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Abstract: Many Learning Sciences projects use technology to enhance the cognitive richness 
of teaching and learning, although few projects investigate the robustness of their approaches 
across a wide variety of teachers and classrooms. Our Scaling Up SimCalc project has 
completed experiments in which over a hundred mathematics teachers in 7th or 8th grade used 
either SimCalc or their existing materials. We found that students of teachers who used 
SimCalc learned more. In this paper, we look specifically at the issue of cognitive complexity 
through a case study of two teachers, contextualizing the case study within aggregate data. 
Aspects of the theme of cognitive complexity can be seen in (a) student performance on 
different types of test items (b) teachers’ report of their own daily teaching goals and (c) 
discourse patterns in different classrooms. Although this analysis is preliminary, it reveals the 
potential of understanding Learning Science-based interventions more fully by combining 
large-scale and case study data. 
  

Introduction 
 Many Learning Sciences projects use interactive technology to enhance teaching and learning. A 

common goal of this work is to increase students’ opportunity to learn important, difficult concepts in science 
and mathematics. Further, a common approach is to draw upon the new representational affordances of 
technology, including visualization, simulation, and modeling. Although such work has been underway for 
many years, most projects work with just a few schools. Some important exceptions include Linn et al (2006), 
who found that “interactive visualizations combined with online inquiry and embedded assessments can deepen 
student understanding of complex ideas in science” across 16 schools in 5 states and Songer (2007), who carried 
out a deliberate program of research aimed at sustaining the “Kids as Global Scientists” program across a large, 
poor, urban area. These projects address science learning (see also Dede, Honan, & Peters, 2005; Schneider & 
McDonald, 2007). To our knowledge, our Scaling Up SimCalc project is the first random assignment 
experiment to examine a Learning Sciences-based approach in mathematics learning in more than 20 schools. 

Ann Brown, a founder of the Learning Sciences, brought to our attention one important reason to study 
our approaches at scale: in the field, approaches can undergo “lethal mutations” which distort the designers’ 
intent and undermine the mechanisms which lead to enhanced teaching and learning (Brown, 1991). In 
mathematics education, the TIMSS international comparison video studies revealed an important class of 
potentially lethal mutations (Hiebert et al., 2003). In particular, the TIMSS research found that teachers can 
modulate the cognitive complexity of the tasks offered to students in mathematics classes. In the United States, 
which has only average performance on TIMSS, teachers tend to do the more complex and conceptual parts of 
mathematical problems themselves, and tend to give students the simpler, more factual and procedural aspects. 
Teachers in high performing Asian countries, on the other hand, give students more responsibility for the 
complex aspects of mathematical tasks. This is not merely a cultural difference; research in Chicago found that 
students learn more when they receive more demanding intellectual assignments from their teachers (Bryk, 
Nagaoka, & Newmann, 2001). Similarly in Pittsburg, Stein and colleagues found that students developed 
increased conceptual understanding of the mathematics in schools where teachers faithfully implemented more 
challenging problems (Stein, Grover, & Henningsen, 1996). Over-simplifying tasks thus could be an important 
(although not necessarily lethal) mutation for many Learning Sciences-based approaches; it could reduce the 
students’ opportunities for rich cognitive engagement. Within our Scaling Up SimCalc project, therefore, we 
collected multiple measures relating to the cognitive complexity of both teaching and learning. Consequently, 
we examine variability in implementation and analyze the degree to which they increase or decrease learning. 

In this paper, we report some emerging findings on the issue of cognitive complexity in mathematics 
teaching and learning, looking across different scales of our research and using multiple measures. In particular, 
we look both at aggregate data for 95 teachers and at a case study of two teachers. In the aggregate data, we find 
that students in SimCalc classrooms learned more and that, in particular, the gains occurred on the “complex” 
portion of our assessment, not on the “simple” portion. Further, the aggregate data shows that students learned 
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more when their teachers reported cognitively complex teaching goals. In the case study data, we look at a 
teacher whose students had highest learning gains, compared to a teacher with average gains. These teachers 
were selected from a pool of four teachers in case studies and we focus on these two teachers only because there 
data was analyzed first. In ongoing work, not available at the time of this writing, we will also look at teachers 
whose classrooms had lower performance. Given that we do not yet have a full spectrum of case study data 
available, our findings are necessarily tentative. Further, a limitation of our instruments is that they were not 
designed to capture a singular construct of “cognitive complexity” – as the famous Indian parable goes each 
“touches different parts of the elephant” (see http://en.wikipedia.org/wiki/Blind_Men_and_an_Elephant). 
Nonetheless, we see an important contribution taking shape in the relationships we can begin to see between 
teachers’ goals, teachers’ discourse moves, and student performance on more complex and simpler test items. 
We can also show that some less-than-ideal teaching moves do not eliminate the benefit of the SimCalc 
intervention we tested; teaching discourse moves have a bounded impact on student learning gains. 
 
Overview of the Scaling Up SimCalc Project 

The long-term mission of the SimCalc research group, based at the James J. Kaput Center at the 
University of Massachusetts, Dartmouth and extending to colleagues in many locations, is to “democratize 
access to the mathematics of change and variation” (Kaput, 1994). Key concepts in this strand of mathematics, 
which stretches from late elementary school through university courses, concern the mathematical analysis of 
rate and accumulation. These and additional related concepts in the strand are centrally important in much of 
science, technology, engineering and mathematics in secondary school and beyond. Early SimCalc work 
employed design research techniques to develop SimCalc MathWorlds software. This software presents the 
concepts of rate and accumulation in the context of animated motions, which may be controlled by linear and 
piecewise linear functions. Students can edit these functions in graphs with a mouse (or edit traditional algebraic 
symbols) and can execute the functions to see resulting animated motions. The software was always intended to 
be used in conjunction with curriculum materials that develop the concept of rate across multiple 
representations, including verbal, graphical, symbolic and tabular representations. As the project matured, an 
increasing focus was on the teacher professional development needed to support teachers in appropriate use of 
the integrated curriculum and software.  

The Scaling Up SimCalc project, led by SRI International, focused on the research question: “Can a 
wide variety of teachers use an integration of curriculum, software, and professional development to increase 
student learning of complex and conceptually difficult mathematics?” The Scaling Up SimCalc project designed 
and conducted a series of large-scale experiments. This paper uses data from the first year of the 7th grade 
experiment. (The 7th grade experiment continued for an additional year and a separate 8th grade experiment was 
also conducted.) The 7th grade experiment compared students whose teachers used a 2-3 week replacement 
curriculum unit called “Managing the Soccer Team” with students whose teachers used their ordinary 
curriculum unit for the same topics. Teachers who used Managing the Soccer Team were trained in the use of 
the unit in the summer before implementation. The unit itself is deeply integrated with representational 
affordances SimCalc MathWorlds software; the text asks students to open particular software documents and 
most of the activities in the paper curriculum require students to edit and animate representations.  

The experiment was conducted in Texas. We selected Texas because it is a large and varied state and 
has a stable and well-aligned system of standards in mathematics instruction. Further, our partner in Texas, the 
Charles A. Dana Center had the ability to reach teachers across the state and had a long-term commitment to 
increasing the number of students who enroll in AP Calculus, a course that occurs later in students’ progression 
on the mathematics of change and variation strand. We worked with the Dana Center to recruit volunteer 
teachers in 8 regions of Texas representing varied demographic conditions.. 

Teachers were randomly assigned to either use SimCalc in the first year or to use their ordinary 
curriculum materials in the first year and then use SimCalc materials in the second year. All teachers first went 
to a 2-day TEXTEAMS workshop, which introduces the concepts of rate and proportionality across multiple 
representations, giving all teachers good quality preparation for the topics we intended to measure. The SimCalc 
teachers stayed an additional three days to learn how to use the SimCalc materials. We collected several sources 
of data related to the theme of cognitive complexity. The student pre- and post-tests were designed to have both 
a “simple” and “complex” scale, corresponding to mathematics requiring simpler numeric computations and 
tasks requiring more elaborate analysis of functions across representations. Teachers were asked to complete a 
daily teaching log, which in part asked them to rate the cognitive complexity of their teaching goals. Further, we 
conducted case studies with a subset of teachers; for some of these cases, we can look at the same lesson as 
taught by different teachers. 

 
Aggregate Data 
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We first consider the issue of cognitive complexity using aggregate data from the 95 teachers who 
completed the study reported more substantially in (Roschelle et al., 2007). The subsequent section presents 
case study data for two teachers. 

  
Main Effect Findings: Gains on “Complex” Test Items 

With a panel of mathematicians and mathematics education experts, we developed an assessment 
blueprint encompassing both simple and more complex aspects of rate and proportionality. The simpler items 
were based on items used on the Texas state test for seventh grade; these typically ask students to calculate 
using a proportional relationship stated either as a word problem or more mathematically. For example, a 
problem we will later refer to as the “car of the future” problem asked: 

 
A car of the future will be able to travel 8 miles in 2 minutes.  
How far will it be able to travel in 5 minutes? 
 
Our expert panel also viewed proportionality as the basis of the first nontrivial function, f(x) = kx, that 

students learn in their multiyear journey through the mathematics of change and variation – the mathematical 
strand that continues through high school calculus. In preparation for future mathematics and science, they 
argued that students should learn to analyze this function across representations, including graphs, tables, and 
symbolic expressions. An item addressing this more complex approach asks students to complete several 
missing x and y values in a table describing a proportional function, then to write an algebraic expression for the 
function, and finally to sketch a graph of it.  

Our expert panel also asked us to be sure to address common mathematical misconceptions. Hence, one 
item (see Figure 1) targeted a common misconception about position graphs: that the intersection of two 
graphed lines on a position vs. time graph indicates when two objects are moving at the same speed. The correct 
concept is that slope indicates speed, so that two objects have the same speed when their graphed lines have 
parallel slopes. We included this complex item because interpreting slope as a rate and connecting this 
representation to a narrative description of change over time is an important skill in all sciences: analysis of 
motion in physics, and interpreting rates of reaction in chemistry and rates of growth in biology are some of the 
many topics for which this concept is used. 

 
A car and a truck are driving along a 10-mile road. The graph below shows their distance 
from the starting point over a 10 minute period. 
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When are the car and truck traveling at the same speed? 

A. Between 1 and 4 minutes 
B. At 2 minutes 
C. Between 4 and 6 minutes 
D. Between 6 and 8 minutes 

 
Figure 1. An item which tests for the concept of slope as rate. 

 
The overall 30-item test included 11 simple and 19 complex items. We carried out rigorous validation 

processes on the test, including cognitive interviews with students, item response theory analyses on field test 
data collected from a large sample of students, and expert panel reviews. 
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Our main effect was statistically significant and showed that students in the Treatment group learned 
more (see Figure 2 and Roschelle et al. 2007 for the primary discussion of these results). The overall effect size 
was 0.84, considered large in education studies (t(93) = 9.1, P < 0.0001, using a two-level hierarchical linear 
model with students nested within teacher). The difference between the groups occurred mostly on the complex 
portion of the test. The effect size of treatment on this portion was 1.22 (t(93) = 10.0, P < 0.0001). The effect 
size of the treatment on the simple portion was 0.17 (t(93) = 1.8, P < 0.072, n.s.); many students had mastered 
these concepts before the unit began, suggesting a ceiling effect. Because this data was analyzed in a 
hierarchical linear model, the statistical procedures yield an estimate of the variance at the teacher or classroom 
level vs. the variance at the student level. Only 21% of the “complex” portion and 18% of the total test score is 
accounted for by variance at the teacher or classroom level, suggesting that teachers had a limited ability to 
influence student learning with SimCalc, whether for better or worse, at least in the first year of implementation. 

Because the SimCalc-related gains were predominantly realized on the “complex” portion of the test, it 
makes sense to further explore the issue of cognitive complexity within this data set. 

 

 
Figure 2. Student gain scores aggregated by teacher. Mean (± SE of total) difference scores  

on the 30-item student assessment. 
 

Analysis of Simple and Complex Test Items 
One way in which we further examined the nature of this finding was to look within the test at the 

particular items on which students in SimCalc classrooms exhibited strong gains. On the “car of the future” 
problem described above, approximately 75% of the students got the question right at pretest, suggesting that 
the item is pretty easy for many students, even before instruction on proportionality. After instruction (using 
either SimCalc or their existing curriculum) student performance was over 80%, but this gain is not statistically 
significant. This item is not trivial. However, it can be solved in a commonsensical way if students observe that 
in 4 minutes the car will go twice as far, covering 16 miles. Then the car goes for 1 more minute and would only 
go half as far, 4 miles. 16 + 4 is 20 miles, the correct answer. Many students are competent with reasoning about 
“half as much” and “twice as much” years before 7th grade, making this a fairly simple item. Alternatively, the 
item can be solved procedurally, by setting up a proportional relationship and using the cross-multiplication 
procedure; this procedure is commonly taught in 7th grade instruction. This item was fairly typical of the 
“simple” items in our assessment in that students are given 3 numbers and asked to compute a missing number. 

In contrast, on the item represented in Figure 1, student performance at pretest was around 23%, which 
is slightly worse than random guessing would produce. We argue that students find this item more difficult 
because it requires knowledge that goes beyond the arithmetic skills that predominate the early years of school. 
The target concept comparison of “speed” requires identifying a quantity which is not directly given by the 
representation. Instead it must be inferred from the slope of the line, which requires conceptual understanding of 
the meaning of the slope. Further, there is a significant perceptual distracter – the point of intersection. Indeed, 
most students did not guess randomly on the pre-test: most chose answer (b), which represents the target 
misconception. On the posttest, 55% of students who had been in classrooms using SimCalc got the item right, a 
statistically significant gain. In comparison, only 38.5% of students in non-SimCalc classrooms got the item 
right at posttest and more students (55%) chose the misconception-based distracter, answer (b). 

The contrast between these two items reflects the distinction in our assessment rubric between  
“simple” items in which students are given 3 or 4 numbers and must compute an unknown value and more 
“complex” items in which students must use conceptual understanding of how functions describe rates across 
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multiple representations, often including graphs. In the case of the item in Figure 1, the function is represented 
in a graph and must be related to the verbal concept of “speed.”  
 
Teacher Self-Report of Teaching Goals 

We asked teachers in the study to complete a teaching log after each day of instruction. The log 
included a scale that asked teachers to rate their degree of focus for the day’s class on goals of low cognitive 
complexity (memorization and use of routine procedures) and high cognitive complexity (communicating 
conceptual understanding; making mathematical connections and solving nonroutine problems; and 
conjecturing, generalizing, or proving). This scale was based upon a previously validated scale (Porter, 2002).  

For high-order goals, in both studies, Treatment teachers (versus Control) reported a stronger daily 
focus (t(93) = 2.3, P < 0.05) and there was an overall positive statistical association between teachers’ report of 
more complex goals and student gain on the complex math subscales (P < 0.0001). For lower-order goals, non-
SimCalc teachers reported a stronger daily focus (t(93) = 3.1, P < 0.01), and there was an overall negative 
statistical association with classroom mean student gain on the complex math subscale (P<0.05). Figure 2 shows 
a scatter plot of the association between a teacher’s self-report of cognitive complexity of their teaching goals 
(horizontal axis) and the mean student learning gain in a teacher’s classroom. When teachers report cognitively 
complex teaching goals their students learn more regardless of condition (although students in the SimCalc 
condition, represented by the symbol “x” in Figure 3 learned more overall). 

 

 
Figure 3. Teachers who reported more complex teaching goals had stronger classroom learning gains.  

  
Case Study Data 

In the context of her dissertation research, Jessica Pierson (a co-author of this paper) further analyzed 
discourse in SimCalc classrooms (Pierson, in progress). Discourse analysis is an important Learning Sciences 
methodology and has the potential to yield a thicker description of how cognitive complexity is enacted in 
SimCalc classrooms. Pierson selected teachers and performed her case studies before the aggregate data 
reported above was available. Two case study teachers, code-named “Mary” and “Nancy” are discussed below. 
These teachers were selected, in particular, because we had a video tape of each teaching the same lesson (both 
used SimCalc). Both teachers taught in small cities in Texas and had over 20 years of experience. They both had 
classrooms in which most students were white and about 1/3 were Hispanic. Mary’s class had pre-test scores 
that were approximately at the mean of all classrooms in the study; Nancy had students who scored about 1.5 
test items above the mean (out of 30 total items). Pierson (2007) described her overall impressions of the two 
classrooms as follows: 

Mary framed discussions using core mathematical concepts to organize the lesson’s trajectory. 
Discussions had a sense of cohesion, and procedures and formulas were introduced as a natural part of 
answering central questions related to the big ideas of speed and rate. She probed their thinking and allowed 
their observations and conjectures to be the impetus for further class discussion. She also encouraged students to 
test their thinking, reasoning, and problem solving with one another. Nancy was more task-oriented and 
preferred to present mathematics as a series of small, manageable tasks and calculations.  

As it turned out, Mary’s students displayed the greatest learning gains of any classroom in the study; 
her classroom’s gain from pre-test to post-test was more than two standard deviations above the norm. Nancy’s 
students had above average gains, although within a standard deviation of the mean. 
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Discourse Analysis: Teacher Follow-Up of Student Responses 
Because classroom discourse is broad and complex, Pierson focused on one aspect of discourse and its 

relationship to students’ opportunities to learn: teacher follow-up of student responses. In particular, Pierson 
focused on the “prospectiveness” of teacher moves in the final slot of a traditional initiation-response-evaluation 
pattern. Instead of an evaluation (e.g. “good” or “that’s right”) that ends the sequence, a teacher can use the slot 
to encourage students to elaborate or extend their thinking. A move that uses the student response to drive the 
discussion forward is more “prospective” – it anticipates that students are capable of more extended 
argumentation and deeper thinking. 

Pierson (2007) found that Mary had more prospective moves than Nancy. Whereas Mary used 
students’ responses in giving or demanding more information, Nancy tended to merely “rebroadcast” the student 
response. Not surprisingly, turn-taking sequences on a topic were longer in Mary’s class (average of 13.5 moves 
per sequence) than Nancy’s class (average of 7.5 moves per sequence).  

It is particularly interesting to observe the following dialog (from Nancy’s class), which reflects the 
lesson in the unit that most directly relates to the misconception captured in the item in Figure 1. In this lesson, 
students are comparing the trips of a bus and car as represented in graphs that look similar to Figure 1; in 
addition, during the lesson students can animate the functions and observe the corresponding motions. 

 
Turn Speaker Text 
 
150 

 
Teacher 

Sequence 34 
Can you see when you replay the simulation when the bus started to slow down?  

151 Student Yes.  
152 Teacher Right before it got to the end, correct? Ok at what?  
153 Student 140. 
 
154 
 

 
Teacher 

Sequence 35 
Ok. So now let me ask you some questions. What, how long did it take them for this 
trip? Raise your hand. How long did it take em for this trip? Chris. 

155 Chris Three hours. 
156 Teacher How do you know it went three hours? 
157 Chris Cuz it ends, the line ends at three. 
158 Teacher Very good, cuz the line for the bus or the van? 
159 Mult S’s Both. 
160 Teacher Both end at what? 
161 Mult S’s Three hours. 
162 Teacher Three hours. So you know it took them three hours.  
 
163 

 
Teacher 

Sequence 36 
Was the speed of the two vehicles the same? 

164 Mult S’s No. 
165 Teacher No. You know that by how? 
166 Student They’re not the same. 
167 Teacher Because of the (pause) graph right? And because of also running the simulation. They 

didn't stay right beside each other, did they?  
 
168 

 
Teacher 

Sequence 37 
Ok, umm, how far did they go in 3 hours? Raise your hand. How far did they go in 
three hours? Charles? 

169 Charles ** (unintelligible) 
170 Teacher How’d you know that? 
171 Charles ** 
172 Teacher 180 miles where? (pause - no student response).  On the graph, right?  
 
173 

 Sequence 38 
Ok. And let's see if you can calculate the speed. Go through, run your simulation and 
see if you can calculate the speed for the van and then calculate the speed for the bus 
and then also calculate the speed for the bus when it started to slow down since you 
guys have told me it started to slow down.  

Table 1. Discourse Excerpt from Nancy’s Class 
 

Sequences 34-38 were orchestrated to accomplish the teacher’s goal of calculating the speeds for the 
van and bus. Notice that this larger goal was not mentioned to the students until the last sequence (see Turn 
173). Instead, it remained hidden in a series of loosely-related questions (from the students’ perspective) that 
identified the necessary components for calculating speed. Additionally, as seen in this excerpt, little control or 
responsibility is given to the students as the teacher generated and controlled the topic of discussion. 
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Conversation was tightly scripted with little room for student ideas to shape the discussion. It is as if Nancy had 
a predetermined path that she was leading her students down: she may have heard their responses but did not 
incorporate them substantially into the flow of the lesson. In fact, there was very little of substance for her to 
incorporate since students’ roles were limited to paying attention, performing basic calculations, recalling 
formulas, and answering yes/no or short-answer questions. 

In contrast, in the discussion of the same graph in Mary’s classroom, one student thought two 
piecewise linear functions depicted different routes for two vehicles instead of different speeds. Instead of 
correcting her, Mary let the class struggle with this interpretation (the sequence was 54 moves long) asking the 
student first to explain her reasoning and then providing her classmates the opportunity to share their thinking. 

 
Supporting Data from Additional Measures and Analyses 

Because Mary and Nancy were two of the 95 teachers in the larger study and because several kinds of 
analyses are taking place, we have additional data about these two teachers. As mentioned both teachers had 
many years of experience and taught in schools that are similar in many respects. Nancy’s students were 
“smarter” although Mary had a smaller class. 

Although Pierson was not aware of this when choosing the cases or analyzing the discourse data, the 
teachers differed in their goals and level of mathematical knowledge. Mary reported more complex teaching 
goals than Nancy. Indeed, in the graph in Figure 3, she is represented by the top-right “x.” Nancy chose higher-
than-average values on the Likert scales for cognitively complex teaching goals, but she also chose higher-than-
average values on the scales for simple teaching goals, suggesting that she tried to balance between simple and 
complex teaching goals. On the test of “Mathematical Knowledge for Teaching” given to all teachers at the 
beginning of the study, Mary got a higher than average score and Nancy got a lower than average score. This 
suggests that Mary knew the mathematics covered in the SimCalc replacement unit better than Nancy did. We 
would conjecture that knowing more mathematics and adopting more complex teaching goals are related to and 
supportive of the discourse style that Mary adopted. 

It is interesting to analyze the performance of students in Mary and Nancy’s classroom on the “slope as 
rate” problem portrayed in Figure 1, as the discourse analyzed by Pierson related directly to this problem. In the 
overall data set, 55% of students who used SimCalc and 38.5% of students who used their ordinary curriculum 
got this item right on the post-test. In Mary’s class, 67% of the students got this problem right – a better-than-
average performance. In Nancy’s class, only 35% of the students got the problem right and almost twice as 
many chose the misconception-based distracter.  

Nancy’s students did gain more than Mary’s students (and more than students in the average 
classroom) on the “simple” portion of our test; thus her focus on cognitively simple tasks apparently did have a 
pay-off. Yet, we wonder if it was worth it. Recall that Nancy’s started out with a higher-than-average classroom 
pretest. This suggests her students were likely ready for more complex mathematics and could have learned 
more if presented with an appropriate opportunity to learn. This raises the classic teaching problem of 
“diminishing returns” for a continued focus on skills that many students already know well.  

Any conclusions drawn from this data can only be preliminary, as there is much more data under 
analysis. Another crosscutting analysis undertaken by sociology graduate student Michelle McLeese at Virginia 
Tech (another co-author of this paper) also picked out Mary as an unusual teacher based on her teaching 
behavior, starting from a different perspective. Mary was one of four teachers out of 24 teachers observed to 
explicitly mention Willie Nelson’s song “On the Road Again” in teaching the unit called “On the Road.” Willie 
Nelson is an iconic Texas figure and this song can be expected to be well known by the students. Of the four 
teachers, she was the only one to engage in substantial elaboration of this relationship; she wrote a song for the 
class. One way of conceiving Mary’s success is that it reflects a kind of mathematical opportunitism, which can 
lead to cognitively complex goals and to prospective interactions as well as elaboration of meaningful contexts.  

Nancy’s and Mary’s classrooms represent only two of large set of teachers being studied in case studies 
from several perspectives. We have additional interview data for all teachers. Further, we will later consider 
teachers with classrooms with below-average pretest scores or below-average gains. In addition, we have data 
from both Nancy and Mary in a second year of implementation and Mary’s second year class does not gain have 
the top learning gains. However, in the second year, Mary’s class started with a considerably higher pre-test 
score (making it hard to replicate the gains) and reached a higher post-test score as well. This illustrates some of 
the nuance that must be considered before reaching conclusions. 

  
Discussion 

We have examined the issue of “cognitive complexity” across two different scales of data and many 
several different measures within a data set that presents a “main effect” of increasing student learning of 
complex mathematics. Although SimCalc has features in common with many other Learning-Sciences-based 
approaches for increasing opportunities to learn rich content, few projects have an opportunity to triangulate on 
the issue of cognitive complex from different scales of analysis and different data sources. Admittedly, we do 
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not have a single definition of cognitive complexity across all measures in our study. We have, however, 
explained the definition in use in each measurement instrument in the study. 

Although our findings are preliminary, a convergent story is emerging. Teachers may moderate the 
impact of an intervention like SimCalc by choosing cognitively complex teaching goals. These goals may then 
be enacted in many ways in the classroom. One difference in enactment may be in the prospectiveness of 
teacher discourse moves in the “E” slot of the Initiate-Respond-Evaluate/Extend sequence. Other differences in 
enactment may relate to teacher’s knowledge of mathematics and comfort in working through “misconceptions” 
with students. The effects of these differences may be most profound on test items that address deep-seated 
conceptual difficulties. 

Overall, however, it is worth bearing in mind that only 21% of the variance in student learning gains on 
the complex portion of our test is accounted for at the teacher level. The rest of the variance is at the student 
level. In this paper, this is reflected in the fact that Nancy’s students performed well despite some features of her 
teaching that may be less than ideal. Indeed, strength of the SimCalc intervention we studied is that students on 
a whole learn more with it, despite having a wide variety of teachers and classroom situations.  Our conclusion 
therefore is not simple. First, the SimCalc intervention (on average) enabled students learn complex 
mathematics better than their existing curriculum did. Second, teachers who reported more complex goals had a 
measurable but limited impact in modulating the degree to which students learned more complex mathematics, 
perhaps because of the way discourse was enacted in their classrooms. 
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