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CHAPTER I 

THE RESEARCH OBJECTIVE 

 

When students study plane geometry, they work within a domain whose tools 

have remained essentially unchanged for more than 2,000 years. Known as 

“Euclidean geometry,” the subject bears the name of Euclid (ca. B.C.E. 300), the 

Greek mathematician credited with developing an axiomatic approach to 

systematize the field.  

Euclidean geometry’s tools consist of paper, pencil, straightedge, compass, 

blackboard, and chalk. Geometric constructions built with these items possess two 

notable characteristics:  

1. They are static. Any illustration drawn on paper or blackboard remains 

fixed in place and cannot be altered without some erasing. 

2. They are particular. Any constructed square represents a specific square 

with a particular side length. As defined, squares can have any side length, 

but no single, stationary picture captures the generality of this definition. 

Now at the beginning of the 21st century, a fresh medium for building 

geometric constructions stands alongside these familiar tools of the trade. A breed 

of software programs known collectively as “dynamic geometry” (DG) has 

established itself in schools, teaching journals, and university mathematics 

departments as an attractive alternative to straightedge and compass (Olive, 

1998). The Geometer’s Sketchpad (Jackiw, 1995) and Cabri Geometry (Texas 

Instruments, 1994), two of the earliest and most popular DG software packages, 

reached the mathematics community in the early 1990s. 

The characteristics of DG software contrast to the capabilities of traditional 

geometric tools1: 

                                                
1 Readers unfamiliar with the features and capabilities of dynamic geometry will 

find a description of the software in Appendix A. 
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1.  Geometric objects can be moved and reshaped interactively. By clicking 

and “dragging” with the computer mouse, the software user can animate 

static images, thereby making them “dynamic” in nature. Segments can 

stretch and shrink, angles can change measurement, objects can rotate and 

translate across the screen. 

2.  A single onscreen image represents a whole class of geometric objects.  

By constructing built-in constraints, a DG user can build a square that  

will change its size and orientation when dragged, but still retain the 

invariant features common to all squares—four equal sides and four  

90-degree angles. 

Mathematics educators and teachers have embraced dynamic geometry in part 

because interactivity and motion seem, on an intuitive level, like sound 

educational features of software (Hoyles & Noss, 1994; King & Schattschneider, 

1997b). A square that can be resized with a simple click and drag of a mouse 

holds definite appeal for a generation accustomed to the static, hands-off nature of 

textbook illustrations. 

Yet DG software is more than a copy of Euclidean geometry with interactive, 

eye-catching graphics. The tools, definitions, exploration techniques, and visual 

representations associated with dynamic geometry contribute to a learning 

environment fundamentally removed from its straightedge-and-compass 

counterpart (Laborde, 1998). How students come to understand geometry in this 

setting remains an open question in the mathematics education literature 

(Goldenberg, 1998).  

Dynamic geometry software allows for interactivity via the computer mouse. 

Does the malleability of DG objects make certain aspects of geometry more 

transparent than might otherwise be the case in a static representation? Or does 

the interactivity foster geometric misconceptions unique to the medium?  

Characterizing the properties of an object as it grows, shrinks, and rotates may 

yield descriptions that would not arise from viewing its static counterpart. What 

language do students use to describe the motion they observe?  

Dynamic geometry’s construction tools do not function identically to a 

traditional straightedge and compass. Are there instances where a particular DG 

tool or technique blocks a student from completing a construction task (Laborde, 

1993)? Or do Sketchpad’s tools promote novel constructions that might not 

surface in a static setting? 

Educational research aimed at studying these issues serves several functions. 

From an academic perspective, the investigation of how a particular technological 

innovation (in this case, dynamic geometry) affects geometric conceptions affords 

a fascinating opportunity to test—and perhaps modify—existing theories of 

geometric development (Hölzl, 1996).  
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On a practical level, research into DG learning can benefit three populations in 

the education community: teachers, curriculum developers, and software 

designers. Teachers faced with limited time and a crowded computer lab of 

students might use research results to anticipate DG-related pitfalls and to 

recognize the germ of fruitful ideas in the language and construction actions of 

their students. Curriculum developers accustomed to writing texts for paper-and-

pencil geometry might find inspiration for new activities targeted to the needs of 

dynamic geometry learners. And software developers engaged in designing future 

incarnations of dynamic geometry programs might benefit from the knowledge of 

how well current DG tools support students’ geometric explorations.  

Motivated by the factors above, I participated in the design and execution of a 

student interview study focused on the learning of geometry in a dynamic 

geometry software environment. The study was conducted in collaboration with 

Senior Scientist E. Paul Goldenberg at Education Development Center, Inc. 

during the summer of 1997.  

In the central portion of our interviews, middle-school students (working 

individually or in pairs) received pre-built “mystery”/black-box constructions on 

The Geometer’s Sketchpad. These constructions included such common 

geometric objects as squares, rectangles, isosceles triangles, and perpendicular 

bisector lines. Interviewees were asked to explore these objects by dragging each 

of their parts with the computer mouse. 

As they experimented, students described what they observed on screen and 

explained how they thought each object might have been constructed. Beginning 

then with a fresh blank screen, students attempted to reconstruct the identical 

objects from scratch. Throughout the interview, videotape recorded the precise 

mouse movements and menu selections of the students, as well as their 

accompanying commentary. The detailed nature of these tapes makes them an 

ideal source for analyzing the geometric conceptions of students in a dynamic 

geometry setting.  

 

Research Questions Investigated 

In brief, interviewees faced three responsibilities for each black-box task in our 

study: 

1. Exploring how each object and its component parts moved in response to 

mouse dragging, 

2. Describing orally the motions observed and other noteworthy behaviors,  

3. Constructing an identical object using Sketchpad’s tools. 

The research areas addressed by my dissertation can be summarized by three 

keywords corresponding to the division above: motion, language, and 

construction. Each of these descriptors serves as the focus for one of three 
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analysis chapters in this dissertation. With these overarching themes as a guide, I 

developed the following set of research questions and subquestions to structure 

my viewing of the videotapes: 

1.   How do students explore and interpret the behavior of pre-built constructions 

in a dynamic geometry setting?  

a. What mouse actions do students perform when examining onscreen 

geometric objects? 

b.  How do students characterize invariant geometric properties like 

parallelism, equality of lengths, and perpendicularity? 

c.  Are students able to differentiate between geometric behavior that is  

an artifact of Sketchpad’s design and behavior that is inherent to  

geometry itself? 

2.   How do students use Sketchpad’s tools when moving from a pre-made 

construction to building one that displays identical behavior? 

 

Organizational Structure 

This dissertation begins in Chapter II by addressing the need behind dynamic 

geometry research. It introduces four areas of concern, all pointing to the benefits 

of conducting DG-based interviews. 

Chapter III surveys the field’s related literature. In doing so, it steps back to 

highlight findings from static geometry. As an older and more established field, 

static geometry research offers support to its cousin, dynamic geometry. Chapter 

III also introduces a theoretical framework for framing my own analyses.     

Chapter IV describes the genesis of our dynamic geometry interviews and 

supplies details of the study’s design. It also addresses the limitations and 

delimitations of the work. 

Chapter V takes a closer look at our black-box mystery constructions. It 

describes in a step-by-step manner how each construction was built, and explains 

the motivation behind the various tasks. 

Chapter VI is the first of three analysis chapters and focuses on the issue of 

motion. Through the use of interview excerpts, it establishes three thematic 

consistencies in the manner that students interpreted onscreen movement. 

Chapter VII devotes itself to the study of interviewees’ language. It examines 

interviewees’ kinesthetic descriptions of parallelism as well as the metaphors they 

employed to capture onscreen behavior. 

Chapter VIII describes interviewees’ attempts at rebuilding a DG square from 

scratch. It details interviewees’ ability to subvert Sketchpad’s construction tools 

and build geometric models that succeed on their own terms.  
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Chapter IX, the concluding chapter, summarizes the themes of this dissertation 

and examines the implications of its findings for teachers and curriculum 

developers. It also offers suggestions and related research questions for 

mathematics educators pursuing the study of dynamic geometry. 

 

 

CHAPTER II 

NEED FOR THE STUDY 

 

Each spring, the National Council of Teachers of Mathematics (NCTM) 

publishes a yearbook that collects articles on a timely theme in mathematics 

education. In 1987, the yearbook topic was geometry (Lindquist & Shulte, 1987). 

Of the 20 collected articles, only two examine computer-based geometry learning, 

and neither entertains thoughts of a motion-based, geometric software 

environment. Today, fourteen years later, the situation has changed considerably.  

Activities incorporating dynamic geometry appear on a nearly monthly basis in 

the NCTM classroom journal, the Mathematics Teacher. In 1997, the 

Mathematical Association of America published Geometry Turned On (King & 

Schattschneider, 1997a), an entire volume devoted to applications of the software. 

Several secondary curricula include DG explorations in their texts (Scher, 2002; 

Education Development Center, 2000; Gay, 1998; Serra, 1997). And the new 

Principles and Standards for School Mathematics (National Council of Teachers 

of Mathematics, 2000), the guiding beliefs document of the NCTM, recommends 

the use of the software to promote mathematical investigations. 

Given this flurry of new curricular ideas, it is important to remember that 

making a successful transition to a DG-centered course involves more than 

switching from one textbook to another. Enthusiasm for the software will mean 

little if students fail to connect with dynamic geometry because of unforeseen 

learning considerations. The discussion below highlights four issues pointing to 

the need for a close study of students’ interactions with DG software: 

1.   Motion’s effects on learning, 

2.   An increased reliance on visual interpretations, 

3. The role of mathematical invariants, 

4. Differences between dynamic and Euclidean geometry. 

 

Motion’s Affects on Learning 

In his 1947 treatise, Vision in Motion, artist and photographer Moholy-Nagy 

notes that in an increasingly technological world, people’s ability to attach 

meaning to images of motion cannot be taken for granted:  
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A rendering of vision in motion is given in photographs of fireworks, in 

the diagram of the continuous flight of a skywriting plane…as well as in 

industrial time and motion studies. People have to be educated in 

deciphering and understanding them, just as they are taught to read and 

write. In days to come, when more science and technology will be 

introduced in the daily routine, there will be more need for space-time 

rendering and their punctilious interpretation. (p. 121) 

Roughly fifty years later, mathematics education researchers such as 

Dreyfus (1994) and Tsuyuki (1998) offer similar cautionary notes regarding 

students’ ability to interpret moving images on the computer screen.  

Says Dreyfus: 

In every case, visual [computer] representations need to be carefully 

constructed and their cognitive properties for the student need to be 

investigated in detail. The adaptation and correction of features of these 

visual representations on the basis of student reaction to them is an 

integral part of the development, and in some cases has been reported in 

the literature. (p. 119) 

Goldenberg (1998) lists some specific types of student “reactions” worth tracking 

with dynamic geometry software:  

Although research still leaves many unanswered questions about how 

students use static visualizations, DG raises the ante and requires us to 

understand how students glean geometric ideas from pictures that involve 

motion, often quite complex. How do students develop a sense of where to 

look, what objects to track, what questions to ask, what experiments to 

perform? (p. 364) 

The three needs-related sections that follow each address issues arising from 

dynamic geometry’s motion capabilities. 

 

An Increased Reliance on Visual Interpretations 

 In a traditional geometry textbook, a problem might read: “Figure 1 shows an 

arbitrary quadrilateral ABCD. The midpoints of its four sides are E, F, G, and H. 

Prove that the quadrilateral EFGH is a parallelogram.” 
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Figure 1. An arbitrary quadrilateral ABCD with its midpoints connected. 

The above problem tells students exactly what they must prove. It could have 

asked them to form their own hypothesis, but geometry texts dissuade their 

readers from making conjectures based on the limited evidence provided by a 

single picture. To stress this point, they will sometimes distort illustrations to 

discourage unfounded visual assumptions. “Don’t be too quick to trust what you 

see” is the message imparted to students. 

With dynamic geometry, students are no longer limited to single textbook 

illustrations that may or may not be accurately drawn. Using The Geometer’s 

Sketchpad’s tools, students can build their own interactive model of Figure 1 and 

freely change the locations of ABCD’s vertices. By doing so, they will see a 

wealth of precise, highly accurate illustrations, three of which are displayed in 

Figure 2. In each case, the midpoint quadrilateral sitting inside ABCD appears to 

have opposite sides that are equal in length and parallel—the very qualities of  

a parallelogram. 
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Figure 2. Three individual snapshots of Figure 1’s construction.  
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No amount of visual evidence in mathematics can ever serve as a replacement 

for an airtight deductive proof because there will always remain untested cases. 

But the sheer quantity of visual data collected in a dynamic geometry 

environment does allow students to make strong conjectures that later can be 

verified or rejected through formal proof.  

As such, dynamic geometry curricula push students to formulate their own 

working hypotheses based on their visual interpretations of onscreen behavior. 

Bennett says that Sketchpad “…encourag[es] a process of discovery that more 

closely reflects the way mathematics is invented: a mathematician first visualizes 

and analyzes a problem, making conjectures before attempting a proof” (1998, p. 

vii). 

This shift to a discovery-based approach places a higher premium on the art of 

visual observation than older geometry curricula (Laborde & Laborde, 1995). 

Students exploring the parallelogram in Figure 2, for example, must be able to 

focus on some geometric property of EFGH as its shape shifts on the computer 

screen. Can they sense that opposite sides of EFGH stay parallel? Or perhaps that 

each pair of opposite sides is equal in length? Research does not yet have answers 

to these types of questions.  

 

The Role of Mathematical Invariants 

Within each branch of mathematics sits a collection of domain–specific 

terminology and techniques. Yet cutting across topics are concepts with universal 

mathematical applicability. One such unifying theme is the presence of 

invariants: those features of a mathematical system that stay fixed while others 

change (Cuoco et al., 1996). Consider the steps for finding the x value satisfying 

3x + 7 = 25: 

   i.   3x + 7 = 25 

  ii.   3x = 18  (subtract 7 from both sides) 

            iii.     x  = 6   (divide by 3 on both sides) 

While equations (i) to (iii) appear different, they each share the same solution 

set. One can subtract seven or divide by three on both sides of the equation 

because these operations are guaranteed to leave invariant the value of x that 

satisfies the original equation. 

 The manipulation of algebraic equations is a time-honored example of 

invariants familiar to all middle-school mathematics teachers. In the field of 

geometry, however, DG software introduces subtle notions of invariants not found 

in its paper-and-pencil counterpart. Take, for example, an isosceles triangle. In 

Euclidean geometry, any triangle with exactly two sides equal in length is 

isosceles. But in a dynamic geometry world, this measurement test no longer 

suffices. One must drag the vertices of the triangle to check whether it remains 
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isosceles when perturbed. If the triangle changes its size and shape but retains two 

equal lengths, the triangle was constructed and fits the DG definition of isosceles 

(Finzer & Bennett, 1995; Glass & Deckert, 2001).  

Should, however, the triangle deform into an arbitrary triangle with no equal 

lengths, it is a drawing and not considered isosceles (see Appendix A for a 

complete description of the drawing-versus-construction distinction and how to 

construct an isosceles triangle). Stated succinctly, a DG triangle is isosceles  

only when the equality of its two sides remains invariant under dragging.  

The presence of invariants in dynamic geometry software marks a fundamental 

shift in what it means to be an isosceles triangle or, for that matter, an equilateral 

triangle, square, rectangle, or parallelogram. Many teachers have likely not 

considered the implication of invariants on geometric definitions, geometric 

constructions, and student learning. Are students able to recognize geometric 

shapes by the invariant properties they retain under dragging? Can they build their 

own shapes with the necessary invariant features? Just as students in a static 

geometry environment might recognize an isosceles triangle but be unable to 

build one with a straightedge and compass, so might they have difficulty 

constructing one with Sketchpad’s unique tool set (Laborde, 1993). 

 

Differences Between Dynamic and Euclidean Geometry  

At a time when we become surprised if something on our computer screen 

doesn’t move, it might seem obvious, even natural, that the static figures from 

Euclidean geometry should give way to dynamic ones. But “obvious” would be 

an inappropriate word to describe the foundations of dynamic geometry. Despite 

the similarity of straightedge-and-compass geometry to its software counterpart, 

the crafting of Sketchpad and Cabri was not a straightforward matter of 

transporting Euclid’s axioms to the computer. Cabri author Jean-Marie Laborde 

explains that some departures from Euclidean axioms were inevitable (Scher, 

2000): 

The general principle was to make the distance [between Cabri and 

Euclid] as small as possible, but at the very beginning, I was not aware 

that it would remain finally at some distance…People weren’t happy at all 

[with the] expression ‘Cabri geometry.’ But we decided nevertheless to 

introduce that concept to make definite the point that what comes from the 

screen is not Euclidean geometry, it’s not projective geometry…It has to 

be different. (p. 42) 

 Nicholas Jackiw, the designer and programmer of Sketchpad, echoes these 

comments in a November 1994 posting to the online Swarthmore Geometry 

Forum: 
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‘Why hasn’t anyone done this before?’ is the most common initial reaction 

to seeing something like Sketchpad. But then...one realizes something 

strange is going on behind the curtain—something that may seem 

intuitive, but which is by no means obvious, and by no means 

predetermined by the geometry and mathematics we understood before the 

advent of these programs. 

 As Jackiw implies, many of Sketchpad’s features were not foregone 

conclusions of Euclidean geometry’s structure. How objects moved onscreen and 

the construction techniques used to create them were more an issue of industrial 

design than mathematical necessity.  

Consider, for example, illustration (i) in Figure 3. On segment AB lies a 

randomly placed point C. As point B is dragged to the right, lengthening the 

segment, should point C keep its same distance from point B (illustration (ii)) or 

maintain the original ratio of AC to CB (illustration iii)? Euclidean geometry has 

no answers to these questions because it concerns only stationary objects. In this 

particular case, both Sketchpad and Cabri adopt the latter option of keeping ratios 

constant, but there are other instances where their choices are different. 

 

A BC

A BC

A BC

(i)

(ii)

(iii)

 
Figure 3. Two possible behaviors for point C when point B is dragged. 

 

While a skilled teacher can filter out these software-dependent features, a 

neophyte might have more trouble. Nemirovsky et al. (1998) liken the situation to 

x-ray interpretation: 

Many of us have participated in a conversation with a physician analyzing 

an x-ray photograph from a part of the body. Often the physician points to 

a small gray area on the image and says ‘See this?’ to help us focus on a 

little spot that otherwise might be absolutely unremarkable to us. The 

patterns of significance expressed by the physician can be very 

counterintuitive to a lay person; what looks salient may be an irrelevant 

optical artifact of the x-ray device. (p. 8) 
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With Sketchpad, students must play a role similar to that of a physician as they 

separate software “artifacts” from genuine geometric observations. Are they 

capable of doing so? 

 

CHAPTER III 

RELATED RESEARCH AND THEORY 

 

Chapter II established the need for studying students’ conceptions of geometry 

in a dynamic geometry software environment. In the nearly ten years since the 

introduction of Sketchpad and Cabri, educational research has begun to make 

inroads into this territory. This chapter examines some of the trends, research, and 

theories that inform this dissertation. In doing so, it steps back to include work 

from the field of static geometry research. Broadening the scope of the discussion 

frames my work in an historical context and acknowledges the continued 

importance of established theories.   

The literature review below is sorted by the three themes of this dissertation—

motion, language, and construction. 

 

Motion 

The multimedia capabilities of today’s computers may lead some to assume 

that interest in motion geometry is a new phenomenon. Yet a search of the 

mathematics education literature reveals a foreshadowing of dynamic geometry  

in both film and hands-on devices. Dynamic geometry software fits into a 

tradition that has harnessed the technology of the time to achieve non-static 

representations. Syer, in 1945, describes the ability of film to create “continuous” 

geometric images. His advocacy of the moving picture reads much as a modern-

day justification for dynamic geometry software:   

In addition to true-life demonstrations of solid geometry, it would be 

interesting to make greater use of the peculiar advantage of moving 

pictures over ordinary models. In plane geometry films, we used figures 

that changed shapes, position, and color without distracting pauses or 

outside aid. This continuous and swift succession of illustrations is fast 

enough to keep up with a spoken description, or even as fast as the  

thought processes that are developing the idea. Thus no time is lost  

erasing pictures from the blackboard, changing lantern slides, or  

holding up illustrations, because the illustrations and thought  

move simultaneously. (p. 344) 

Burnes in 1954 uses the very word “dynamic” when describing the benefits of 

malleable mathematical devices: 
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Effective results from the laboratory method are related to three simple 

principles: (a) the device or material should be simple, and whenever 

possible, flexible or dynamic as opposed to a static piece… (p. 142) 

A theory known as the “prototype phenomenon,” explained below, helps to 

explain the appeal of motion as it relates to the learning of geometry.  

 

The Prototype Phenomenon 

In studies conducted with static, paper-and-pencil geometry, researchers note a 

trend regarding the identification of geometric objects. When shown a collection 

of triangles on paper, students are more likely to identify a triangle as isosceles 

(one with exactly two sides equal in length) when its base is sitting horizontally 

on the paper (see Figure 4). Similarly, students are better able to spot a right 

triangle when it sits in an “upright” position, with the sides forming its right angle 

parallel to the edges of the paper (Clements & Battista, 1992; Yerushalmy & 

Chazan, 1993). Again, see Figure 4. 

 

 

Figure 4. Two prototypic triangle positions. 

 

Hasegawa (1997) refers to such findings as the “prototype phenomenon”: 

through everyday experiences and their work in school, students develop 

prototypic mental images of geometric shapes, which often are not robust (see 

also Mequita, 1998; Schifter, 1999). A single textbook illustration of an isosceles 

triangle might, for example, cause students to over-generalize and assume that 

only triangles sitting on their base qualify as isosceles.  

The purpose of the Geometric Supposer (Schwartz & Yerushalmy, 1991), a 

software precursor to dynamic geometry, was to address this issue by generating 

multiple static images of geometric shapes, all in random sizes and orientations 

(such as the “tilted” isosceles triangles in Figure 5). 

Sketchpad takes this notion one step further, allowing students to drag shapes 

into whatever positions they choose, and watch the objects shift in a continuous, 

fluid manner. On an intuitive level, it is plausible to hypothesize that Sketchpad’s 
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motion capabilities free students from overgeneralizing the particulars of a static 

image. Chapter VI of this dissertation examines the strength of this claim through 

the analysis of videotape data. 

 

 

Figure 5. Several isosceles triangles in “tilted” positions. 

 

Language 

The work of Dutch educators Pierre and Dina van Hiele stands as perhaps the 

most celebrated research into the learning of static geometry. Introduced in the 

late 1950s and still influential today, their model of geometric knowledge maps 

students’ development through a five-level hierarchy of skills (Clements & 

Battista, 1992). In brief, these stages are: 

a. Stage 1: Visual  

Students recognize objects based on overall appearance, not their 

geometric properties. A rectangle might be identified by its similarity in 

shape to a door frame.  

b. Stage 2: Descriptive/Analytic 

Students describe geometric objects based on their properties rather than 

appearance. An object is a square, for example, because it contains four 

right angles and four equal sides. 

c. Stage 3: Abstract/Relational 

Students use the properties of geometric objects to classify them 

hierarchically. A square, for example, is a special case of a rectangle.  

See Kim (1994, 2000) for an excellent example of Stage 3 thinking. 

d. Stage 4: Formal Description 

Students can construct proofs within an axiomatic system. 

e. Stage 5: Rigor/Mathematical 

Students can apply formal reasoning to compare different  

axiomatic systems. 

According to the van Hiele model, learners progress through these stages in 

order without skipping any levels in the process (Clements & Battista, 1992; van 
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Hiele, 1986). The model suggests that attainment of higher levels depends more 

upon the method of instruction rather than one’s age. The van Hiele structure has 

served as the basis not only for static-geometry research (see, for example, Fuys, 

Geddes, & Tischler, 1988), but also as the foundation for at least two dynamic 

geometry curricula (Battista, 1998; Choi, 1996).  

Stages one through three of the van Hiele model all describe students’ use of 

language when viewing static geometric shapes. Do any of these three stages 

remain relevant in the world of dynamic geometry? Yes. Just as a student at van 

Hiele stage one might describe a rectangle as a door, so did our interviewees 

invoke metaphors in their oral accounts. Yet rather than classify objects by their 

shape (as with the rectangle), our students described objects in ways that related 

to their onscreen movement. Much more will be said on this issue in Chapter VII, 

but below is an account of “situated description,” a theory that suggests why such 

results might be expected. 

 

Situated Description 

While students can study geometry with either straightedge and compass or 

computer software, the geometric conceptions developed in these two mediums 

may not be the same. Mathematics education research reveals that the setting or 

“situation” in which learning occurs affects the way knowledge is acquired and 

interpreted (Fennema & Franke, 1992). The term “situated knowledge” signifies 

that learning is not independent of its setting.   

Hölzl (1996) proposes a theory of “situated description” whereby students who 

use mathematical software develop language mirroring the types of interactions 

they experience with the software. These computer-centered descriptions often 

include active verbs, especially those expressing movement.  

 

Construction 

Chapter II introduced the distinction between a dynamic geometry drawing 

and construction. Finzer and Bennett (1995) refine this dichotomy further,  

presenting a four-stage structure for describing and assessing students’ shape-

building efforts : 

a. Stage 1: Drawing  

Students build a square by sketching an arbitrary quadrilateral onscreen 

and then tinkering with its sides until it satisfies the square definition. 

Dragging any part of the so-called square, however, causes it to deform 

back into a random quadrilateral. 
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b. Stage 2: Underconstraint  

Here, students might be able to guarantee that the quadrilateral’s angles 

remain ninety degrees when tugged, but its side lengths do not all  

remain equal.  

c. Stage 3: Overconstraint  

Now, the object students build is indeed a constructed square, but only  

one particular square: dragging any of its vertices does not cause it to 

grow or shrink.  

d. Stage 4: Appropriate Constraints  

Finally, at this level, the square maintains its shape while dragged and also 

has the flexibility to change its size.  

In theory at least, Finzer and Bennett’s categories seem to provide a complete 

classification scheme for analyzing students’ construction efforts. In practice, we 

found that these stages, while helpful, were not as unambiguous and distinct as we 

thought. Chapter VIII re-examines Finzer and Bennett’s theory from the point of 

view of two interviewees building a dynamic geometry square. 

 

CHAPTER IV 

THE RESEARCH STUDY 

 

Origins of the Study 

The 1980s saw the introduction of a powerful piece of educational technology: 

the graphing calculator. Unlike traditional calculators that displayed purely 

numerical results, the graphing calculator allowed students to enter an equation 

and see its corresponding graph in the calculator’s viewing window. The ability to 

create graphs, choose axis scaling, and vary an equation’s parameters captured the 

interest of educators, positioning the calculators for a wide introduction into 

secondary mathematics curricula. 

Tempering this enthusiasm were some voices of concern. Senior  

Scientist E. Paul Goldenberg of Education Development Center, Inc. (EDC) 

questioned whether the unique tools and visual representations of the  

graphing calculator might alter the way students understood functions and  

their graphs. Goldenberg’s research team set out to develop a series of  

interview tasks to elicit students’ conceptions of functions in a graphing-  

calculator environment (Goldenberg, 1988). 

Videotaped interviews revealed that technology did affect students’ 

understanding of the subject. A simple change in the calculator’s viewing  

window dimensions, for example, influenced whether students regarded two 
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parallel lines as horizontal translations of each other or vertical translations.  

Such observations gleaned from an analysis of the interviews led to a collection  

of recommendations aimed at teachers and curriculum developers (Goldenberg, 

1988, 1991; Harvey, 1991). 

With the coming of dynamic geometry software in the 1990s, Goldenberg 

recognized a situation mirroring the introduction of the graphing calculator. Once 

again, a new technology was entering schools without a thorough understanding 

of how it might affect students’ conceptions of the corresponding subject matter 

(in this case, geometry).  

At the May 1993 meeting of the NATO Advanced Research Workshop, 

Goldenberg (1995) presented the paper “Ruminations About Dynamic Imagery 

(and a Strong Plea for Research),” in which he urged DG researchers to consider 

the same types of epistemological questions he had explored with graphing 

calculators: How did the tools and visual representations unique to DG software 

influence students’ geometric conceptions? 

One year later, Goldenberg won a grant from the National Science Foundation 

(NSF) to study these issues both with middle-school and college students 

(Goldenberg, 1994). In the spring of 1997, I joined his Epistemology of Dynamic 

Geometry project as a Research Associate. At the time, Goldenberg had 

interviewed undergraduates but not middle schoolers. We soon developed DG 

interview items for this younger age group.  

 

Development of the Interview Questions 

The timing of our interview study coincided with the conclusion of another 

geometry-related effort at EDC—Connected Geometry (Education Development 

Center, 2000). Developed and piloted over a five-year period with funding from 

the NSF, Connected Geometry is a geometry text for middle and high school-level 

mathematics. Paul Goldenberg and I were both members of the writing team and 

had authored the dynamic geometry portion of the text. Since Connected 

Geometry had been field tested in classrooms and reviewed by mathematicians 

and mathematics educators, we felt that its DG section would serve as appropriate 

and sound source material for our interviews. 

When adapting Connected Geometry for our study, we made one significant 

change to its format. The textbook, as written, told students explicitly to build 

such objects as rectangles and isosceles triangles. Since one purpose of our 

interviews was to probe students’ conceptions of onscreen geometric figures, we 

felt that telling students what to build would create a missed opportunity. Rather, 

we decided to build objects such as a rectangle prior to the interview, and then, 

during the session, ask the interviewees to explore and describe these “mystery 

constructions” by dragging their parts. Only then would we ask them to build the 

identical objects from scratch. 
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To test the soundness of this approach, we piloted our interview with two 

middle-school students whose parents were EDC employees. The analysis of the 

sessions led to slight modifications in the DG construction tasks (see Chapter V 

and Recommendation Nine in Chapter IX for details). The final interview 

protocol was then approved by other EDC mathematics educators who served as 

consultants to the project. 

 

The Students Interviewed 

Our interview study targeted middle-school students with no prior dynamic 

geometry experience. Interviewees participated on a voluntary basis and were 

recruited through local schools in Newton, Massachusetts. 

In total, we interviewed three sixth graders and five seventh graders from two 

Newton middle schools (six boys and two girls). Students from regular-track 

mathematics classes accounted for six of the interviewees, with the remaining two 

drawn from the upper-track program.  

The eight students were interviewed in the summer of 1997. Each student 

participated in two interview sessions held on separate days, with individual 

sessions running approximately two hours. The participants received twenty 

dollars for each day, and signed an EDC consent form stating they were free to 

view any of the tapes made during the sessions.  

 

The Interview Setting and Procedures 

The interview study was conducted in an EDC office equipped with a 

Macintosh computer loaded with The Geometer’s Sketchpad, version 3.0.  

A videotape recording of the sessions (as opposed to audiotape) made sense,  

as we wished to capture the actions occurring on the computer screen as 

interviewees discussed their work. If a student were to say, “Something strange 

happens to my line when I move point B over here,” the videotape would allow us 

to pinpoint the exact behavior under scrutiny. 

 We were fortunate to have the resources to videotape the sessions from two 

different camera angles (see Figure 6). Aside from a camera that recorded the 

computer screen, another camera videotaped the interviewee. These separate 

images were transferred to a mixing board sitting outside the interview room, 

where a technician combined the shots to produce a split-screen composite tape. 

Thus even when our interviewees remained silent during their investigations, we 

were able to monitor their facial expressions and gestures as clues to onscreen 

activity that surprised or puzzled them. 
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Mixing Board

Computer

S

I

Video Camera

Video Camera

S = student
I = interviewer

 

Figure 6. The arrangement of the interview space. 

 

For the first of the two interview sessions, students worked in pairs. By 

interviewing students together, we hoped they would be more likely to discuss 

their mouse actions and interpretations of onscreen images. This arrangement, 

however, tended to result in one student remaining silent or not having sufficient 

opportunity to use the computer mouse. As a result, many of the second-round 

interviews were conducted on a one-to-one basis.  

 

The Roles of the Interviewer 

Before beginning the first of the two sessions, the interviewer (either Paul 

Goldenberg or myself) began by providing students with a brief summary of the 

study’s purpose and their role in the research. A paraphrased account of this 

introduction follows: 

We’ve invited you here to learn about a new kind of geometry software 

called The Geometer’s Sketchpad. As you explore the software, we’re 

going to be videotaping your actions on the computer screen. This study is 

not intended to be a test of your ability; we’re not going to be marking you 

‘correct’ or ‘incorrect’ in your work. Instead, we’re looking to see how 

bright students like yourself use the software, and what lessons we can 

learn that will help people to design better curriculum and software. Since 

we won’t always know what’s going on inside your head, we’re going to 

be asking you a lot of questions about what you’re doing and what  

you’re thinking.  
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As the students progressed through the interview tasks (described below), the 

interviewer sat by their side and asked them to explain their actions and 

observations. The setting was informal, with students able to analyze and build 

geometric constructions without time limits, and the researcher free to change the 

direction of an interview if a particular item caused problems. By not imposing a 

strict protocol on the interviews, we kept ourselves open to noticing unanticipated 

student ideas and thinking. During the sessions, the interviewer functioned in two 

roles: 

1. When a student was uncertain whether Sketchpad contained a particular 

feature or forgot where it was located, the interviewer offered assistance. 

Throughout the session, the interviewer reminded students that the interview 

was not a test of how well they had memorized the software commands; 

rather, it was intended to uncover how they thought about the objects  

on screen. 

2. As students worked through the construction challenges, the interviewer 

would periodically ask questions like, “What are you trying to do? Describe to 

me what you’re seeing. Can you explain why that line behaves the way it 

does? How might you test your theory?” The interviewer would also restate or 

rephrase some of the students’ observations to spotlight comments that would 

benefit from their further attention. Confrey (1993) terms this method “close 

listening”: 

Close listening involves an act of decentering by an adult or possibly a 

peer, in order to imagine what the view of the child might be like. It 

includes repeated requests for a child to explain what the problem is that 

she is addressing, what she sees herself doing, and how she feels about her 

progress. It requires one to ask for elaboration from the child about what, 

where, how, and why. (p. 311) 

The Interview Questions 

The interview was divided into three parts, with Parts I and II designed to give 

students a concise introduction to the tools and techniques of Sketchpad. These 

parts occupied roughly the first two-hour block of the interview. Returning for a 

second day of taping, students began Part III, where the focus shifted to 

construction challenges requiring applications of the techniques from Parts I and 

II. This portion of the interview also spanned two hours. 

Below is a brief summary of all three interview parts. Appendix B contains the 

interview questions from Parts I and II. Chapter V contains a detailed account of 

the items found in Part III.  
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Part I: Getting Comfortable with Drawing Tools 

Students experimented with Sketchpad’s point, segment, line, ray, and circle 

tools to create simple drawings. Appendix B lists specific tasks, but we did not 

rush into these, choosing instead to give students time for unstructured 

“doodling.” To emphasize that figures, once drawn, could be translated, rotated, 

stretched, or shrunk, we asked interviewees to drag objects and describe the 

resulting effects. Several drawing tasks (1(f), 1(i), and 1(j) in Appendix B) 

emphasized that order of construction frequently mattered: for a point to travel 

only along a segment, the segment needed to be drawn first, followed by the point 

on top of it. 

 

Part II: Building Geometric Constructions 

Students explored Sketchpad’s construction menu items by building midpoints, 

parallel lines, and perpendicular lines. Appendix B also describes a guided 

construction of a spinning “windmill” that provided an engaging application of 

perpendicular bisectors.  

 

Part III: Analyzing and Reconstructing Pre-Made Sketches 

Now, with a basic understanding of Sketchpad’s drawing and construction 

features, students moved to the central portion of the interview: interpreting and 

reconstructing pre-made sketches. Prior to the sessions, we built constructions— 

many with hidden parts—and saved them. When students opened our sketches, 

we asked them to drag each sketch element with their mouse and describe the 

resulting onscreen actions. They were encouraged to consider the types of motion, 

the constraints that might be present in the construction, and the geometric 

relationships of the objects. With these conjectures in hand, students attempted to 

build the identical sketches from scratch. 

While not every student was able to complete the constructions, our intention 

was not to mark them as either “successful” or “unsuccessful” in their attempts. 

Rather, we wished to document the experimentation techniques and spoken 

commentary underlying their work. 

These sketches could all be considered “black boxes” (Galindo, 1998; Laborde, 

1998) as we built them ourselves and hid some of their parts. In this sense, they 

served our interviewing purposes well, requiring students to examine novel 

constructions. It is worth noting that the need to interpret pre-made sketches is not 

entirely artificial. Whether swapping constructions with a fellow classmate, 

observing a teacher operate a demonstration sketch, or interacting online with a 

Java geometry applet, students must be adept at on-the-fly visual analysis. Even 

returning to one’s own sketch after some time away requires a short period of 

reorientation.  
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Throughout the remainder of this dissertation, the reader will notice that the 

points in our black-box constructions are labeled and identified by single letters. 

This is traditional notation, but not the one we chose for our interviews. Objects in 

Sketchpad can be labeled by any text one chooses. A point J, for example, can be 

renamed as point Joan or point Michael. To give our activities a personal touch, 

we replaced point labels by the names of our participants. In the interest of 

keeping the notational system consistent throughout this dissertation, however, I 

have chosen to adopt single-letter notation.  

 

Analysis of the Interview Tapes 

In total, our interviews of eight middle-school students yielded 20 hours of 

videotape along with a complete set of written transcriptions. With this much raw 

data, I decided to focus on just one section of the interviews—the black-box 

sketches from Part III. Appendices C and D contain complete information and 

examples of my analysis method. Appendix C also describes an alternative means 

of analysis proposed by Schoenfeld (1985) as a point of contrast.  

 

Limitations and Delimitations 

Despite the advantages afforded by videotaping, there are certain limitations 

inherent in this dissertation’s design and execution. The interviews include eight 

students in total, and as such, cannot be generalized to a larger population. Several 

of these interviews were conducted in pairs, and the interactions of the students 

may have influenced the outcome (Artzt & Armour-Thomas, 1992).  

Interviewees’ introduction to the basics of Sketchpad took place in a short 

period of time—two hours. In a classroom setting, students would likely devote 

more time to simple drawing tasks before progressing to the relatively 

sophisticated constructions under analysis here.  

My study did not include an assessment of student’s geometric knowledge 

prior to their work with Sketchpad. As such, it was often hard to pinpoint the root 

cause of their difficulties. When an interviewee struggled with a question, was it 

due to a conceptual, Sketchpad-related issue or something more simple, like a gap 

in her geometry vocabulary? In analyzing my interview tapes, I could not always 

tell the difference. Furthermore, any results of my analysis that focus on 

Sketchpad-specific features do not apply to other dynamic geometry programs 

such as Cabri.  

I do wish to emphasize that although the results in this dissertation cannot be 

generalized, there is still value in finding themes among my small data sample. 

One could conceivably ask three hundred students to go home, construct a 

Sketchpad square, and then submit their efforts on disk. Their work could be 

reviewed and marked as either “successful” or “unsuccessful.” One could even 

categorize the nature of the participants’ difficulties. But without some form of 
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interviews, the researcher’s ability to say anything about the interviewees’ 

thoughts during their square construction is extremely limited. Detailed interviews 

with a limited sample size provided me with greater access to the thinking that 

accompanied my students’ mouse actions.  

 

CHAPTER V 

THE BLACK-BOX INTERVIEW ITEMS 

 

 Consider the challenges inherent in identifying a square. If the square appears 

on paper, we see a quadrilateral with specific sidelengths and a specific 

orientation on the page. Should this given image not trigger our recognition, we’re 

stuck. Unless the interviewer is kind enough to show us another picture, we must 

make do with the one provided. 

Now consider the same identification task transplanted to the world of dynamic 

geometry. The square sitting in front of us on the computer screen seems just like 

the one on paper; it has a particular length and orientation on screen. Yet this 

square has something the static square didn’t possess—a behavior. We can drag 

any of its four vertices with the computer mouse and watch how the square 

responds. The quadrilateral might change its length and orientation in response to 

our dragging, but certain features remain invariant. It will always retain four equal 

sides and four, ninety-degree angles. 

The new information obtainable through dragging might either be a help or an 

added challenge in the identification task. From one perspective, perhaps it is 

easier to spot a square when viewing multiple squares as opposed to just one. But 

these squares do not exist as individual snapshots on screen. The user sees a 

continuous image of a square as it grows, shrinks, and rotates. Interpreting this 

motion (or perhaps filtering it out) could be difficult. 

 The nature of a dynamic geometry environment also adds a wrinkle to the 

challenge of recreating a black-box sketch from scratch. Because a DG square 

possesses a behavior when dragged, reproducing an identical square from scratch 

is not simply a matter of drawing a quadrilateral with sides that look equal and 

angles that look to be ninety degrees. The quadrilateral must maintain its 

“squareness” when dragged. According Pimm (1995): 

With black-box situations, the challenge is thus not just to make a static, 

visually indistinguishable screen image copy, but also to create a drawing 

that is dynamically identical as well. This is a mathematically new task,  

one that was not offerable prior to the development of such software 

environments. (p. 55) 
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Our Black-Box Items 

The uniqueness of black-box identification and construction challenges made 

them a natural choice for the central portion of our dynamic geometry interviews. 

Their novelty, however, required us to exercise care in introducing them to our 

interviewees. We prefaced the tasks with a verbal description of DG’s drawing-

versus-construction distinction. Our explanation was not formal; we chose a 

factory metaphor to convey the information in a simple way. Below is a quotation 

from the interviewer: 

I’m going to draw a square…it looks pretty good [the interviewer sketches 

(as opposed to constructs) a square]. You’re going to be part of a factory. 

The customer calls up and orders a square, and you deliver them. And in 

fact, they don’t want just a single square; they want a square that can be 

any size and never be anything else. They would be really sad if it turned 

out like this [grabs a corner of the square and deforms it into an arbitrary 

quadrilateral]. If you delivered this thing to them, the customer would 

grumble and complain. He’d say, ‘Look, this isn’t a square any more. I 

want it to stay a square no matter what happens. This is going to get 

kicked around the living room, the cat’s going to sleep on it. It can change 

size, but it must stay a square. I don’t want it ever to break.’  

The remainder of this chapter describes our black-box questions and the 

rationale behind their inclusion. Readers unfamiliar with Sketchpad will benefit 

from the brief introduction to the software in Appendix A. 

 

Order of Operations 

Aside from labeling differences, the two circles in Figure 7 look identical. 

When interviewees experimented with these objects on screen, however, they 

discovered some differences. 

Points P and R were both “control points” of their respective circles. Dragging 

either point shrunk or expanded its circle’s size depending on whether the point 

moved toward or away from the stationary center.  

When we built the leftmost circle prior to the interview, we placed Sketchpad’s 

point tool directly onto the circle’s circumference to draw point F. Doing so 

confined point F to traveling solely along the circumference. It could not be 

dragged off the circle. 

By contrast, point V was drawn separately from its circle and then dragged 

onto it afterward. Interviewees who moved point V found that it could travel 

anywhere on screen, on or off the circle. 

To recreate the two circles, interviewees needed to carry out their constructions 

in a sequential fashion. One could not, for example, draw point F and then 
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overlay a circle onto it. For point F to travel only along the circumference, the 

circle needed to be drawn first. Most Sketchpad constructions in Version 3.0 

require the user to pay attention to such sequencing details.  

 

F

P

V

R
 

Figure 7. Two constructions that look the same but behave differently. 

 

The Isosceles Triangle 

Figure 8 shows the next black-box sketch consisting of two isosceles triangles. 

In initial appearance, triangles !TNJ and !EHW looked identical, with TJ = TN  

and EW = EH  respectively.  

T

N

J

E

H

W
 

Figure 8. Two isosceles triangles with different behavior. 

 

Triangle TNJ concealed a circle with center, T, and points N and J on its 

circumference. Dragging either N or J produced a collection of isosceles triangles 

with sidelengths 

! 

TN  and 

! 

TJ  remaining unchanged. In !EHW, there was one 

construction difference: point H behaved like N and J, but point W served as the 

control point for the circle centered at E. Dragging point W yielded a collection of 

isosceles triangles whose sidelengths changed as the hidden circle grew and 

shrank. Appendix A contains more information about isosceles triangles for the 

interested reader. 
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The Square and the Rectangle 

Upon opening the next black-box sketch, interviewees saw two quadrilaterals 

sitting side by side (see Figure 9). Both appeared to be squares, but dragging the 

objects revealed two distinct quadrilaterals: a square and a rectangle.2 

 

 

Figure 9. A square and a rectangle. 

 

Figure 10 shows our Sketchpad square construction (for other methods, see 

Pereira (1997) and Appendix E). Two perpendicular segments, DA and DC, 

constructed from the circle’s center, point A, guarantee the side lengths of the 

quadrilateral will be equal and at right angles to each other. 

A B

CD

 

Figure 10. One method for building a Sketchpad square. 

 

Note that although a square is symmetric, the square in Figure 10 does not 

behave identically when each of its individual vertices are dragged. Dragging 

point D causes the entire square to grow and shrink with point C staying fixed. 

Dragging point B translates the square across the computer screen without it 

changing size or orientation. 

 

                                                
2 In our pilot interview, we only presented a square. 
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The Perpendicular Bisector 

The square, rectangle, and triangle problems above share something in 

common with static geometry identification tasks: participants are asked to 

recognize self-contained geometric shapes. There are no stray objects—a point or 

a segment—sitting by themselves on the computer screen. 

With dynamic geometry it is possible to arrange a black-box task where 

interviewees must identify geometric relationships as opposed to geometric 

shapes. Because elements of a sketch can be hidden from sight, two objects in 

Sketchpad can be related geometrically without touching. In the problem 

described below, the featured relationships are bisection and perpendicularity. 

To prepare the black-box sketch, we drew a segment AB, constructed its 

midpoint C, and then constructed line j perpendicular to 

! 

AB  through point C (see 

Figure 11). If A and B were points drawn on paper, then j would be the line 

formed by folding point A directly onto point B.  

 

A

B

C

j

 

 Figure 11. Line j is the perpendicular bisector of 

! 

AB . 

 

To camouflage some of the sketch elements, we hid 

! 

AB  (minus its 

endpoints) and point C.3 See Figure 12.  

 

A

B

A

B

A

B

AB

 

Figure 12. Four snapshots of the perpendicular bisector construction. 

                                                
3 In our pilot interview, we did not hide segment AB or point C.  
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As shown in Figure 12’s four snapshots, when interviewees moved either 

point A or B, line j repositioned itself to remain perpendicular with the unseen 

segment AB. Dragging line j translated the entire construction across the screen 

without changing any of the spatial relationships.  

It is worth mentioning that a perpendicular bisector relationship can be created 

in an alternative fashion: Starting with a fresh sketch, draw a random point A and 

a line j. Then use Sketchpad’s “Reflect” feature to reflect point A over segment j, 

forming point B. The symmetry properties of reflection guarantee that line j is the 

perpendicular bisector of 

! 

AB . 

Mathematically, the two techniques described above are identical, but their 

Sketchpad behavior is different. For the reflection method, any movement of 

point A is mirrored in the simultaneous movement of the reflected point B. By 

contrast, dragging point A in our black-box sketch moves line j without affecting 

point B. A static picture alone, then, does not provide enough information to 

replicate the original construction. Without exploring the motion relationships 

built into the sketch, one cannot know how it was built. 

 

Variation on a Theme 

The final black-box item presented a variation of the perpendicular bisector 

construction. Starting from the set-up in Figure 12, we placed a random point D 

along segment j. Point D was then connected to points A and B forming two 

equal-length segments, 

! 

AD  and 

! 

BD  (Figure 13). Finally, we hid line j. 

 

A

B
j

D

 

Figure 13. Point D travels along perpendicular bisector line j. 

 

Now, as shown in Figure 14’s four snapshots, students could drag point D only 

along the invisible line j, causing the lengths of 

! 

AD  and 

! 

BD  to change, but 

always remain equal to each other. Dragging point A or B produced a behavior 

specific to Sketchpad: when either point moved, point D repositioned itself to 

keep the measure of angle ADB constant. 
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A

B

D

A

B

D

A

B

D

A

B

D

 

Figure 14. Four snapshots of point D moving along the hidden line j. 

 

 

CHAPTER VI 

MOTION 

 

In Figure 15 lies a quadrilateral. It is a specific quadrilateral with a length of 

3.4 inches, a width of 1.3 inches, and sides parallel to the edges of this paper. 

None of these particulars matter of course when the quadrilateral applies for 

membership in the club of rectangles. For those purposes, only the general 

properties of rectangular shapes bear any importance. Two pairs of parallel sides? 

Yes. Four right angles? Yes. The quadrilateral is a rectangle. 

 

A

D

B

C

 

Figure 15. A particular rectangle. 

 

Separating the non-essential particulars of a given rectangle from the universal 

properties of all rectangles is something teachers do automatically. But as 

described in Chapter III, students, as geometric neophytes, may find a solitary, 

static illustration too limiting for reaching generalized conclusions. 

Well before the coming of the personal computer and dynamic geometry, 

researchers have suggested a way to broaden the information represented in a 

single picture: the addition of motion. Art psychologist Rudolf Arnheim writes  

in 1969: 

The usual illustrations in textbooks and on the blackboard help to make a 

problem visible, but they also freeze it at one phase of the range to  
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which the proposition refers. Therefore, they tempt the student to mistake 

accidental circumstances for essential ones. The solution is not to  

leave out illustrations but either to produce mobile models, for instance, 

by means of film animation, or, at least, to use immobile illustrations  

in such a way that the student realizes which of their dimensions  

are variables. (p. 182) 

In describing the educational benefit of setting geometric shapes into motion, 

Arnheim concludes, “A static concept has been replaced with a dynamic one. 

Generality intended is now represented by generality perceived” (1969, p. 180). 

Arnheim’s argument has remained relevant, and indeed gained backing, 32 

years later in today’s world of dynamic geometry. The ability of Sketchpad to 

display not one rectangle, one square, or one isosceles triangle, but a seemingly 

infinite variety of these objects represents to many educators a compelling 

example of geometric shapes presented in generalized form (Olive, 2000). 

Is this confidence in dynamic geometry well founded? Does DG software 

allow students to perceive generalities and cast aside particulars? My interview 

analysis suggest that the answer to the second question is at least sometimes no. 

In this chapter, I describe how students continued to search for—and found—

particulars amidst Sketchpad’s array of seemingly generalized images. Through 

mouse manipulations of onscreen isosceles triangles and rectangles, interviewees 

uncovered restrictive movement patterns created not by the dictates of 

mathematics, but rather by the uniqueness of Sketchpad’s design. These 

restrictions fell into three categories: 

1. Certain points moved while others stood still when objects  

were dragged, 

2. Certain points could only be dragged along hidden paths, 

3. Certain points, when dragged, restricted the movements of the objects 

upon which they sat. 

Throughout this chapter, I offer examples of the above phenomena and describe 

how interviewees paid as much, if not more, attention to these particulars than to 

the general properties of shapes. 

 

What Moves and What Does Not 

Stated broadly, a rectangle constructed with Sketchpad can grow and shrink via 

the dragging of the computer mouse. This is a loose description of Sketchpad’s 

motion feature; one requiring some elaboration. What does it mean to say a 

rectangle “grows and shrinks”? 
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Sketchpad provides a definite answer to this question, but first let’s formulate a 

reasonable guess. Since the length and width measurements of a generic rectangle 

are unimportant, perhaps both quantities should grow and shrink in unison, 

thereby highlighting their variability. The location of individual points are also 

immaterial, so perhaps all four vertices should move when any single vertex is 

dragged. One visual interpretation of these decisions appears  

in Figure 16.  

 

E

BA

D C

E

BA

D C

 

Figure 16. Rectangle ABCD expands uniformly about point E. 

 

As point A (or any other vertex) is dragged outward, the entire rectangle 

expands uniformly about its center, point E. No point or segment on the rectangle 

stays still. This is indeed one theoretical rectangle behavior. It is not the way a 

typical Sketchpad rectangle reacts under dragging. 

Rather, a Sketchpad rectangle behaves differently depending on which vertex 

gets tugged. The list below charts the reactions upon dragging each vertex of 

rectangle ABCD shown in Figure 15: 

1.  Drag point A. The entire rectangle expands or shrinks uniformly with all 

of its sides and vertices in motion except point D, which stays fixed. 

Mathematically speaking, point D is the center of dilation—a stationary 

point about which the rectangle grows and contracts. Point A can be 

dragged anywhere on screen. 

2.  Drag point B.  As shown in Figure 17, segments AB and DC grow in 

response to dragging point B. Unlike vertices A, C, and D, which can be 

dragged in any direction, point B’s movement is restricted: it can only 

move along a stationary hidden line passing through points A and B. 

Consequently, dragging point B does not alter the lengths of either AD  

or BC, nor does it change the tilt of the rectangle. 
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C
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C

 

Figure 17. Three snapshots of ABCD as point B is dragged to the right. 

 

3.  Drag point C. The entire rectangle is translated across the screen without 

any change to its dimensions. Point C can be dragged anywhere on 

screen. 

4.  Drag point D. The entire rectangle grows and shrinks about the stationary 

center of dilation, point A. Point D can be dragged anywhere on screen. 

Note that not one of the movements listed above is identical to the growth 

pattern depicted in Figure 16. Nor is this type of behavior limited to rectangles: all 

shapes constructed with Sketchpad exhibit similar movement patterns. Each 

vertex of an object when dragged will move certain elements of the overall shape 

while leaving others stationary.  

For educators examining a Sketchpad rectangle, the quirky behavior described 

above is perhaps momentarily surprising. More likely, it passes unnoticed. Yes, 

point D stays fixed when dragging point A, but this invariant is of no particular 

consequence when describing the general properties of rectangles. By contrast, 

students in our interviews often paid considerable attention to the stationary 

nature of points. The following three examples illustrate this tendency. 

 

David and Ben 

The interview excerpts below find David and Ben4 examining two pre-built 

isosceles triangles. Chapter V contains a complete description of these triangles, 

but a picture of them appears again in Figure 18 for reference. Recall that 

although these triangles look identical, the behavior of points J and W is different: 

whereas dragging point J keeps the lengths of 

! 

TN  and 

! 

TJ  intact, dragging point 

W lengthens or shortens 

! 

EH  and 

! 

EW  simultaneously. 

                                                
4 The names of all students in this dissertation are pseudonyms. 
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T

N

J

E

H

W
 

Figure 18. Two isosceles triangles. 

 

By providing David and Ben with malleable isosceles triangles, we 

hypothesized that the key invariant property of such triangles—namely, the 

equality of lengths 

! 

TN and 

! 

TJ as well as 

! 

EH  and 

! 

EW  and—would catch 

their attention. Instead, here is what happens when Ben begins to explore !EHW 

with the mouse: 

Ben: [dragging segment EW] That just moves the triangle [the 

entire !EHW is translated across the screen without  

changing size]. 

David: [Ben now drags point E] That’s making W your stationary 

point [points E and H move while point W stands still]. 

Ben: That’s moving, like, everything. 

David: No, it’s not moving point W. 

Ben: [dragging point H] H just moves itself. 

Ben:  [dragging point W] Point W moves W and H. 

 

The interviewer now suggests that David and Ben explore the other  

triangle, TNJ: 

David: [Ben drags point J] That’s just moving J. 

David: [Ben drags point T] That’s moving the whole thing…oh, but 

it’s changing the size [of the triangle]. 

David: [Ben drags point N] That’s just moving N. 

Ben: I think N and J are the same. 
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David: N and J have the same movements. 

Ben: Yeah. 

 

In the quotations above, David and Ben make no indication that they recognize 

either triangle to be isosceles. Rather, their discussion focuses on causalities 

regarding individual points. These causalities are of the type, “Moving point X 

causes point Y to move, but leaves point Z stationary.” Notice, however, that 

David and Ben do progress beyond a “move/does not move” categorization of 

points by mentioning that points N and J “have the same movements” (both N and 

J are constrained to a circular path). Asking how a point moves is a  

natural follow-up to the simpler question, “Does the point move?” I will  

discuss this theme further when revisiting David and Ben’s progress in an 

upcoming section. 

 

Rick and Allen 

In the conversation excerpted below, Rick and Allen have experimented with 

our pre-built rectangle and identified its shape correctly. Their attempt to build a 

fresh rectangle from scratch has hit a roadblock, so at the interviewer’s 

prompting, they think again about the features they’d like in their construction. 

Rick returns to our rectangle (see Figure 15) and drags its vertices as he talks:  

Rick: I think we want…all these points to have different 

characteristics. Point A moves on point D [Rick drags point A 

and sees the rectangle rotate and grow around the stationary 

point D]…Point D moves on point A [Rick drags point D, 

creating the same behavior]. 

Allen: That’s also changing the size [of the rectangle]. 

Rick:  Oh it does, yeah…Point C moves the rectangle [Rick drags 

point C, thereby translating the rectangle]. 

 

Unlike David and Ben, Rick and Allen do know what shape they’re trying to 

build. Yet from their perspective, a rectangle must include not only right angles 

and parallel sides, but also the specific behaviors associated with each vertex of a 

Sketchpad rectangle. The interviewer senses this problem and directs the pair 

back on course: 

Int.: Don’t worry for the moment about the characteristics of the 

points. I think that’s possibly distracting. Think about the 
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shape. What features do you want to preserve in the shape? 

Because in fact, the customer doesn’t really care about the 

points; the customer cares about the shape. 

 

It is worth mentioning here that the attention of Rick and Allen (as well as 

David and Ben) to point behavior may be a by-product of our black-box interview 

style. Since interviewees were told they would need to duplicate our onscreen 

objects, this directive could be seen as extending to all aspects of the 

construction—including points. More will be said about this issue in the 

concluding chapter. 

 

Seth and Norman 

In comparison to the previous two pairs of interviewees, Seth and Norman 

succeed in building their construction—a rectangle ABCD—without concerning 

themselves about the behavior of individual vertices. With their rectangle 

complete and identical to our black-box sketch, they begin to inspect  

its four vertices. When dragging points A and D, they see the length and width  

of their rectangle uniformly expand and contract. This behavior seems to  

satisfy them: 

Norman: [drags point A, dilating the rectangle] Whoa, this  

is rectangle-e…Now for D [drags point D, again  

dilating the rectangle]. 

Seth: Well, it works. 

Int.: OK, next problem. 

 

The interviewer is ready to move on, but Norman drags point C and then point B. 

The behavior of these points mirrors those of our black-box rectangle: 

Norman: Whoa! C…C stays the same [the rectangle is translated 

across the screen without changing size]. 

Int.: That’s right, but it doesn’t ruin the rectangle, right? As long as 

it doesn’t ruin it, the customer won’t get upset. 

Norman: Why does C stay the same? And B actually move? [B’s path  

is restricted, as described on page 50]. 

Seth: C and B are messed up. 
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Norman: Yeah. 

Seth: Points A and D work great. 

 

From these quotations, it appears that Seth and Norman would like all four 

vertices to grow and shrink their rectangle. The more restrictive behavior of C and 

B leads Seth to pronounce them “messed up.”  

 

Uncovering Hidden Paths 

The preceding three examples spotlighted students’ attention to the mobility 

and immobility of individual points. Such point behaviors—pure artifacts of 

Sketchpad’s design—did little to aid interviewees in uncovering and recreating 

the generalized mathematical properties of each mystery shape. 

In this section, I present two further examples highlighting students’ attention 

to point behavior. Now, however, their interest lies not merely in determining 

whether a given point moves, but rather, in describing how a point moves when 

dragged. 

Consider vertex N of isosceles triangle TNJ in Figure 18. From this static 

picture alone, there is no reason to suppose that one couldn’t take the computer 

mouse, click on point N, and drag it randomly across the screen. Testing this 

theory yields a surprise: point N’s behavior (as well as point J’s) is restricted to an 

unseen circle with center at point T and radius of length TN. See Figure 19. 

 

T

N

J

 

Figure 19. A hidden circle represented by dashed segments. 

 

 The circle, tucked away from sight until one chooses Sketchpad’s “Show All 

Hidden” menu option, functions similarly to an architect’s blueprints. Just as most 
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of us remain cheerfully oblivious to the construction features buried behind our 

walls, so do we not see the circle once the constructor has hidden it. The circle 

provides the scaffolding needed to build an isosceles triangle without calling 

undue attention to itself.  

Prior to the start of our interviews, we hid the circles that formed the backbone 

of our isosceles triangles. To our surprise, interviewees soon  

found them. 

 

David and Ben Revisited 

This chapter began by describing David and Ben’s exploration of an isosceles 

triangle. Recall that the pair had dragged individual vertices of their triangle, but 

had not identified it as isosceles. Sensing that they needed a little help, the 

interviewer provides a big hint: 

Int.: How about the lengths of some of the segments? Is there 

anything about those that stay the same? 

David: These two lengths stay the same [pointing onscreen to TN and 

TJ, Figure 18]. 

Ben: Yeah it’s always a…what is it? An isosceles or whatever? 

 

David and Ben now attempt to build their own isosceles triangle. They draw 

(as opposed to construct) a triangle that looks isosceles, but they cannot keep two 

lengths equal when dragging its vertices. At this stage, David and Ben still do not 

realize that a circle is necessary to assure the equality of lengths. 

Ben now returns to our pre-built isosceles triangle, TNJ. He begins to drag 

point N. His mouse movements, slow and tentative at first, cause N to rock back 

and forth along a small arc of the hidden circle (Figure 19). Point N vacillates in 

this manner for approximately seven times, never spanning more than half the 

entire circle’s arc. 

David and the interviewer continue to talk while Ben stares at point N’s 

movement. Soon Ben interjects, “OK, that’s a circle!” Once Ben announces his 

discovery, he begins to move point N rapidly, now twirling it around the entire 

circle. Ben spins the point again and again, as if to confirm his statement. 

David is quick to understand the significance of Ben’s observation: 

David: Oh, OK, there we go. That helps. So that’s the center point of 

the circle [gestures at point T]. 
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The pair now construct their own isosceles triangle, complete with hidden circle, 

without difficulty. 

 

Ellen and Lynne 

Ellen and Lynne pursue their isosceles triangle investigation (Figure 18) in a 

manner virtually identical to David and Ben: 

Lynne: [dragging point H in a full circle] When H moves, oh, I think 

H is on a circle or something. So the circle is hidden, [and] 

when H moves, it is attached to the circle and it moves only in 

a circle. 

Int.: Why do you say that? 

Lynne: Because when you move E, you can move it in [towards W] 

and you can move it anywhere, but H is restricted, you can’t 

move it into the center, and it seems to go around in a kind of 

a circular motion. 

Int.: So basically you’re saying you think it’s a circle because it 

kind of looks like one. 

Ellen: It’s like a protractor [makes a circular motion with her hands 

that resembles a compass]. 

Lynne: Yeah.  

 

With some effort, Ellen and Lynne reconstruct both isosceles triangles. At no 

time, however, do the pair identify the triangles as isosceles or mention the 

equality of lengths. The interviewer does not press them on this matter, so it 

cannot be said whether they recognize the general properties of their two 

triangles. Yet like David and Ben, Ellen and Lynne certainly use their discovery 

of the hidden circle as an entry point into the construction process. 

 

Commentary 

As the examples above illustrate, the detective work of uncovering hidden 

paths provided an effective, if unexpected, route to rebuilding constructions from 

scratch. Prior to the interviews, we hypothesized that a student who successfully 

explored and recreated isosceles triangle TNJ might perform the following 

hypothetical line of reasoning: 

Hmmm…By dragging the vertices of triangle TNJ and watching the entire 

triangle grow and shrink, I see certain key features of its shape remain 
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invariant. In particular, two of its lengths, TN and TJ, always stay equal to 

each other. That must mean I’m dealing with an isosceles triangle. So how 

can I build one of my own? Well, a circle is a good tool to use when I 

need to guarantee the equality of two lengths. Let’s try that… 

There are several assumptions contained in this thought process: 

1. Sketchpad’s seemingly infinite supply of generalized isosceles triangles 

would help students to perceive visible invariants. Interviewees would pay 

attention to such visible geometric invariants as the equality of TN and TJ 

when viewing !TNJ. 

2. Faced with the need for creating two equal sidelengths, interviewees 

would puzzle out in their minds the necessary geometric construction. 

During our interviews, this chain of events did not occur. Interviewees broke with 

the above assumptions in the following ways: 

 1.    Interviewees did not (except in one case when prompted) inform us that 

the lengths of TN and TJ remained equal or note !TNJ was isosceles. 

2.   Interviewees paid particular attention to invariants that were invisible. In 

particular, Point N was restrained in its movement to a hidden circle. 

Rather than deduce on their own the mathematical need for a circle, 

interviewees uncovered the circle through dragging and observing point 

N’s path.  

3. Interviewees did not seem to consider their task as building an isosceles 

triangle with two equal lengths. Rather, their view of the triangle 

construction was tied to the hidden circle: build a triangle whose two 

vertices travel along the circumference of a circle, and whose third vertex 

serves as the circle’s center. This definition has embedded within it the 

properties that assure the triangle is isosceles and contains two equal 

lengths, but these traits were never mentioned explicitly.  

 

Reducing the Generality of a Dynamic Illustration 

Earlier in this chapter, I described the various ways a Sketchpad rectangle 

ABCD reacts when tugged on each of its vertices. Dragging point A produces a 

seemingly infinite number of rectangles, three of which are shown below in 

Figure 20: 
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Figure 20. Three general snapshots of rectangle ABCD. 

 

The snapshots above illustrate rectangle ABCD in a general form. The 

numerical values of its length and width vary from picture to picture, as does the 

tilt of the rectangle on the page. 

By contrast, dragging point B yields a more restricted range of rectangles, 

illustrated again in Figure 21 below: 

 

A

D

B

C

A

D

B

C

A

D

B

C

 

Figure 21. Dragging point B restricts the movement of ABCD. 

 

As B is dragged to the right in a sliding, trombone-like fashion, certain features 

of the rectangle remain invariant. The lengths of AD and BC do not change; the 

distance between parallel lines DC and AB stays constant; the rectangle does not 

tilt. The progression of rectangles in Figure 21 displays more generality than a 

single rectangle image, but less generality than the snapshots in Figure 20. The 

interview excerpts below describe how interviewees sometimes preferred the 

reduced generality of Figure 21. 

 

Lynne 

Lynne begins her study of rectangle ABCD by dragging each vertex 

individually. She experiments with vertices A and D—the two points that change 

the length, width, and tilt of the rectangle—but says she’s “not really sure about 

these yet.” She does, however, repay several visits to vertex B, examining  
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both the restricted movement of the point and the rectangle (Figure 21).  

Lynne comments: 

Lynne:  I think that B must be on…I think there might be like a 

parallel line or something going…going this way [motioning 

with her finger in the direction of segment AB]. Point B can’t 

really adjust; it only stays in the same…never mind. 

Int.: What suggested the parallel to you? 

Lynne: I think the fact that when you select B it does not move in the 

way the others do [pointing to A and D]. Point B can’t adjust 

like that. It can only adjust this way, keeping the same lengths 

[pointing to segments AD and BC, both of which maintain the 

same lengths when B is dragged]. 

 

In her final quotation above, Lynne mentions that the lengths of 

! 

AD and 

! 

BC  

remain constant while dragging point B. Noticing the invariance of these two 

lengths (and point B’s inability to move closer to 

! 

DC ) might be helping her to see 

that 

! 

AB and 

! 

DC  are parallel. Whereas dragging point A or D changes the tilt 

and the distances between both pairs of ABCD’s parallel sides, dragging point B 

restricts this generality, perhaps allowing Lynne to focus on just the one pair of 

parallel sides.  

 

Rick and Allen Revisited 

Recall that when we checked the progress of Rick and Allen, they had been 

unsuccessful in their attempts to build rectangle ABCD. When Rick dragged 

points A and D, the rectangle’s length and width expanded and contracted, but he 

paid attention to the stationary nature of the points instead: 

Rick: Point A moves on point D [Rick drags point A and sees the 

rectangle rotate and grow around the stationary point 

D]…Point D moves on point A [Rick drags point D, creating 

the same behavior]. 

 

When Rick drags point B (Figure 21), he notices more essential features of the 

rectangle: 

Rick: I think we want to keep all the angles 90 degrees, and we want 

to keep the lines parallel…these horizontal lines [pointing to 

! 

AB  and 

! 

DC ]. 
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As with Lynne, Rick seems to focus on the one pair of parallel segments that 

grows and shrinks when point B is dragged.  

 

Commentary 

By dragging point B and restricting the movement of their Sketchpad 

rectangles, both Rick and Lynne exhibit behavior resembling the “prototype 

phenomenon” described in Chapter III. Recall that students, when presented with 

a static image such as an isosceles triangle, were more successful in identifying 

the object when it sat with its base horizontal to the paper (Figure 4). Textbooks, 

whose images are often limited to such “prototypic” positions, had unwittingly 

narrowed students conceptions of what counted as isosceles.  

Here now, in the case of dynamic geometry and rectangle ABCD, students are 

engaging in some narrowing of their own, restricting the types of rectangles they 

see to make it simpler to identify the quadrilateral’s features.  

Indeed it might be unrealistic to expect that students can attend to the necessary 

attributes of a rectangle (or other shape, for that matter) when all of its sides grow, 

shrink, or rotate simultaneously. Just because we can create an idealized rectangle 

with near-complete variability does not mean, from a pedagogical standpoint, that 

we should. Perhaps the restrictive rectangle represents a valuable middle ground, 

where generality is tempered by some specificity. 

 

 

 

CHAPTER VII 

LANGUAGE 

 

Chapter VI examined the influence of motion on the geometric explorations 

conducted by our interviewees. In this chapter, the focus shifts to issues of 

language. What verbal descriptions did interviewees use to describe the images 

they observed on screen? Was their language that of traditional geometry or more 

informal in nature? 

In these language-related issues, motion will continue to play an important 

role. Chapter III described a theory of “situated description” whereby students 

who work with computers adopt language reflecting the types of interactions 

promoted by the software. The Geometer’s Sketchpad promotes motion-based 

interactions with malleable geometric figures. As such, interviewees’ choice of 

words and descriptions were often tied to the motion they viewed onscreen.  

 

 

 



 

 

42 

 

Motion-Based Descriptions of Parallelism 

Among its other traits, a rectangle possesses two pairs of parallel sides. 

Without using the word “parallel” explicitly, one might say the sides have the 

same slope. Or one could note that if the sides were extended indefinitely, the two 

resulting lines would never intersect. 

This section presents two interviewees whose descriptions of a  

rectangle’s parallel sides were neither of the familiar possibilities offered above. 

Rather, their words show the influence of working within Sketchpad’s motion-

centered environment. 

Interviewee Ben draws a quadrilateral ABCD that looks nearly rectangular. He 

uses no construction tools, so dragging any vertex will deform ABCD into an 

arbitrary quadrilateral. When Ben tugs on his quadrilateral, he realizes that has not 

constructed a rectangle. As he drags point A to various locations (seen in Figure 

22’s three snapshots), he talks about the behavior he would like to see from 

ABCD: 

Ben: Well, it’s not exactly a rectangle, but if you move point A out 

[Figure 22(i)], then D has to come out with it. If you move 

point A up [Figure 22(ii)], B has to come. If you move point A 

diagonal [Figure 22(iii)], then they [points B and D] have to 

go up and to the side. 

 

D C

BA

D C

B

A

D C

B

A

(i) "out" (ii) "up" (iii) "diagonal"
 

Figure 22. The results of moving point A “out, up, and diagonal.” 

 

Ben’s quotation adopts a “follow-the-leader” description of how a proper 

rectangle should behave. When point A slides “out” to the left (Figure 22(i)), then 

point D has to “come out with it.” When point A moves up (Figure 22(ii)), then 

point B must follow suit. Finally, if point A moves in a northwest direction 

(Figure 22(iii)), then points B and D must move north and west, respectively.  
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All of the actions described here can be encapsulated into a single, more formal 

statement: regardless of point A’s location, opposite sides of ABCD must remain 

parallel. 

Rick, in a separate interview, describes parallelism much the same as Ben. He 

draws—as opposed to constructs—a rectangle ABCD. When he drags point A and 

sees that point D does not move with it (Figure 23) he says, “Somehow [points A 

and D] need to be attached so that when I pull on point A, both A and D move this 

way or that.”  

 

A

D C

B A

D C

B

 

Figure 23. When point A is dragged, point D does not follow. 

 

Ben and Rick’s language, while unexpected, does describe parallelism in a 

dynamic geometry environment. Their words lack specificity, and it is here that a 

teacher can press students on the issue: when point A moves, where exactly 

should point D move? As point A moves, what features of the rectangle should be 

kept intact? Research results and classroom experience can help teachers develop 

their own internal database of DG-inspired language and prepare them to 

capitalize on situations where such language is used. 

In the next section, the study of language turns to two DG-related metaphors 

devised by our interviewees. It is here with metaphors that we will see how 

language can serve as either a barrier or an entryway into geometric constructions. 

 

Movement-Based Metaphors 

Simple and abstract, a static circle or rectangle can serve as the basis for 

countless metaphors. A circle might trigger an image of a Frisbee; a rectangle 

might resemble a door. In both instances, it is the object’s shape that inspires  

the association.   

A broader role for metaphor emerges in the world of dynamic geometry. Each 

object created with The Geometer’s Sketchpad possesses not only a shape, but a 

movement associated with the dragging of its parts. Together, shape and 

movement may suggest metaphors not apparent through a static picture alone. 
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This section offers two metaphors that arose during interviewees’ exploration 

of our black-box sketches. While both metaphors had the potential to aid in the 

identification and reconstruction task, only the pair of Ellen and Lynne were able 

to use their metaphor effectively. What factors contributed to their success? Why 

did our other interviewee, Norman, encounter more difficulty? The interview 

excerpts and analyses point to some intriguing possibilities. 

 

Ellen and Lynne 

Figure 24 shows four snapshots of our final black-box sketch. Chapter V 

describes this construction in detail, but in brief, point D sits on a hidden line j 

that is the perpendicular bisector of segment AB. Lengths AD and BD are always 

equal. 
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B
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Figure 24. Four snapshots of point D moving along the hidden line j. 

 

Lynne begins her investigation of Figure 24 by dragging points A, B, and D. 

Her partner, Ellen, comments on the movement of point D: 

Ellen: It’s like one of those like…what do you call them? Slingshots. 

You throw a rubber band and then it…[moves her hand back 

and then forward as if tightening and releasing a rubber 

band]…When you move D, it does a little slingshot thing… 

Int.: What makes it look like a slingshot to you? 

Lynne: A slingshot? Well, OK, I was thinking about looking at a 

slingshot from the top…You know, how it's like a ‘Y’? [uses 

her hands to trace a big ‘Y’ in the air]. That’s the two points 

of the ‘Y’ [points A and B] from the top and point D is the 

rubber band. 

 

As a metaphor for capturing the movement of point D, Ellen’s choice of a 

slingshot is an apt one. Figure 25 shows a ‘Y’-shaped slingshot with tips at points 

A and B and a stretched rubber band between them. The center of the rubber band, 
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point D (the contact point for a wad of gum or other projectile), does move like its 

onscreen Sketchpad counterpart. 

Ellen’s slingshot metaphor serves as conversational shorthand for what would 

otherwise be a lengthier geometric description. After listening to Ellen’s 

explanation above, Lynne offers such a geometric take on the situation: 

Lynne: I think I might have an idea…I think that points A and B are 

on the same line…they are perpendicular to a different line 

that point D is on. 

 

D

B

A

 

Figure 25. A slingshot model of the construction in Figure 24. 

 

Lynne illustrates her statement by moving Sketchpad’s selection arrow 

between points A and B to indicate the hidden segment connecting them. She then 

moves the arrow in the direction of the hidden perpendicular bisector, line j 

(Figure 13). 

Lynne is correct; her geometric analysis will allow her to reconstruct the 

sketch. At this point, it would be natural enough for the interviewer to forgo 

Ellen’s informal metaphor in favor of Lynne’s more familiar approach. Instead, 

he challenges the pair to reconcile their two, complementary views of the 

situation. He addresses Lynne: 

Int.: Describe your thing again. You [Ellen] see if you can, while 

she’s describing it, see if you can picture your slingshot. See if 

the things Lynne describes fits that picture. Because I’m 

curious. You have one image, [Ellen] has another image. They 

both are clearly describing what each of you are seeing. The 

question is whether you’re seeing the same thing. 
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The interviewer has asked Lynne to repeat her explanation, but she offers more, 

tying her geometric description to Ellen’s slingshot model: 

Lynne: One of the reasons it looks most like a slingshot is because it 

doesn’t curve everywhere. It just stays in the same straight 

path. 

 

The center of a slingshot’s rubber band pulls straight back and springs straight 

forward. Its path is not “curvy.” Geometrically speaking, point D moves along a 

line. 

Lynne: When D is passing through A and B like a slingshot, it doesn’t 

go closer to A or closer to B. It just stays in the center of them 

both…[drags point D so that it forms one continuous segment 

ADB with D at the midpoint]…It would make sense [dragging 

point A as she speaks] because everywhere, if you can 

imagine, the straight line there [gesturing with her hand to 

indicate the hidden perpendicular bisector line j], they [the 

lines] would always be perpendicular. 

 

In the above quotation, Lynne explains that regardless of the location of slingshot 

tips A and B, the path of point D will always be perpendicular to segment AB. 

The interested reader will find an extended excerpt from this interview in 

Appendix D. 

 

Commentary 

When the interviewer asks Ellen to explain her slingshot idea, it is simple 

enough for her to mimic a slingshot’s movement with her hands. The ultimate test 

of her metaphor, however, comes in what might be called the “translation phase” 

of the task. Recreating a slingshot-like movement with Sketchpad requires Lynne 

to examine how a slingshot’s movement can be coded into the language of  

geometry. Such translation work is a new skill, one not required in traditional, 

static geometry. 

In the second interview excerpted below, Norman must also translate his 

informal observations into geometric terminology. He fares less well than Lynne. 
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Norman 

Figure 26 shows four snapshots of our perpendicular bisector sketch. Chapter 

V describes this sketch in detail, but in brief, the line between A and B is the 

perpendicular bisector of a hidden segment connecting the two points. 

Norman explores the construction by dragging point A with his mouse: 

Norman: [dragging point A to point B] That’s weird. How does it do 

that? How does it [point A] keep away from the line? It’s like 

a magnet to the line. As I get it closer [point A closer to point 

B], the line moves farther away. And if I really try hard, I can 

get [the points] to come together in the center [drags point A 

onto point B]…But how does it do that? 

 

The interviewer asks Norman to expand upon his magnet metaphor. Norman 

drags point B as he speaks: 

Norman: …this [point A] seems to be the pressure point…Only [there] 

can the dot [point B] touch the line. 

Int.: So now describe the line in relation to the two dots… 

Norman: …as you push [the line] with this dot [point B], it moves 

towards the other dot [point A]. Any way you do it [he 

illustrates that regardless of where point B begins, the line is 

“pushed” towards point A as point B is dragged to point A]. 
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Figure 26. Four snapshots of the perpendicular bisector construction.. 

 

Later in the conversation, the question of whether Sketchpad has a command or 

menu item that creates magnet-like behavior arises: 

Int.: You know what? Figuring out the software is not the object of 

this exercise. You can ask any questions about the software. 
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You tell me what it is that you want to do. You want these 

points to do something. 

Norman: I want these points to interact with the line. 

Int.: OK, in what way? Describe the relationship that you want. 

Norman: Like, when the point moves nearer to the line, the line moves 

away and towards the other point. 

Int.: There’s no instruction that I know of that does exactly that. 

 

The interested reader will find an extended excerpt of this interview in  

Appendix D. 

 

Commentary 

Norman’s description of the perpendicular bisector construction is not without 

merits. His descriptions of the onscreen behaviors are accurate. As point A 

approaches point B, the line moves away from A. And point A can only touch the 

line when the two points, A and B, coincide.    

With these observations in hand, Norman must answer an important question: 

what accounts for these movements? He couches his descriptions in terms of 

magnetism. 

As one drags point A in the direction of point B, it certainly does feel as if the 

point “pushes” (to use Norman’s word) the line away. If this black-box 

arrangement appeared as part of a physics simulation, then associating the 

pushing to a magnetic force might serve Norman well. One could imagine 

Norman selecting a magnetism option from the software’s menu items to simulate 

such behavior. 

But Sketchpad operates under the rules of geometry, and geometry knows 

nothing of pushing or magnets. There are no menu items corresponding to 

“pushing” and “pressure points.” Norman must, as did Lynne, translate his 

observations from a physical model to the corresponding language of geometry. 

Why does it feel like point A pushes the line away? Because the line always 

passes through the midpoint of segment AB. See Figure 27: 
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A B A B A B

 

Figure 27. Three snapshots showing point A approaching point B. 

 

Movement-inspired metaphors such as Ellen’s slingshot and Norman’s magnet 

both serve as potential entries into the process of deconstructing the geometry that 

lies behind black-box sketches. But users must recognize metaphors as informal, 

transitional tools to be reinterpreted in terms of formalized geometry. For 

Norman, who says that if he “really tries hard” he can bring points A and B 

together, the magnetism interpretation may be very real to him and not a metaphor 

at all. 

 

 

CHAPTER VIII 

CONSTRUCTION 

 

With their attention to issues of language and motion, Chapters VI and VII 

focused on interviewees’ investigative mouse dragging. Now, in this final analysis 

chapter, the spotlight shifts to their efforts at rebuilding black-box constructions 

from scratch. Specifically, it details the work of several interviewees as they 

assemble a Sketchpad square. 

Compared to other geometric shapes, a square is a relatively simple object to 

construct, typically built with the aid of Sketchpad’s circle tool and its 

Perpendicular and Parallel Line commands. The interviews excerpted below, 

however, offer student construction techniques that depart from standard methods. 

With each technique comes the same question: have the interviewees built a 

square? While this may sound like a simple matter to answer, it is, in fact, a 

thornier issue than one might suppose in the world of dynamic geometry.  

 

What Qualifies as a Sketchpad Square? 

Chapter III presented a structure for classifying constructions in a dynamic 

geometry setting. Recall three of Finzer and Bennett’s (1995) construction 

categories: drawing, underconstraint, and appropriate constraints. 
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Figure 28 shows a square that reveals itself to be a drawing when points B and 

D are dragged. In this instance, the supposed square was created by eyeballing the 

location of four segments so they would appear equal in length and positioned at 

right angles. Without any geometric constraints built into the picture, any 

perturbation to the object deforms it into an arbitrary quadrilateral. 

 

A B

CD

D

C

B

A

 

Figure 28. ABCD looks like a square, but isn’t. 

 

Figure 29 shows an underconstrained square. It has four built-in right 

angles, but no constraints to keep its lengths equal. Dragging vertex B deforms the 

square into a rectangle. 

 

A B

CD

A B

CD
 

Figure 29. ABCD looks like a square, but is actually a rectangle. 

Finally, Figure 30 shows a common method for building a bona fide square 

with appropriate constraints. Segments DA and DC are radii of a circle, ensuring 

the equality of ABCD’s lengths. Segments AB and CB are constructed 

perpendicular to DA and DC respectively, guaranteeing that all four of the 

quadrilateral’s angles measure ninety degrees. With these construction features in 

place, ABCD may grow or shrink when tugged on a vertex, but will always 

remain square. 
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Figure 30. Constructing a Sketchpad square. 

 

The three Finzer and Bennett categorizations outlined above function as more 

than pure theory. A student asked to construct a Sketchpad square must know why 

the options in Figure 28 and 29 do not suffice.  

This chapter presents several interviewees’ square-building efforts. Their 

methods expand upon Finzer and Bennett’s construction distinctions and raise 

new questions concerning the definition of a DG square. 

 

Norman’s Square 

When Norman begins his square construction, the interviewer tells him that 

he’ll first need to “learn some things” about Sketchpad’s menu items (such as the 

Perpendicular and Parallel Line commands). Undaunted, Norman assures him, 

“No, you can do it in a much easier way.”  

Norman draws a square ABCD by freehand, estimating the positions and 

lengths of the four segments. He then selects Sketchpad’s circle tool and draws a 

circle that originates roughly in the center of ABCD and extends out to its four  

vertices (see Figure 31). Norman draws the circle so that point A serves as its 

control point. 
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CD

 

Figure 31. Norman’s initial square-building method. 

 

Norman drags point A and admits that his square has some problems. Since its 

lengths and angles were estimated rather than constructed, ABCD deforms into a 

random quadrilateral. Judged by Finzer and Bennett’s classification, Norman has 

himself a drawing.  

Yet beneath this seeming failure lies the germ of a good idea. When a circle 

expands, it retains its shape. If ABCD can be linked to the circle, it too will retain 

much of its shape. Because Norman drew his circle after forming ABCD, neither 

point B, C, nor D remains attached to its circumference. Norman wants all four 

points of ABCD to move in unison with the circle, so he reverses course.  

Norman begins fresh by drawing a circle. Only then does he draw ABCD, 

placing each of its four vertices along the circle. Again, point A serves as the 

circle’s control point. 

When Norman drags point A of his new square randomly across the screen, the 

behavior of ABCD exhibits more regularity than his previous attempt. Now, all 

four points of the quadrilateral remain attached to the circle when it moves. Aside 

from segments AB and AD, the entire figure grows and shrinks proportionately. In 

other words, BC = CD and "BCD = 90º regardless of the quadrilateral’s size (see 

Figure 32). Some careful dragging of point A yields more regularity still: if point 

A is dragged in a northwest direction4, ABCD remains a square while expanding. 

 

                                                
4 Mathematically speaking, the user must drag point A so that the measure of 

angle DAB remains 90 degrees. 
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Figure 32. The result of dragging point A. 

 

Commentary 

Norman’s square-building technique stays clear of the Perpendicular and 

Parallel Line construction tools. Without the use of these menu items, it is hard to 

imagine how anything he builds could rise above the category of drawing. Yet 

through the clever use of a circle, he manages to build a quadrilateral ABCD that 

grows and shrinks, all the while approximating a square, provided point A moves 

in a controlled path.  

Norman’s efforts fall short of an appropriately constrained object, but there is 

still much to admire in his work. Compared to the underconstrained square in 

Figure 29, his construction holds several advantages: 

1.   Economy and speed. Building Figure 29’s underconstrained square 

demands multiple trips to Sketchpad’s Perpendicular and Parallel Line 

commands. It also requires the user to hide construction lines and replace 

them by segments. By contrast, Norman’s method involves no hidden lines 

and no menu selections. It can be completed in less than half a minute, 

qualifying it as a quick-and-dirty means of illustrating a multitude of 

squares. 

2. Mathematical integrity. None of the construction elements built into Figure 

29’s underconstrained square help to keep its four sides equal in length. By 

contrast, Norman’s method uses the symmetry of a circle to achieve four 

(sometimes) equal lengths.  

Because Norman’s construction exhibits square behavior, one might classify it 

as an underconstrained square. This assessment, however, leaves room for 

disagreement. Norman drew his square by eyeballing the correct locations for its 

vertices. As such, the angle measures of ABCD were not precisely ninety degrees, 

and its lengths were not perfectly equal. These inaccuracies can be corrected by 

measuring and adjusting the particulars of ABCD, but is measuring a legitimate 

part of the construction process? Traditionalists would likely say no. 
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Regardless of which side of the above debate the reader chooses to accept, the 

message here is more general: deciding whether an object built with Sketchpad is 

a square, contains some degree of “squareness,” or is not a square can be 

surprisingly difficult and open to multiple perspectives. 

 

David and Ben’s Square 

David and Ben begin their square construction by drawing a circle and placing 

points B and D on its circumference. They add radii 

! 

CB and 

! 

CD to the 

picture and construct perpendicular lines j and k through points B and D, 

respectively (see Figure 33(i)) 

 

(ii)(i)

k

j

D C

BA

k

j

D C

B
A

 

Figure 33. David and Ben’s construction method. 

 

David and Ben’s construction is similar to the appropriately constrained square 

in Figure 30, but with one difference: whereas "BAD in Figure 30 always 

measures ninety degrees, "BAD in Figure 33 can assume a variety of 

measurements since points B and D move independently. Only when 

! 

CB is 

perpendicular to 

! 

CD is ABCD square (Figure 33(ii)). 

The interviewer questions David and Ben about ABCD, but soon discovers that 

neither interviewee intended this quadrilateral to serve as his  

final square: 

Int.: You’re trying to build a square. What are the features you’re 

trying to build into it? 

Ben: Equal sides and ninety-degree angles, all four. 
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Int.: Check this thing out by moving it in various ways. And find 

out whether any of the properties that you’re looking for are 

there. For example, you do have some ninety-degree angles 

that stay all the time. 

Ben:  Well, we don’t have a full square yet so we can’t really tell. 

David: Yeah we do. That’s a full square [points to ABCD]. 

Ben: Oh yeah. I wasn’t looking at that part. 

David: Actually, I wasn’t really thinking of that [either]. I was 

thinking we’d go all the way around it [the circle]. 

Ben: Yeah, I was too. 

 

David and Ben plan to build a square that circumscribes (goes “all the way 

around”) their circle. They resume their construction by placing points E and F on 

the circle’s circumference, drawing 

! 

CE and 

! 

CF , and constructing lines 

perpendicular to the two segments (see Figure 34(i)).  

 

FF

(ii)(i)
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Figure 34. David and Ben continue their square construction. 

 

By dragging points E and F to their proper locations, David and Ben are able to 

make their quadrilateral look like a square (see Figure 34(ii)). Of course any 

subsequent dragging of either D, B, E, or F will deform the square back into an 

arbitrary quadrilateral. 

At this point, the interviewer intervenes, explaining that since segments BF and 

DE were drawn (as opposed to constructed) perpendicular to each other, the 
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illustration will never be an appropriately constrained square. Not to be deterred 

by this observation, David suggests a simple fix: 

David: Wait, wait, wait. I have a question. If you hide points D, A, B, 

E, and F, and you could only move point C, would that work? 

 

Sure enough, when David hides all points except the circle’s center (Figure 

35(i)) and then drags point C, their quadrilateral grows and shrinks, always 

remaining a square regardless of point C’s location (Figure 35(ii)). David  

and Ben give each other a congratulatory high-five and move on to the next black-

box challenge. 

C
C

(i) (ii)
 

Figure 35. Hiding every point except C yields a resizable square. 

 

Commentary 

The Finzer and Bennett (1995) categories cited throughout this chapter 

describe the various degrees of “squareness” that a quadrilateral can attain. From 

a theoretical perspective, this hierarchy seems clear enough. But in the sessions 

described in this chapter, these categories did not always provide a neat and tidy 

blueprint for the interviewer to follow. 

Consider the case of David and Ben. As soon as the pair placed independent 

points B and D on their circle (Figure 33), I was tempted to curtail their work. My 

experience with appropriately constrained squares told me there was too much 

variability in their construction. David and Ben intended angle BCD to measure 

ninety degrees, but I knew a simple tug of either point B or D would alter the 

angle’s measure. 

David and Ben’s solution to this problem—hiding nearly every point in their 

sketch (Figure 35)—struck me at first as cheating. Yes, dragging point C did grow 

and shrink their square perfectly well, but the hidden points B, D, E, and F could 
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“mess up” the shape. Was it fair to remove these points from view, thus making 

them inaccessible to mouse dragging? 

Strictly speaking, yes. Hiding extraneous construction points is perfectly legal 

under the laws of Sketchpad constructions. Dragging any of the quadrilateral’s 

vertices such as point A does maintain its square shape, so from this perspective, it 

is difficult to argue with David and Ben’s technique. 

But Ben made a remark prior to starting his next black-box item that caused me 

some concern. He asked, “Is that the only way to get it [the square]?” Throughout 

this dissertation, I have explained how the tools of dynamic geometry are not 

identical to their traditional counterparts. How one constructs a square with 

Sketchpad is not identical to straightedge and compass. Yet despite its 

differences, Sketchpad does maintain the mathematical integrity of the 

construction. Aside from knowing how to use such Sketchpad commands as 

“Perpendicular Line” and “Parallel Line,” there are no special software tricks 

needed to build a DG square.  

Sketchpad’s square construction is no less mathematical than the steps required 

for straightedge and compass. For Ben to think that he needed to hide 

misbehaving points struck me as unfortunate. If David and Ben had constructed 

(as opposed to drawn) segments BF and DE perpendicular to each other, then 

there would be no need to hide points. Any point, visible or otherwise, would 

maintain the quadrilateral’s square shape when dragged.  

Sorting through the correctness of David and Ben’s work is tricky business. Is 

their square appropriately constrained, underconstrained, or a mix of both? Or 

might it, like Norman’s construction, qualify only as a drawing since one must 

measure and adjust the square’s four angles to guarantee ninety-degree angle 

measurements at each vertex? My dissertation does not provide answers to these 

questions. In presenting interviewees’ work, my purpose is to raise an awareness 

of the complexities that arise when judging the merits of a Sketchpad 

construction.  

 

CHAPTER IX 

CONCLUSION AND RECOMMENDATIONS 

In his 1992 review of The Geometer’s Sketchpad, mathematician Robert 

Devaney communicates an appreciation of dynamic geometry that persists among 

the mathematics community to this day: 

The Geometer’s Sketchpad is one of the most effective pieces of software 

I have ever encountered. I expect that it will revolutionize the way 

secondary geometry is taught. Any prospective mathematics teacher, 

elementary, high-school, or college, should be exposed at some point in 

their education to this software. (p. 2) 
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As a long-time Sketchpad user, I, too, have experienced the satisfaction of 

building, animating, and investigating geometric objects on my computer screen. 

The interview summaries provided in this dissertation focused on students’ 

intellectual inquiries, but they could equally well have told a story of their 

engagement with the software. Our interviewees expressed surprise and frequent 

delight with the animated images they viewed and constructed on screen. Some 

requested copies of their sketches so that they could share them with friends. 

In the face of such enthusiastic support, it is easy to overlook questions that 

reveal a more nuanced appraisal of dynamic geometry. Without detracting from 

its obvious emotional and creative appeal, research must look past the novelty of 

Sketchpad’s animation capabilities and ask what they contribute from an 

educational perspective. 

Some reasonable hypotheses are easy to generate: viewing an isosceles triangle 

grow and shrink will help students to perceive the general features of all isosceles 

triangles. Building a resizable square can only be accomplished using commands 

like “Parallel Line.” 

These claims seem plausible because teachers and researchers  

are seasoned mathematics consumers who bring their years of static geometry 

experience to the world of Sketchpad. But the intuition of veteran geometers 

cannot compete with the information obtainable by interviewing actual students. 

Below are six themes that arose from analyzing our videotape data of middle-

school students exploring and recreating black-box mystery items. The remainder 

of this chapter interprets these findings as they relate to teachers and curriculum 

developers, and offers a collection of related issues for future study. 

Theme One: Students did not always draw a distinction between geometric 

properties specific to Sketchpad and geometric properties attributable to 

mathematics. 

In mathematical terms, a rectangle is a quadrilateral with four right angles. 

This property applies to all rectangles, whether static or “dynamic.” By contrast, a 

Sketchpad rectangle possesses properties unique to the computer medium. 

Interviewees Rick and Allen (Chapter VI) noticed that each vertex of our pre-built 

rectangle, when dragged, behaved differently. From a mathematical perspective, 

such movement patterns had no bearing on the rectangle. Nonetheless, Rick and 

Allen viewed these properties as no less critical than the right-angle measures. 

Theme Two: When describing the properties of geometric shapes, students 

sometimes paid more attention to hidden construction features than to visible 

attributes.  

David and Ben, along with Ellen and Lynne (Chapter VI), used their mouse to 

explore an isosceles triangle. Such triangles possess two sides of equal length, but 

neither pair mentioned this visible feature. Rather, interviewees uncovered the 

hidden circle used to regulate the triangle’s movement. This strategy, unavailable 
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to generations of students raised on static geometry, allowed the students to 

reconstruct the triangle from scratch without ever identifying it by name.  

Theme Three: When exploring pre-built objects with their mouse, students 

sometimes found it helpful to restrict the shapes’ movement in their efforts to 

identify its features. 

The Geometer’s Sketchpad allows students to vary the width, length, and tilt of 

a rectangle simultaneously. Lynne, along with Rick and Allen (Chapter VI), 

investigated this option, but ultimately found it more manageable to restrict the 

variability of the rectangle. By viewing the rectangle as its tilt and one pair of 

sides remained fixed, the interviewees were able to identify its geometric features.  

Theme Four: Some students described geometric shapes using metaphors that 

reflected how these objects moved onscreen. The success of these metaphors 

rested upon students’ ability to shift them into geometric language. 

The sensations derived from dragging an object with the computer mouse 

and observing the resulting behavior led some interviewees to describe our 

sketches in informal, metaphorical terms. Norman classified a perpendicular 

bisector line as magnet-like in its movement patterns. A variation of this sketch 

reminded Ellen of a slingshot (Chapter VII).  

The use of such metaphors recalls stage one of the van Hiele model for static 

geometry. Here, however, rather than classify an object by its shape (e.g., a 

rectangle is a door), students described objects by their behavior. How well these 

metaphors served our interviewees depended upon their ability to translate the 

metaphor into geometric terms. Lynne, for example, was able to extract from 

Ellen’s slingshot description those geometric properties of slingshots that allowed 

her to reconstruct one from scratch.  

Theme Five: Students’ efforts at building geometric shapes from scratch 

sometimes defied categorization as “right” or “wrong.” The prevailing 

classification structure, while helpful, did not account for creative construction 

techniques. 

In dynamic geometry language, a square is either a drawing or a construction. 

More specific still, a square is either a drawing, underconstrained, 

overconstrained, or appropriately constrained. Theoretically, the differences 

among these four Finzer and Bennett (1995) categories create an unambiguous 

scheme for classifying students’ construction attempts. In practice, these 

distinctions proved decidedly murky. Norman, David, and Ben (Chapter VIII) 

built squares without using common Sketchpad tools like “Perpendicular Line.” 

Through clever use of a circle’s symmetry, these students were able to build 

squares that, to varying degrees, maintained their “squareness” when dragged. 

Such non-traditional approaches serve as a challenge to teachers who assess the 

construction efforts of their students. The recommendation section below provides 

suggestions for addressing this issue. 



 

 

60 

 

Theme Six: The mathematical insights that students derived from dynamic 

geometry software were not always those intended by the interviewers. 

This theme encompasses much of the material summarized above. In a paper-

and-pencil geometry setting, students’ relationship to objects is limited by the 

static nature of the medium. By contrast, a dynamic geometry environment 

allowed our interviewees to scrutinize objects with their mouse and call upon a 

powerful set of construction tools. With this freedom, it was perhaps natural that 

interviewees’ responses and actions did not always yield the mathematical 

insights we expected. But the uncovering of a hidden circle (Chapter VI), the use 

of metaphors (Chapter VII), and the exploitation of a circle’s symmetry (Chapter 

VIII) all represent unanticipated mathematical discoveries that often served our 

interviewees well. 

 

Recommendations for Teachers of Dynamic Geometry 

Based on my research findings, I have assembled recommendations that may 

assist teachers who use dynamic geometry software as part of their mathematics 

curricula.  

1. As informed consumers of geometry, teachers view onscreen motion through 

a lens that extracts pertinent geometric information while siphoning out 

irrelevant, software-specific behavior. Students may have a more difficult 

time pinpointing salient aspects of a sketch. While an interest in point 

behavior may be inappropriate in one situation, it could be central to another 

investigation. 

Due to these concerns, teachers may wish to begin younger students in a 

static, rather than dynamic, realm. Displaying six different static rectangles 

may be preferable to one malleable rectangle. Static pictures can, of course, 

fall prey to the prototype effect, but typically this occurs because of space-

saving concerns of textbook publishers. A well-chosen sample of six 

rectangles offers the variability not possible with just a single image.  

2. The potential confusion arising from black-box sketches raises a question: 

Should teachers avoid these tasks entirely? I would suggest any sketch that 

students explore, whether self-made or teacher-constructed, contains elements 

of a black box. If a student draws something as simple as a segment on screen 

and drags it, she may know the name of the object, but only gradually come to 

understand how it behaves. What happens when its endpoint is dragged? How 

does this contrast to dragging the segment itself? A given activity may not 

address these questions directly, but the student will develop theories 

nonetheless. It is best to confront software-specific behaviors head on, rather 

than leave students to draw their own conclusions in silence. Black-box 

sketches, accompanied by class discussion, can serve this purpose.    
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3. Appendix E offers alternative square and isosceles triangle constructions in 

which the behavior of individual vertices departs from those in our interview. 

Teachers might assemble a sketch containing two squares or two isosceles 

triangles, each with different movement patterns. Students can then explore 

the two shapes side by side and describe those features common to both. In 

this manner, students can distinguish attributes of a square from features of 

Sketchpad. 

4. The movement patterns of daily life include ceiling fans rotating at the flick of 

a switch and bicycle tires spinning across pavement. The exact nature of these 

movements may be mysterious (What mechanism drives the fan?) but their 

sources are identifiable: electricity fuels the fan and our feet pedal the bicycle. 

In the case of dynamic geometry objects, what is the source of their movement 

patterns? What causes two points and a line to behave (in Norman’s words) 

like a magnet?  

For teachers, the answer is simple: geometry. Through the use of a 

perpendicular bisector, the points and line acquired magnet-like movements. 

For students, however, how odd to realize that geometry creates movement! 

Formal words like “perpendicular” and “bisector” acquire new significance 

when viewed as tools to build and control onscreen behavior. Teachers may 

need to emphasize this functionality to nudge students’ metaphors into the 

domain of formal geometric language. Given a construction and its student-

assigned metaphor, a teacher can ask the class to identify those geometric 

properties that invest the construction with its observed movement patterns. 

Metaphors serve as a powerful shorthand for describing onscreen activity, 

provided their connection to geometry receives attention. 

5. Assessing students’ object-building skill is a delicate balancing act. Their 

work may not fit strict construction standards, yet still contain nuggets of 

mathematical insight. If a student builds a square that sometimes, but not 

always, maintains its squareness (and is thus “underconstrained”), should she 

be commended for her work? I would argue yes. While the quadrilateral lacks 

“appropriate constraints,” it is no small achievement to elevate a square above 

the category of “drawing.” Teachers must look freshly at each of their 

students’ DG constructions and not adopt a lockstep appraisal method.  

If several students in a class build squares using different techniques, a 

teacher can use this opportunity to ask them to compare and contrast the 

merits of each construction. What characteristics of each object qualify it as a 

square? Where does each square fall short? Can the class form a consensus on 

how a Sketchpad square should behave? Student-led critiques may be more 

effective than teacher-imposed definitions. 

 

 

 



 

 

62 

 

Recommendations for Developers of Dynamic Geometry Curricula 

Curriculum developers and publishers looking to move in the direction of 

dynamic geometry would do well to consider the adoption road forged by 

graphing calculator proponents in the 1990s. In the early days of the graphing 

calculator, textbooks added special starred sections that provided applications and 

problems to be solved with these handheld devices. In this manner, those teachers 

who chose not to introduce the new technology could simply skip the 

supplemental material. Eventually, graphing calculators became so commonplace 

and accepted that their use became integrated throughout entire textbooks. 

The gradual introduction of graphing calculators into textbooks illustrates that 

the adoption of a new technology need not be an all-or-nothing affair. Curriculum 

developers and publishers have several options open to them: 

1. Incorporating minimal DG software use into existing texts. Traditional 

geometry textbooks define objects in traditional ways. A rectangle is any 

quadrilateral whose angles measure ninety degrees—there is no mention 

of dragging, underconstraint, or appropriate constraints. For those 

publishers who wish to test the waters with a nominal degree of dynamic 

geometry interspersed through their existing texts, the best advice might 

be to remain in traditional territory. In particular, this could mean 

providing students with a sketch displaying a collection of rectangles, all 

with different orientations and sizes. Rather than asking students to drag 

these shapes and resize them, a text might instead restrict students to using 

Sketchpad’s measurement tools to answering the question, “Do the given 

quadrilaterals satisfy the (traditional) definition of a rectangle?” This idea 

ignores the power of Sketchpad’s motion features, but it does allow a 

publisher to modify a text with a minimum of effort and without 

introducing new dragging-related terminology. 

2. Rewriting existing texts to reflect the definitions and capabilities of DG 

software. Publishers who wish to make dynamic geometry a more central 

component of their texts will need to focus attention on several DG-related 

issues. From a terminology standpoint, texts must adapt their definitions of 

geometric objects to reflect the nature of dragging. Connected Geometry 

(Everyday Learning, 2000), for example, introduces the informal words 

“MessUpAble” and “UnMessUpAble” to emphasize that an object such as 

a rectangle must maintain its ninety-degree angle measurements when 

dragged. Also, given what is already a growing diversity of DG software 

programs, publishers must either align themselves with a particular 

program, or provide more generic directions that can be applied to any 

software package. Finally, the teacher editions that accompany these texts 

should document some DG-related learning issues of the type discussed in 

this dissertation. 

3. Addressing the issue of DG evidence and proof. Dynamic geometry 

software allows publishers to create discovery-style texts in which 
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students create visually compelling evidence for well-known theorems. 

Students who connect the midpoints of a triangle’s three sides to the three 

opposite vertices will see that these segments meet at a single point (the 

centroid) regardless of how they drag and reposition the triangle’s 

vertices. Such a demonstration is compelling and allows students to 

develop their own conjectures rather than rely on the text or teacher to 

state theorems directly. Publishers must be careful, however, that students 

do not accept the visual evidence gathered with DG as a substitute for 

formal proof. 

Recommendations for Future Research Study 

Given its small pool of interviewees, this study does not offer theories with 

guaranteed universal applicability. Rather, it uncovered themes specific to the 

work of eight individuals. It remains for future studies to refine these themes 

further. With an eye towards this work, I provide ten suggestions below for the 

interested dynamic geometry researcher. 

1.   Our student interviewees were middle schoolers with a limited geometry 

background. Conducting identical interviews with high-school students would 

help to determine whether increased mathematical maturity yields different 

results. Do older students, for example, pay less attention to the 

mobile/immobile nature of Sketchpad’s points? 

2.   Our students had never seen Sketchpad prior to their first interview session. 

One might choose instead to interview experienced users of the program. Are 

students with extended exposure to Sketchpad more adept with the tools 

needed to reconstruct black-box items? 

3.  This dissertation focused attention on The Geometer’s Sketchpad. Other 

dynamic geometry software operates differently. The study described here 

could be conducted again using Cabri Geometry to gauge the stability of the 

outcomes.  

4.  The interviews conducted in this study used Sketchpad version 3.0, first 

released in 1995. The newest version of Sketchpad, version 4.0 (Jackiw, 2001) 

allows for more construction flexibility. In Sketchpad version 3.0, a point’s 

movement can be restricted to the circumference of a circle only if the point is 

built directly onto the circle. With the newer Sketchpad, a point can be placed 

anywhere on screen and then attached to the circle later using a “merge” 

command. This feature, along with other software changes, might affect the 

interview outcomes. 

5.  Students in our study received no pre-test of their geometric ability. To gain a 

better sense of interviewees’ prior knowledge, researchers might give students 

a list of terms to define like “rectangle”, “square”, “isosceles triangle”, 

“equilateral triangle”, “perpendicular bisector” prior to their work with the 

software. The pre-test should also cover material beyond the scope of the 
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black-box items so that interviewees do not make a connection between the 

two tasks. 

6.  The students we interviewed often paid undue attention to the 

mobile/immobile nature of points. Dragging a vertex of our black-box square 

might, for example, move three of the quadrilateral’s four vertices, leaving the 

fourth vertex stationary.  

A B

CD

E

A B

CD

E

A B

CD

E

A B

CD

E

 

Figure 36. Square ABCD expands uniformly about point E. 

Consider instead a different square with a center, E, that stays fixed in place as 

vertices A, B, C, and D move outward uniformly (see Figure 36). Might the 

symmetric movement of the vertices alter interviewees’ perception of the 

shape? Appendix E contains directions for building Figure 36’s square. 

7.   When building an isosceles triangle, our interviewees were aided by their 

discovery of a hidden circle. Imagine a different animation of an isosceles 

triangle where no point moves in a circular fashion when dragged.  
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Figure 37. Four snapshots of isosceles triangle EHW as it expands. 
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Figure 37 above shows an isosceles triangle expanding uniformly, without any 

circular motion. Might this new movement make it more challenging for 

interviewees to construct the triangle? Appendix E contains directions for 

building Figure 37’s triangle. 

8.   Rather than provide students with black-box animations, an interviewer might 

simply instruct students to build a square, rectangle, and isosceles triangle. 

Does the omission of the exploratory stage of the black-box task affect 

students’ construction abilities?  

9.   The interviewees in our study worked solely within the computer environment 

of Sketchpad. Typically, however, Sketchpad is just one component of a 

geometry class that also includes hands-on activities. In our trial interview 

questions, we included a task that tested interviewees’ ability to translate their 

work from a physical model to a Sketchpad simulation. Students received a 

piece of paper containing two points and were asked to fold one point onto the 

other. They then opened the paper and examined the resulting crease line. 

Moving to Sketchpad, the students drew two points on screen and constructed 

the same crease line geometrically. Note that this paper-folding construction is 

identical to our perpendicular bisector black-box item. Researchers might 

design more questions of this type to explore the connections between hands-

on constructions and their Sketchpad counterparts. 

10. As readers of this dissertation might attest, it is not always easy to follow the 

written descriptions of interviewees’ mouse actions. A so-called “videopaper” 

format (Carraher, Nemirovsky, DiMattia, Lara-Meloy, & Earnest, 1999) could 

offer some help. Videopapers are electronic word-processing or web-based 

documents that contain embedded videoclips. These clips replace the role of 

static illustrations. A reader who wished to see the original work of 

interviewee Ellen, for example, could click on the appropriate videoclip and 

watch an excerpted portion of my videotape. Such access to the original tape 

not only makes it easier for readers to understand the accompanying 

commentary, but also allows them to detect events that might have been 

missed by the author.  

 

Conclusion 

Throughout this dissertation, a single theme reappears in the contexts of 

motion, language, and construction. This theme can be summarized in a 

mathematical way: static geometry ! dynamic geometry. Static geometry is not 

the same as dynamic geometry. How students learn and think with a paper and 

pencil is not equivalent to how they function with computer screen and mouse. 
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Laborde (1993) reminds us of the challenges involved in introducing a  

new piece of software—and by extension, a new way of thinking—into the 

geometry classroom:  

A cognitive process does not emerge spontaneously from observation of 

marvelous drawings moving on the screen of a computer. It must take 

place in an oriented and organized environment towards learning. It means 

that the task of the teacher remains important as ever, the only difference 

being that the teacher now has a lot of powerful tools for organizing the 

learning environment. In one sense his/her task is more complex. (p. 60) 

The complexities behind the simple statement static geometry ! dynamic 

geometry are undeniable, but DG research helps to clarify the distinctions 

between these decidedly different means of geometric communication.  

Will the themes presented throughout these chapters resurface in future 

studies? It is impossible to say. But the relatively new field of dynamic geometry 

research needs some theories to test and ideas to debate. This dissertation serves 

as a springboard for further investigation and discussion. 
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APPENDIX A 

AN OVERVIEW OF DYNAMIC GEOMETRY 

AND THE GEOMETER’S SKETCHPAD 

 

This appendix provides a brief introduction to the terminology and features of 

so-called “dynamic geometry” (DG) software programs. In particular, it focuses 

on The Geometer’s Sketchpad, the DG software used in this dissertation’s 

interview study. There is no substitute for interacting with Sketchpad directly, but 

the information below conveys the essence of the program. 

 

Dragging: A Central Aspect of Dynamic Geometry 

In straightedge-and-compass geometry, the shape and size of a triangle drawn 

on paper remain fixed once the pencil is lifted from the page. By contrast, a 

triangle built with a dynamic geometry software package has more flexibility. The 

leftmost picture of Figure 38 shows an arbitrary triangle ABC as it might appear 

on a computer screen. With Sketchpad or any other DG program, one can click 

and hold point A with the mouse and then move the mouse across its mousepad. 

This action, known as “dragging,” generates a continuum of onscreen triangles, 

all with the same base 

! 

BC but with different locations of vertex A. The middle  

and rightmost diagrams of Figure 38 show the triangle as point A is dragged  

from left to right. Of course, the “snapshots” shown here cannot adequately 
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capture the “dynamic” aspect of viewing the triangle reshape itself in a fluid,  

continuous motion. 

 

B C

A

B C

A

B C

A

 

Figure 38. Three snapshots of !ABC as point A is dragged to the right. 

 

Defining “Dynamic Geometry”  

Finzer and Jackiw (1998) propose three drag-related attributes as defining 

features of any “dynamic geometry” software program:  

1. Manipulation is direct. When users drag point A of Figure 38, they do not 

think to themselves that they are dragging the mouse, which in turn moves 

point A. Rather, they sense that they are dragging point A itself.  

2. Motion is continuous. As point A of Figure 38 moves, it does so without 

any discernible jumps or gaps in its movement. Motion flows like film 

animation. 

3. The environment is immersive. The behavior of circles, squares, and other 

onscreen objects seems as real as their physical counterparts. 

Individual dynamic geometry programs differ in terms of menu items and 

drawing techniques, but the features listed above are common to them all, and 

will most likely continue to define the software genre.  

Sketchpad’s Tools 

When a Sketchpad user opens a new file, the screen appears blank, much the 

same as a fresh word-processing file. Whereas an author combines typing and 

menu commands to write and format text on a word processor, a Sketchpad user 

employs a mix of onscreen tools and menu commands to draw and build 

geometric objects. An author’s completed text is a word-processing “document”; 

a Sketchpad user’s completed work is called a “sketch.” 

Figure 39 shows a sketch consisting of a segment AB, a circle with center at 

point C, and a lone point E. The buttons labeled along the left side of the screen 

include a selection arrow along with point, circle, segment, ray, and line tools. 

These tools function similarly to the drawing palettes found in software 

illustration programs. To draw a segment, for example, the user clicks on the 

segment tool button and moves the cursor onto the blank screen. She then clicks 

the mouse button to indicate the location of one endpoint of the segment. Keeping 
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the mouse button depressed, she drags the mouse across the mousepad. In the 

process, a segment appears on screen that changes its length and direction in 

response to the mouse action. Releasing the mouse button sets the location of the 

segment’s other endpoint. 

 

Figure 39. A typical Sketchpad window with labeled toolbar. 

 

Altering a segment once it has been drawn can be accomplished in several 

ways. A user can click and drag point A (Figure 39), keeping point B fixed but 

changing point A’s location. Alternately, one can click and drag the segment 

itself. This action translates the segment, changing neither its length nor slope. 

Just as a segment is defined by its two endpoints, the circle in Figure 39 is also 

defined by two points—its center, C, and a “control point” D. The same click-

and-drag technique for drawing a segment applies to circles. The user clicks a 

location for the circle’s center, drags the mouse away from the center, and 

releases the mouse at the desired spot for the control point. To change the size of 

the circle, the user can click and drag either the center or the control point, 

moving it across the screen while keeping the other point in place. To translate the 

circle across the screen without changing its size, the user clicks and drags 

anywhere on the circle’s circumference other than its control point. 
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Building Geometric Relationships Between Objects 

The point, segment, and circle in Figure 39 all operate independently of each 

other. Dragging the segment, for example, has no impact on the point or circle. It 

is possible, however, to use Sketchpad’s tools to create more complex 

relationships between objects. Figure 40(i) shows a segment AB. In 40(ii), a user 

has selected the point tool, moved the cursor onto the segment, and clicked to 

create point C.  

Now, when the user clicks and drags point C with the selection arrow, the point 

will only move along the segment (as shown in Figures 40(iii) and (iv)). It is 

worth noting that not all points can be made to travel strictly along a segment. If a 

point is placed off by itself when drawn (such as point as E in Figure 39) it cannot 

later be “attached” to 

! 

AB by dragging it onto the segment. Such a point will 

remain “free” and can move anywhere on screen. 
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Figure 40. Point C travels only along segment AB. 

 

Figure 41(i) shows a circle with a control point at B and three points, C, D, and 

E, that were created on the circle itself. A user can connect points C, D, and E 

with  line segments to form a triangle CDE whose vertices lie on the circle’s 

circumference (see Figure 41(ii)). Now, if any of the vertices are dragged, the 

triangle will change shape but continue to lie on the circle without changing the 

circle’s size (see Figure 41(iii)). Note that if control point B were used as a vertex 

of the triangle, dragging B would not only change the shape of the triangle but 

also affect the size of the circle as well. 
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Figure 41. Triangle CDE’s vertices travel only along the circle’s circumference. 

 

Construction Versus Drawing 

By selecting Sketchpad’s segment tool, a Sketchpad user can draw easily a 

random triangle on screen. Choosing Sketchpad’s measuring feature, the user can 

then measure the side lengths of her triangle and drag the vertices until the 

measurements indicate that two sides are equal in length. The result is an isosceles 

triangle. This process works through experimental refinement. If the original 

triangle does not have two equal sides, one tinkers with the picture until it does. 

While the user’s finished triangle certainly satisfies the traditional definition of 

isosceles, its claim to this designation is tenuous. Should one drag any of its 

vertices, the triangle will deform into an arbitrary triangle without two equal side 

lengths. Any geometric object created strictly by eyeballing, measuring, and then 

adjusting for the desired features is called a “drawing” (Finzer & Bennett, 1995). 

By contrast, a “construction” of an isosceles triangle must satisfy a more 

rigorous test. Should a constructed isosceles triangle have its vertices dragged, its 

size or shape might change, but it will continue to remain isosceles. The circle in 

Figure 42(i) has its center at C and control point at A. Segments extend from C to 

point A and to a random point B created on the circle’s circumference. Since 

segments CA and CB are both radii of the circle, their lengths are equal, making 

triangle ABC isosceles.  

Dragging point B moves the point around the circle (Figure 42(ii)) without 

changing the circle’s size. Since the circle’s radius remains fixed in length, so do 

the lengths of CA and CB. Suppose, for the sake of argument, that the radius of 

the circle is one inch. As point B moves, we see all possible isosceles triangles 

whose equal sides are one-inch long. 

By contrast, dragging control point A changes the size of the circle (Figure 

42(iii)) and, in the process, the lengths of segments CA and CB. Since the two 

lengths always remain equal to each other, however, the triangle stays isosceles.  
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Figure 42. Three views of an isosceles triangle construction. 

 

While the circle was necessary to build the isosceles triangle, it need not 

remain visible once the construction is complete. Typically, having finished a 

construction, a user will select Sketchpad’s “hide” feature to remove from sight 

any of the building-block elements that unnecessarily clutter the screen. Once 

hidden, the circle in our isosceles triangle example continues to perform its same 

function—keeping segments CA and CB equal—only now out of view. 

Some constructions that require multi-step procedures with straightedge and 

compass can be streamlined using Sketchpad’s specialized menu commands. To 

construct the midpoint C of a segment AB for example, the user first clicks on 

! 

AB  

with her mouse to select the segment. She then chooses “Point at Midpoint” from 

the “Construct” menu. Point C appears and remains at the center of 

! 

AB , even 

when the segment’s length is shortened or lengthened. To construct a line 

perpendicular to 

! 

AB  through point C, the user selects 

! 

AB  and C with her mouse, 

and then chooses “Perpendicular Line” from the “Construct” menu (see Figure 

43). 
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Figure 43. Constructing a perpendicular to segment AB through midpoint C. 

 

Figure 44 shows several different orientations of the completed construction, 

illustrating that the perpendicular relationship is maintained when either point A 

or B is dragged.  
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Figure 44. Three different configurations of the  

perpendicular bisector construction from Figure 6. 
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APPENDIX B  

INTERVIEWEES’ INTRODUCTION TO SKETCHPAD 

 

The items in this appendix served as interviewees’ first introduction to The 

Geometer’s Sketchpad. Interviewees received the directions and pictures 

reproduced below after a brief period of unstructured exploration. Throughout  

the session, they were free to ask the interviewer for help in interpreting the 

instructions and locating Sketchpad-specific features.  

Part I: Getting Comfortable with Drawing Tools 

1.   a.   Draw some points. 

b.   Make a triangle out of line segments. 

c.   Make two circles with a line segment connecting them (place the    

 segment’s endpoints on the circles). 

d.   Make a line. 

e.  Make a ray. 

f.   Make a point that travels only along a segment. 

g.   Use the selection tool to drag the points, circles, segments, lines, and 

 rays in the drawings above. Observe the effects. 

h.  Use Sketchpad’s ‘Undo’ feature to remove some or all of your sketch     

elements. 

i.   Create a triangle with two vertices that can be moved about freely,  

 and one vertex that can be moved only on a circle. 

  

 

j.   Draw two lines. Then construct a triangle with two vertices that can be 

moved only along one line, and one vertex that lies on the other line. 
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Part II: Building Geometric Constructions 

2. a.    Draw a segment and construct its midpoint. 

 b.    Construct two lines that are perpendicular to each other and stay 

 perpendicular when either one is moved. 

 c.    Construct two lines that are parallel to each other and stay parallel when 

        either one is moved. 

3.  In this extended activity, you’ll use Sketchpad to build a working model of  

a windmill. 

• Open a New sketch on your computer. 

• Make a point A, and a separate segment BC. 

 

 

C

B

A
 

 

• Use the appropriate tool to construct a line, through point A and perpendicular 

to segment BC, that will remain perpendicular to BC no matter how points A, 

B, or C are moved. 

• Now construct a line through point A and parallel to segment BC. 

• While holding down the Shift key, click on point A and segment BC to select 

them both (click on the segment itself, not its endpoints). Now select “Circle 

By Center+Radius” from Sketchpad’s Construct menu. Try dragging either 

point B or C when you’re done. Stretching or shrinking the length of BC 

should cause the size of the circle to stretch or shrink to keep its radius equal 

to BC. 
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C

B

A

 

 

• Place points where the circle intersects the lines. Drag either point  

B or C to make sure these points stay at the intersections. 

• Draw segments from the center of the circle to each of the four intersection 

points. 

• Hide (don’t delete) the circle and lines. Don’t hide the segments. Your sketch 

should look like this: 

A

B

C

 

 

• Drag point B and observe what happens to the segments. Now select the 

four points at the end of your “windmill.” Go under Sketchpad’s Display 

menu and choose “Trace Points.” Drag point B again and observe the 

paths traced by the four points. Try dragging point B slowly and tracing 

your name. 
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APPENDIX C 

 

THE ANALYSIS OF THE DYNAMIC  

GEOMETRY INTERVIEW TAPES 

 

The interviews conducted in our dynamic geometry study yielded 20 hours of 

videotape data. This appendix describes the process involved in shaping the raw 

footage into organized, thematic strands. Central to this task were two 

considerations: 

1. How should the videotape data be coded into a corresponding paper format? 

In doing so, what level of detail should be extracted? 

2. In deciding which mathematical episodes to include in this dissertation, 

what criteria should be used to select “noteworthy” events? 

The discussion that follows addresses these areas of concern. The appendix 

concludes by contrasting my analysis technique to an alternative method proposed 

by Schoenfeld (1985). 

 

Transferring the Interviews Into Paper Format 

At the heart of any interview study are the words spoken by interviewees. 

Transcribing speech into written form provides the researcher with a convenient 

medium for subsequent analysis. If words alone, however, are the only events 

recorded, certain pieces of data are likely to be lost. These include pauses in 

speech, tone of voice, and facial expressions. 

The inadequacy of word-by-word transcriptions was particularly acute in our 

interviews. Nearly all of the conversations between interviewer and interviewees 

centered on the actions occurring on a computer screen. Typical of our written 

transcripts was this line spoken by an interviewee: “You see, we need to move 

point A. You see, over here…Oh, it’s X that does this…We’ve got this…And so 

far, I can move this.”  

Where, exactly is “here”? And what are we to make of the three references to 

“this”? 

From the start, I knew that bringing meaning to our interview transcripts 

required a second level of transcription; one of a pictorial nature. As I viewed the 

tapes, I needed a way to capture the geometric activity that accompanied our 

interviewees’ words.  

Practically speaking, I could not draw every image that appeared on screen. 

Interviewees reconfigured their geometric constructions hundreds, perhaps 

thousands, of times during the course of their interviews, whether it was dragging 
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a point slightly to the left, or adding and then deleting new elements to their 

picture. 

Film directors face a similar challenge when projecting their concept of a film 

beyond the words in a script. The art of storyboarding allows them to 

communicate visual aspects of a motion picture in a concise fashion. Each 

storyboard depicts a key frame of a scene, condensing the action into snapshot 

images.  

I decided that a storyboarding approach could suit my material well. On my 

second viewing of the videotapes, I drew rough pictures to represent those 

geometric configurations that I thought best captured the actions transpiring on 

screen. For those pictures that required further clarification, I wrote the names of 

the menu and toolbar items used in the construction underneath each picture. I 

also added bracketed explanatory notes into the text of interviewees’ words to 

clarify the meaning of unclear or vague expressions.  

One example of my storyboarding technique appears in Chapter VII of this 

dissertation. In the excerpt below, Ben describes why his quadrilateral ABCD is 

not a rectangle. Appearing by themselves, the words are rather cryptic:  

Ben: Well, it’s not exactly a rectangle, but if you move point A out, 

then D has to come out with it. If you move point A up, B has 

to come. If you move point A diagonal, then they [points B 

and D] have to go up and to the side. 

 

With just three accompanying snapshots (Figure 45), however, the meaning of 

“out,” “up,” and “diagonal” becomes clearer.  

  

D C

BA

D C

B

A

D C

B

A

(i) "out" (ii) "up" (iii) "diagonal"
 

Figure 45. Three storyboard images. 
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Shortcomings of a Storyboard Approach  

If the storyboard method was to be effective (both for myself in analyzing the 

data and for readers who could not view the actual tapes), I knew my transcripts 

and storyboards would need to stand on their own as a meaningful account of the 

interviews. With my hand-drawn sketches complete, I put the work aside and then 

returned to the data with fresh eyes. 

As I read the interviewees’ words and viewed my accompanying pictures, I 

knew that on one level, the experiment was a success—I could reconstruct the 

sequence of geometric actions that occurred during the course of the interview. At 

the same time, though, I felt that something had been lost. The exact nature of this 

loss remained unclear until I sat down to view the tapes again. 

My storyboards presented freeze-frame views of the actions occurring 

onscreen. In Storyboard #1, point A might be in the top right corner of the screen. 

In Storyboard #2, the same point might now be in the lower left corner. How it 

moved from one location to another was not indicated. 

In many instances, the details behind this change of location were either 

uninteresting or simple: point A moved from one corner to the other by being 

dragged in a straight line. Yet sometimes, the movement involved was more 

intriguing and could not be represented strictly through pictures. Just as tone of 

voice could be a clue to one’s thoughts, so could, I realized, the speed and nature 

of one’s mouse movements onscreen. Consider the passage below which is drawn 

from Chapter VI of this dissertation. 

Ben now returns to our pre-built isosceles triangle, TNJ. He begins to drag 

point N. His mouse movements, slow and tentative at first, cause N to rock 

back and forth along a small arc of the hidden circle. Point N vacillates in 

this manner for approximately seven times, never spanning more than half 

the entire circle’s arc. 

David and the interviewer continue to talk while Ben stares at point N’s 

movement. Soon Ben interjects, “OK, that’s a circle!” Once Ben 

announces his discovery, he begins to move point N rapidly, now twirling 

it around the entire circle. Ben spins the point again and again, as if to 

confirm his statement. 

Neither a picture of !TNJ nor Ben’s quotation (“OK, that’s a circle!) are enough 

to appreciate Ben’s gradual uncovering of the hidden circle. 

I decided on a case-by-case basis whether my storyboards and written 

transcriptions required additional descriptive commentary. If the descriptions 

became too long, I simply flagged the corresponding videotape excerpt as 

something that I would need to watch rather than annotate.  
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The reader can find two of my annotated interview excerpts in  

Appendix D. 

 

What Counts as a Noteworthy Event? 

With my descriptive coding complete, I began to consider a broad question: 

How did interviewees perform on our black-box tasks? The answer to this 

question depended on the lens I applied to the data. If I chose to focus on whether 

interviewees knew the technicalities of each Sketchpad command and menu item, 

there were plenty of minor mistakes to report. These included:  

 

• Interviewees did not hold down the “Shift” key when trying to select 

more than one object on screen. 

 

• In trying to create points that traveled along lines, interviewees 

mistakenly constructed the points before the lines. 

 

From a software design perspective, such observations could be valuable 

(indeed the newest version of Sketchpad eliminates the need for the “Shift” key 

and for creating lines before points). But these findings seemed bland in light of 

our study’s goal—to uncover those areas of students’ geometric thinking that 

were shaped by the dynamic geometry software.  

While much of our interviewees’ work was routine in nature, there were 

excerpts of videotape—some spanning no more than a minute, others longer—

where interviewees performed a certain action or gave a verbal description that 

clearly surprised the interviewer. These were places where interviewees’ ideas did 

not fit either the “normal” approach or a predictable misstep (such as the bulleted 

items above). Confrey (1991) describes the value of finding such occurrences:  

Seldom are students’ responses careless or capricious. We must seek out 

their systematic qualities which are typically grounded in the conceptions 

of the student…Frequently when students’ responses deviate from our 

expectations, they possess the seeds of alternative approaches which can 

be compelling, historically supported and legitimate if we are willing to 

challenge our assumptions…It is at points of contact, at moments of 

discrepancy, that we have the highest probability of gaining insight into 

another person’s perspective. (p. 122) 

Readers of this dissertation will find that nearly all of the data excerpted 

throughout this work fits the general criteria below:  

 

• The interviewees’ work is unorthodox. While neglecting to hold 

down the “Shift” key would not be a great surprise to anyone familiar 
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with the software, the methods employed by our interviewees were 

not predictable prior to conducting the study. 
 

• The interviewees’ work is clever. This is not to say their methods 

were always productive (see in particular Chapter VII for Jonathan’s 

problems with a magnet metaphor). But in all cases, interviewees 

approached their constructions in entirely reasonable ways. 

 

• The geometric ways of thinking involved are specific to dynamic 

geometry software. Uncovering hidden paths (Chapter VI), describing 

objects in terms of movement metaphors (Chapter VII), and finding 

alternative ways to build a square (Chapter VIII) all depend on the 

tools made available by the software.  

 

In choosing examples that conformed to these criteria, my challenge, working 

from Confrey’s perspective described above, was to chronicle the unforeseen and 

sensible use of Sketchpad, as compared to its misuse. 

This goal was aided by the style of our interviews. As interviewers with years 

of experience using the software, we were comfortable enough with Sketchpad so 

that interviewees’ tiny missteps did not bother us. We gave aid where appropriate 

and did not dismiss ideas that others with less software knowledge might have 

deemed unworkable.   

 

Developing My Interpretations 

At this stage in the analysis process, I knew which interview excerpts I would 

develop into narratives. I envisioned each narrative as consisting of three parts. 

First, I would describe for the reader the “normal” manner in which a particular 

construction could be accomplished with Sketchpad. Then, I would offer an 

interviewee’s method, highlighting the ways in which it differed from the norm. 

Finally, I would analyze the interviewee’s work, attempting to uncover the merits 

of her reasoning.  

This entire interpretive process was shaped by an admonition of Confrey 

(1993) similar to the one I quoted previously: 

…when interpreting data, the interviewer must demonstrate his/her own 

willingness to examine his/her own assumptions and challenge the validity 

of those assumptions…one can come to see how frequently what is 

labeled as student’s inadequacy is really the result of our own inflexibility 

in considering alternative perspectives. (p. 6) 

Chapter VIII of this dissertation provides an example of this approach. It would 

have been easy to dismiss the work of Jonathan, Marcus, and Sam as incorrect 
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ways of building a square. Instead, I found aspects of their work that while 

problematic, still displayed ingenuity.    

 

Sharing My Interpretations 

Having developed my own theories of interviewees’ motivations, I needed a 

way to validate my findings. To gain feedback and alternative perspectives, I 

requested the assistance of a fellow Mathematics Education Ph.D. student in New 

York University’s Department of Teaching and Learning.  

For our first few meetings together, I did not bring videotapes. Rather, I sat 

with my colleague at a computer and introduced her to the features of Sketchpad. 

When she developed some familiarity with the software, I  presented her with the 

various black-box items from our interviews and allowed her to explore and then 

recreate them on her own.  

At this stage, I was ready to share the videotapes. For each excerpt, I first 

allowed my colleague to view the tapes without any interruption. However, in 

places where she needed a brief clarifying comment, I paused or rewound the tape 

to offer an explanation. I then assumed the role of interviewer as I asked my 

colleague to analyze what she saw and heard on the tapes. The questions of most 

interest to me in nearly all cases were, “What do you think interviewees are trying 

to accomplish here? What ideas are guiding their exploration/construction? Do 

their ideas seem reasonable?” 

This interviewing process gave way to discussions in which I shared, defended, 

and reworked my own  interpretations of the video data. Through this 

collaboration, I was able to provide support to my theories as well as consider 

new possibilities and themes suggested by my colleague. 

 

Soliciting Feedback from Authorities in the Field 

In January of 2001, I returned to my former workplace, Education 

Development Center, Inc. in Newton, Massachusetts, to share and discuss my 

dissertation draft with my former research partner E. Paul Goldenberg. I also 

forwarded my draft to William Finzer, another leading authority in the field of 

dynamic geometry curriculum and research. The feedback that I received from 

both individuals helped to confirm the reasonableness of my interpretations. In the 

case of William Finzer, for example, he noted that although my descriptions of 

square constructions provided a challenge to his categories of drawing, 

underconstraint, and appropriate constraints (Chapter VIII), he felt my analysis 

added some worthwhile nuances to the categories. 

 

An Alternative Approach 
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One of the more detailed descriptions of interview analysis techniques  appears 

in Schoenfeld’s Mathematical Problem Solving (1985). It is instructive to 

consider his approach as a means of highlighting where (and why) I pursued a 

different course. 

 Similar to our dynamic geometry study, Schoenfeld’s interviews focus on 

geometry, though of the paper-and-pencil variety. He, too, provides transcripts of 

the sessions along with illustrative pictures. But there the similarity ends.  

Schoenfeld’s interest lies in charting the cognitive strategies of students. For 

these purposes, he describes six problem-solving categories: Read, Analyze, 

Explore, Plan, Implement, and Verify. Each interview is “parsed” into a timeline 

showing which category best describes an inerviewee’s behavior at any given 

moment.  Particular attention is paid to junctures where students switch from one 

strategy to another.  

With this coding, the larger scope and progression of a student’s work  assume 

priority over specific incidents:  

At the risk of flogging a dead horse, I wish to stress that…matters of 

detail…are virtually irrelevant. A coding scheme should highlight major 

decisions. (p. 289) 

Because the coding stays general in nature, Schoenfeld maintains that the 

process of analyzing an interview can be remarkably standardized, even for those 

without graduate training. He says, “A team of undergraduate coders can be 

trained to parse the protocols with accuracy and reliability” (p. 315). 

Schoenfeld’s broad coding allows him to address issues of metacognition—

specifically, “the overall quality of the students’ monitoring, assessing, and 

executive decision making” (p. 310). Sometimes the quality can be low, leading 

students on “wild goose chases” or to choosing “ill-chosen approaches” (p. 282). 

There is a definite appeal to Schoenfeld’s analysis technique. It introduces 

some of the reliability found in quantitative methods into qualitative work. It does 

not force us to reconsider our own methods of solving mathematical problems. 

I accept that Schoenfeld’s method may yield more uniformity than my 

approach. But I also maintain that this technique overlooks as much as it finds. I 

believe that small incidents do matter: perhaps Jonathan’s magnet description of 

perpendicularity in Chapter VII is a “wild goose chase,” but it’s a delightful one 

because his use of a movement metaphor tells us something about the software we 

did not know before.  

 

 

 



 

 

88 

 

APPENDIX D 

 

TWO ANNOTATED INTERVIEW EXCERPTS 

 

The two extended interview excerpts below are both drawn from Chapter VII 

of this dissertation. Each focuses on the theme of metaphor. In the first excerpt, 

Lynne connects her mathematical description of a construction to her partner 

Ellen’s slingshot metaphor. In the second excerpt, Norman analyzes a 

perpendicular bisector construction that he finds magnet-like in its behavior. 

 

Extended Excerpt One 

 

L

V

D
 

122. INT So here is another one 

[opens a black box 

sketch].  

L

VD

Moving V 
"closer into the 
center"

 
 

“D gets smaller” = D moves closer to 

L and V [interesting…Lynne says the 

point itself gets smaller—it doesn’t]. 

 

“it gets big” = the lengths of LD and 

VD get longer while D moves away 

from L and V. 

123. LYNNE Should we experiment? 

If you move V closer 

into the center [pt. L], it 

gets smaller, when you 

move it outwards, the D 

stretches more out, but 

L stays put. And when 

you move L into V, D 

gets smaller. When you 

move it outwards again, 

it gets big. When you 

move D, it just— 

Ellen motions with her hand showing 

the motion of a rubber band as it’s 

pulled back and then released. 

*METAPHOR!* 

124. ELLEN It’s one of those 

like…what do you call 

them? Slingshots. You 

throw a rubber band and 

then it— 
 125. LYNNE That’s cool [drags L]. I 

think that…Here, would 

you [Ellen] like to play 

with it? I have a 

hypothesis. I like that 
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word now. Ever since 

yesterday.   
 126. ELLEN This looks cool.   

“everything goes around L” = L stays 

in place while D and V move. 

127. LYNNE Well, when you move 

V, everything goes 

around L. Ah, where is 

it?…and when you 

move L, everything 

goes around V. And 

when you move D, it 

does a little slingshot 

thing.  

“D and V might be on a line segment” 

= when D and V are far apart, it 

doesn’t appear that the distance 

between them is changing (it is—it’s 

just hard to see). But when L and V 

get closer together, Lynne realizes the 

distance between D and V isn’t 

constant. [Again, another example of 

informal language. It’s also not 

always easy to judge whether certain 

segments are constant or variable in 

length just by eyeing them.] 

128. ELLEN Yes. I think that maybe, 

actually …well, I 

think…I think that 

maybe…that’s strange. 

Well, I was about to say 

that D and V might be 

on a line segment. 

When they go like this, 

they don’t move apart. 

But when you move 

them in and they go 

closer. So it is not true.  
 129. INT Wait, say more about—

you said you tried 

something. You said, 

“Ooh, strange.”  But 

that meant it wasn’t like 

what you were thinking. 

But I didn’t know what 

you were thinking.  

Lynne demonstrates that the distance 

between D and V isn’t always the 

same. 

130. LYNNE I was about to say—I 

don’t believe this is 

correct—but I was 

about to say that I just 

—when I was going like 

that, I didn’t really see 

the width between D 

and L changing. I was 

about to say they were 

on a line segment. But 

they do change when 

you do move it in and 

out. So I don’t think that 
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is right. But…I think… 
 131. INT What makes it look like 

a slingshot to you? 
 132. ELLEN To me? 
 133. INT Yeah. That is way you 

described it. What about 

it is— 

When Ellen says, “..and then when 

you throw it,” she yanks point D 

through L and Z, showing the path of 

a projectile as it’s released by her 

“slingshot.”  She then pulls D back to 

illustrate her statement “…and then 

comes back to you.” 

 

L

V

D

 
 

134. ELLEN A slingshot? Well, OK, 

I was thinking of 

looking at a slingshot 

from the top. From the 

upper point. And these 

are the two. You know 

how it’s like a ‘Y’? 

[uses her hands to trace 

a big ‘Y’ in the air]. 

That’s the two points of 

the ‘Y’ from the top 

[points to L and V 

onscreen] and this is the 

rubber band [points to 

D]. So when you like 

throw it and you pull it 

back—and this would 

be it pulled back and 

then when you throw 

it—it goes forward and 

then comes back to you. 

Like a yo-yo or 

something. 
 135. LYNNE I think I might have an 

idea. I think L and— 
 136. INT Lynne is in the middle 

of something. I don’t 

want to interrupt that. 

But I want to follow up 

that idea later on. So 

we’ll come back to that 

regardless of the 

outcome of this 

experiment.  

“And that they are perpendicular to a 

different line that D is on” = Lynne 

moves the selection arrow back and 

forth between L and V to indicate a 

137. LYNNE OK, well I think that L 

and V are on the 

same…are on the same 

line. And that they are 
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hidden segment. She then uses the 

arrow to indicate a hidden line passing 

through point D, perpendicular to LV. 

 

“So that when you move…when you 

move V up…” = Lynne shows that 

when V is in a different position, the 

same perpendicular relationship still 

holds. 

perpendicular to a 

different line that D is 

on. So that when you 

move…when you move 

V up, the line would be 

going across through L 

and V. And then if you 

moved D like that, 

another line would be 

going through point D 

and they would be 

perpendicular.  
 138. INT Would you want to try 

making a construction 

like that somewhere to 

see whether that works 

that way? And first of 

all, by the way, does 

that make sense to you 

[Ellen]? 
 139. ELLEN Well I got some of it. 

There is going to be a 

perpendicular line like 

that and like that and 

then there will be one 

and then another against 

each other sort of? 
 140. INT I was wondering 

whether that… Yes, I 

think that is what she 

said. But I was actually 

wondering whether that 

fit—whether that 

matched with your 

picture of the slingshot.  

As she was describing 

that, can you fit that to 

the picture that you 

already had? 
 141. ELLEN Um…I think so. I mean 

I don’t really know how 

it’s like that. 
 142. INT Describe your thing 

again [to Lynne]. You 

see if you can, while she 
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is describing what she is 

describing, you see if 

you can picture your 

slingshot. And see if the 

things that she describes 

fits that picture.  

Because I’m curious. 

You have one image, 

you have another image.  

They both are clearly 

describing what each of 

you are seeing. The 

question is whether you 

are seeing the same 

thing.  

When Lynne says, “I mean, when D is 

passing through L and V like a 

slingshot, it doesn’t go closer to L or 

closer to V. It just stays in the center 

of them both” she positions D like 

this: 

 

L

V

D

 
 

143. LYNNE Okay, well I think…It 

looks…one of the 

reasons it looks most 

like a slingshot is 

because it doesn’t curve 

everywhere. It just stays 

in the same straight 

path, D does, when it is 

going through L and V 

[drags D back and 

forth]. I mean, when D 

is passing through L and 

V like a slingshot, it 

doesn’t go closer to L or 

closer to V. It just stays 

in the center of them 

both. 

Lynne shows that regardless of the 

location of L and V, the path of point 

D is always perpendicular to the 

hidden segment LV. 

 LYNNE So I think that it would 

make sense if D was on 

a straight line going 

through L and V. And L 

and V…and if a straight 

line was going through 

D, and a straight line 

was going through L 

and V, it would make 

sense because 

everywhere, if you 

could imagine the 

straight lines there, 
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they’d always be 

perpendicular. And so 

could I try constructing 

it? 
 144. INT Sure. Do you see the 

slingshot in her 

description? [Ellen 

nods] Yeah. So near as 

you can tell anyway, 

until she constructs it, it 

fits your picture…Sure, 

give it a construction.  

 

 

 

Extended Excerpt Two 

 

*METAPHOR!* 

 

A

B

 
 

“How does it keep away from the 

line?” = when Norman drags A away 

from B, the line follows A, but does 

not ever reach it. 

6. NRMN That’s weird. How does 

it do that? How does it 

[pt. A] keep away from 

the line? It’s like a 

magnet to the line.  

“As I get it closer…” = when Norman 

drags A towards B, the line moves 

away from A, closer to B. 

 

A
B = the points 

"coming together"

 
 

Notice how Norman emphasizes the 

word “really”—he seems invested in 

 NRMN As I get it [pt. A] closer, 

the line moves farther 

away. And if I really try 

hard, I can get them to 

come together in the 

center [drags pt. A onto 

pt. B]…But how does it 

do that? 
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the magnet metaphor. 
 7. INT Well, describe the ‘that’ 

again. What’s what? 

You’re getting the— 

“why won’t the dot just go right to the 

line..” = point A causes the line to 

move; the line doesn’t stay still 

allowing the “dot” to reach it. The two 

are connected and move in unison. 

 

informal language: point = “dot” 

8. NRMN Well, how does it—why 

won’t the dot just go 

right to the line rather 

than take a while to— 

why does the line move 

back? [when pt. A is 

dragged away from pt. 

B] 
 9. INT Aha, what is the line 

doing as you’re moving 

this back? 
 10. NRMN Yeah. 
 11. INT What is the line doing 

as you’re moving it 

back? 
 12. NRMN It’s moving away from 

the dot. 
 13. INT Is that true for both 

dots? 

Norman now drags point B and shows 

that it, too, causes the same behavior 

as point A. Note that point A is now 

stationary. 

14. NRMN Yeah. See, look. It 

moves away. 

 15. INT What if you move the 

dot away from the line? 

Norman shows that if he drags point 

B, then point A (the “other dot”) is a 

“pressure point”—i.e., only when 

point B rests directly on top of point A 

do the points and the line all coincide. 

 

  

16. NRMN The line follows it. 

And, like, this [pt. A] 

seems to be the pressure 

point where the other—

where the other dot is, it 

seems to be the place 

where the dot— you 

can’t touch the line, but 

only there can the dot 

touch the line; only 

where the other dot is 

can the dot touch the 

line. 
 17. INT So now describe the line 

in relation to the two 
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dots. You’ve been 

describing it in relation 

to one. How does it fit 

in relation to two of 

them? 

Norman shows that regardless of 

where point B is located in relation to 

point A, the effects of dragging it 

towards or away from point A are the 

same. 

 

“Pushing” = as point B approaches 

point A, the line is pushed towards 

point A. 

 

“Pulling” = as point B moves away 

from point A, the line is pulled away 

from point A, too. 

 

Norman sees the symmetry of the 

construction. 

 

Interesting use of the words “push” 

and “pull” here. The movements of 

the line make the mouse actions feel 

like pushing and pulling as opposed to 

just “dragging.” The magnet metaphor 

remains strong. 

18. NRMN It—oh, wait, wait. Let 

me see something. The 

line—as you push it 

with this dot, it moves 

towards the other dot. 

Any way you do it. If 

you push this way…Oh 

no, if you push the line 

with the dot it moves 

towards the other dot. 

See, look: I’m over 

here, and I’m pushing—

moving the mouse that 

way, and it meets right 

there. But now I’m 

pulling…I’m moving it 

the other way and it 

comes apart. 

 19. INT And what affects the 

line’s direction? So 

you’re now talking 

about the line’s 

distance, right, from the 

dot? 
 20. NRMN And this dot affects the 

line’s direction…But I 

want to know how you 

do it. 
 21. INT Okay, hang on just a 

second. Which dot 

affects the line’s 

direction? Explain once 

more. 

Whichever point is being dragged 

determines the direction of the line. 

22. NRMN The dot that I’m not 

holding onto. No, the 
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dot that I am holding 

onto. 

 

APPENDIX E  

CONSTRUCTION VARIATIONS 

 

Two recommendations in Chapter IX suggest testing alternative 

constructions of the square and isosceles triangle. Below are step-by-step 

instructions for building these objects. 

 

The Square (see Figure 46) 

 

1. Draw a circle with center, A, and control point B. 

2. Construct a diameter BC through points A and B. 

3. Construct a diameter DE perpendicular to 

! 

BC  through point A. 

4. Connect C, E, B, and D to form a square.  

5. Hide point A, the two diameters, and the circle.  

6. Drag point B to expand and shrink the square. 

 

  

A

B

C

A

B

C

D

E

 

Figure 46. Constructing square CEBD. 
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The Isosceles Triangle (see Figure 47) 

1. Draw a circle with center, A, and control point B. 

2. Place a random point C on the circle’s circumference. Connect A, B, and C 

to form isosceles triangle ABC. 

3. Hide the circle. 

4. Place a random point D on 

! 

AB . Construct segment DE parallel to 

! 

BC .  

5. Hide 

! 

AB , 

! 

BC , and 

! 

AC . Connect A to D and A to E to form isosceles 

triangle ADE. 

6. Drag point A or D to expand and shrink the triangle. 

 

A

B C

A

B C

D E

 

Figure 47. Constructing isosceles triangle ADE. 

 

 

 

 


