Bubble graph of Group 2 working on Topic 5.

Many other configurations of this data are possible. In the set of bubble charts
in Figure 6-12, each of the six groups that worked on Topic 5 for two hours
in the same classroom are compared. In these charts, the height of the bubble
represents how many of a certain kind of action (chat, whiteboard, GeoGebra
or other) took place during the five-minute time slice. The size of the bubble
represents how many people were involved in the chat or ot