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Abstract: Learning mathematics involves specific forms of social practice. In this paper, we 
describe socially situated, interactional processes involved with collaborative learning of 
mathematics in a special online collaborative learning environment. Our analysis highlights 
the methodic ways group members enact the affordances of their situation (a) to visually 
explore a mathematical pattern, (b) to co-construct shared mathematical artifacts, (c) to make 
visible the meaning of the construction, (d) to translate between graphical, narrative and 
symbolic representations and (e) to coordinate their actions across multiple interaction spaces, 
while they are working on open-ended math problems. In particular, we identify key roles of 
referential and representational practices in the co-construction of deep mathematical group 
understanding. The case study illustrates how mathematical understanding is built and shared 
through the online interaction. 

Introduction 
Developing pedagogies and instructional tools to support learning math with understanding is a major goal in 
mathematics education (NCTM, 2000). A common theme among various characterizations of mathematical 
understanding in the math education literature involves constructing relationships among mathematical facts 
and procedures (Hiebert & Wearne, 1996). In particular, math education practitioners treat recognition of 
connections among multiple realizations of a math concept encapsulated in various inscriptional forms as 
evidence of deep understanding of that subject matter (Kaput, 1998; Sfard, 2008; Healy & Hoyles, 1999). For 
instance, the concept of function in the modern math curriculum is introduced through its graphical, narrative, 
tabular, and symbolic realizations. Hence, a deep understanding of the function concept is ascribed to a learner 
to the extent he/she can demonstrate how seemingly different graphical, narrative, and symbolic forms are 
interrelated as realizations of each other in specific problem-solving circumstances that require the use of 
functions. On the other hand, students who demonstrate difficulties in realizing such connections are considered 
to perceive actions associated with distinct forms as isolated sets of skills, and hence are said to have a shallow 
understanding of the subject matter (Carpenter & Lehrer, 1999).  

Multimodal interaction spaces—which typically bring together two or more synchronous online 
communication technologies such as text-chat and a shared graphical workspace—have been widely employed 
in CSCL research and in commercial collaboration suites such as Elluminate and Wimba to support 
collaborative learning activities of small groups online (Dillenbourg & Traum, 2006; Soller, 2004; Suthers et al., 
2001). The way such systems are designed as a juxtaposition of several technologically independent online 
communication tools not only brings various affordances (i.e. possibilities-for and/or constraints-on actions), 
but also carries important interactional consequences for the users (Cakir, Zemel & Stahl, 2009; Suthers, 2006; 
Dohn 2009). Providing access to a rich set of modalities for action allows users to demonstrate their reasoning 
in multiple semiotic forms. Nevertheless, the achievement of connections that foster the kind of mathematical 
understanding desired by math educators is conditioned upon team members’ success in devising shared 
methods for coordinated use of these rich resources.   

Although CSCL environments with multimodal interaction spaces offer rich possibilities for the 
creation, manipulation, and sharing of mathematical artifacts online, the interactional organization of 
mathematical meaning-making activities in such online environments is a relatively unexplored area in CSCL 
and in math education. In an effort to address this gap, we have designed an online environment with multiple 
interaction spaces called Virtual Math Teams (VMT), which allows users to exchange textual as well as 
graphical contributions online (Stahl, 2009). The VMT environment also provides additional resources, such as 
explicit referencing and special awareness markers, to help users coordinate their actions across multiple spaces. 
Of special interest to researchers, this environment includes a Replayer tool to replay a chat session as it 
unfolded in real time and inspect how students organize their joint activity to achieve the kinds of connections 
indicative of deep understanding of math. 

In this paper we focus on the practical methods through which VMT participants achieve the kinds of 
connections across multiple semiotic modalities that are often taken as indicative of deep mathematical 
understanding. We take the math education practitioners’ account of what constitutes deep learning of math as a 
starting point, but instead of treating understanding as a mental state of the individual learner that is typically 
inferred by outcome measures, we argue that deep mathematical understanding can be located in the practices of 



collective multimodal reasoning displayed by teams of students through the sequential and spatial organization 
of their actions. In an effort to study the practices of multimodal reasoning online, we employ an 
ethnomethodological case-study approach and investigate the methods through which small groups of students 
coordinate their actions across multiple interaction spaces of the VMT environment as they collectively 
construct, relate and reason with multiple forms of mathematical artifacts to solve an open-ended math problem. 
Our analysis has identified key roles of referential and representational practices in the co-construction of deep 
mathematical understanding. 

Data & Methodology  
The excerpts we analyze in this paper are obtained from a problem-solving session of a team of three upper-
middle-school students who participated in the VMT Spring Fest 2006. This event brought together several 
teams from the US, Singapore, and Scotland to collaborate on an open-ended math task on combinatorial 
patterns. Students were recruited anonymously through their teachers. Members of the teams generally did not 
know each other before the first session. Neither they nor we knew anything about each other (e.g., age or 
gender) except chat handle and information that may have been communicated during the sessions. Each group 
participated in four sessions during a two-week period, and each session lasted over an hour. Each session was 
moderated by a Math Forum staff member; the facilitators’ task was to help the teams when they experienced 
technical difficulties, not to instruct or participate in the problem-solving work. Figure 6 below shows a 
screenshot of the VMT Chat environment that hosted these online sessions.  

During their first session, all the teams were asked to work on a particular pattern of squares made up 
of sticks (see Figure 1 below). For the remaining three sessions the teams were asked to come up with their own 
shapes, describe the patterns they observed as mathematical formulae, and share their observations with other 
teams through a wiki page. This task was chosen because of the possibilities it afforded for many different 
solution approaches ranging from simple counting procedures to more advanced methods, such as the use of 
recursive functions and exploring the arithmetic properties of various number sequences. Moreover, the task had 
both algebraic and geometric aspects, which would potentially allow us to observe how participants put many 
features of the VMT software system into use. The open-ended nature of the activity stemmed from the need to 
agree upon a new shape made by sticks. This required groups to engage in a different kind of problem-solving 
activity as compared to traditional situations where questions are given in advance and there is a single “correct” 
answer—presumably already known by a teacher. We used a traditional problem to seed the activity and then 
left it up to each group to decide the kinds of shapes they found interesting and worth exploring further (Moss & 
Beatty, 2006; Watson & Mason, 2005). 
 

 
(1) 4 sticks, 1 square 

 

 
(2) 10 sticks, 3 squares 

 

 
(3) 18 sticks, 6 squares 

N Sticks Squares 

1 4 1 

2 10 3 

3 18 6 

4 ? ? 

5 ? ? 

6 ? ? 

... ... ... 

N ? ?  

 

 
Session I 
 

1. Draw the pattern for N=4, N=5, and N=6 in the 
whiteboard. Discuss as a group: How does the 
graphic pattern grow?  

2. Fill in the cells of the table for sticks and squares in 
rows N=4, N=5, and N=6. Once you agree on these 
results, post them on the VMT Wiki  

3. Can your group see a pattern of growth for the 
number of sticks and squares? When you are ready, 
post your ideas about the pattern of growth on the 
VMT Wiki.  

 
Sessions II and III 

1. Discuss the feedback that you received about your previous session.  
2. WHAT IF? Mathematicians do not just solve other people's problems - they also explore little worlds of patterns 

that they define and find interesting. Think about other mathematical problems related to the problem with the 
sticks. For instance, consider other arrangements of squares in addition to the triangle arrangement (diamond, cross, 
etc.). What if instead of squares you use other polygons like triangles, hexagons, etc.? Which polygons work well 
for building patterns like this? How about 3-D figures, like cubes with edges, sides and cubes? What are the 
different methods (induction, series, recursion, graphing, tables, etc.) you can use to analyze these different 
patterns? 

3. Go to the VMT Wiki and share the most interesting math problems that your group chose to work on. 

Figure 1: Task description for Spring Fest 2006 



Studying the collective meaning-making practices enacted by the users of CSCL systems requires a 
close analysis of the process of collaboration itself (Stahl, Koschmann & Suthers, 2006; Koschmann, Stahl & 
Zemel, 2007). In an effort to investigate the organization of interactions across the dual-interaction spaces of the 
VMT environment, we consider the small group as the unit of analysis (Stahl, 2006), and we apply the methods 
of Ethnomethodology (EM) (Garfinkel, 1967; Livingston, 1986) and Conversation Analysis (CA) (Sacks, 
1962/1995; ten Have, 1999) to conduct case studies of online group interaction. Our work is informed by studies 
of interaction mediated by online text-chat with similar methods (Garcia & Jacobs, 1998; O'Neill & Martin, 
2003), although the availability of a shared drawing area and explicit support for deictic references in our online 
environment as well as our focus on mathematical practice significantly differentiate our study from theirs.  

The goal of Conversation Analysis is to make explicit and describe the normally tacit commonsense 
understandings and procedures group members use to organize their conduct in particular interactional settings. 
Commonsense understandings and procedures are subjected to analytical scrutiny because they “enable actors to 
recognize and act on their real world circumstances, grasp the intentions and motivations of others, and achieve 
mutual understandings” (Goodwin & Heritage, 1990, p. 285). Group members’ shared competencies in 
organizing their conduct not only allow them to produce their own actions, but also to interpret the actions of 
others (Garfinkel & Sacks, 1970). Since members enact these understandings and/or procedures in their situated 
actions, researchers can discover them through detailed analysis of members’ sequentially organized conduct 
(Schegloff & Sacks, 1973).  

We subjected our analysis of VMT data to intersubjective agreement by conducting numerous CA data 
sessions (ten Have, 1999). During the data sessions we used the VMT Replayer tool, which allows us to replay a 
VMT chat session as it unfolded in real time based on the timestamps of actions recorded in the log file. The 
order of actions—chat postings, whiteboard actions, awareness messages—we observe with the Replayer as 
researchers exactly matches the order of actions originally observed by the users. This property of the Replayer 
allows us to study the sequential unfolding of events during the entire chat session. In short, the VMT 
environment provides us a perspicuous setting in which the mathematical meaning-making process is made 
visible as a joint practical achievement of participants that is “observably and accountably embedded in 
collaborative activity” (Koschmann, 2001, p. 19). 

Analysis 
The following sequence of drawing actions (Figures 2 to 6 below) is observed at the beginning of the very first 
session of a team in the VMT environment. Shortly after a greeting episode, one student, Davidcyl, begins to 
draw a set of squares on the shared whiteboard. He begins by drawing three squares that are aligned horizontally 
with respect to each other, which is made evident through his careful placement of the squares side by side (see 
Figure 2 below). Then he adds two more squares on top of the initial block of three, which introduces a second 
layer to the drawing. Finally, he adds a single square on top of the second level, which produces the stair-step 
shape displayed in the last frame of Figure 2. Note that he builds the pattern row-by-row here. 
 

 
6:24:30                  6:24:37                    6:24:48                   6:24:50 

Figure 2: First stages of Davidcyl's drawing activity. 
  

Next, Davidcyl starts adding a new column to the right of the drawing (see Figure 3). He introduces a 
new top level by adding a new square first, and then he adds 3 more squares that are aligned vertically with 
respect to each other and horizontally with respect to existing squares (see second frame in Figure 3). Then he 
produces a duplicate of this diagram by using the copy/paste feature of the whiteboard (see the last frame in 
Figure 3). Here, he builds the next iteration by adding a new column to the previous stage, starting the new 
column by making visible that it will be one square higher than the highest previous column. 

Afterwards, Davidcyl moves the pasted drawing to an empty space below the copied diagram. As he 
did earlier, he adds a new column to the right of the prior stage to produce the next stage. This time he copies 
the entire 4th column, pastes a copy next to it, and then adds a single square on its top to complete the new stage 
(Figure 4). Next, Davidcyl produces another shape in a similar way by performing a copy/paste of his last 
drawing, moving the copy to the empty space below, and adding a new column to its right (see Figure 5). Yet, 
this time the squares of the new column are added one by one, which may be considered as an act of counting. 
In Figure 4, the new column is explicitly shown to be a copy of the highest column plus one square. In Figure 5, 
the number of squares in the new column are counted individually, possibly noting that there are N of them. The 



likelihood that the counting of the squares in the new column is related to the stage, N, of the pattern is 
grounded by Davidcyl’s immediately subsequent reference to the diagrams as related to “n=4,5,6”. 

 

       
       6:24:51                        6:25:00                       6:25:07 

Figure 3: Davidcyl introduces the 4th column and pastes a copy of the whole shape. 
 

       
        6:25:13                   6:25:42                       6:25:45                       6:25:47                        6:25:52 

Figure 4: Davidcyl uses copy/paste to produce the next stage of the pattern 
 

                
                  6:26:04                          6:26:10                         6:26:14                             6:26:20 

Figure 5: Davidcyl’s drawing of the 6th stage 
 

Shortly after his last drawing action at 6:26:20, Davidcyl posts a chat message stating, “ok I’ve drawn 
n=4,5,6” at 6:26:25. Figure 6 shows the state of the interface at this moment. The “ok” at the beginning of the 
message could be read as some kind of a transition move (Beach, 1995).  The next part “I’ve drawn” makes an 
explicit verbal reference to his recent (indicated by the use of past perfect tense) drawing actions. Finally, the 
expression “n=4,5,6” provides an algebraic gloss for the drawings, which specifies how those drawings should 
be seen or treated. Once read in relation to the task description, Davidcyl’s recent actions across both spaces can 
be treated as a response to the first bullet under session 1, which states “Draw the pattern for N=4, N=5, and 
N=6 in the whiteboard” (see Figure 1 above for the task description). The discussion that immediately followed 
Davidcyl’s drawings and his last chat statement is displayed in Table 1 below. 

Davidcyl’s posting at line 26 is stated as a declarative, so it can be read as a claim or assertion. The 
references to “n” (i.e., not to a particular stage like 2nd or 5th) invoke a variable as a gloss for referring to the 



features of the general pattern. Moreover, the use of the clause “more…than” suggests a comparison between 
two things, in particular the two cases indexed by the phrases “nth pattern” and “(n-1)th pattern” respectively. 
Hence, Davidcyl’s posting can be read as a claim about how the number of squares changes between the          
(n-1)th and nth stages of the pattern at hand. The two cases compared in the posting correspond to two 
consecutive stages of the staircase pattern. Davidcyl’s prior drawing work included similar transitions among 
pairs of particular stages. For instance, while he was drawing the 4th stage, he added a column of 4 new squares 
to the right of the 3rd stage. Hence, Davidcyl’s narrative uses the drawings for particular cases as a resource to 
index the properties of the general pattern, which is implicated in the regularity/organization projected by his 
prior drawing actions.  

 

 
Figure 6: The state of the VMT environment when Davidcyl posted “ok I’ve drawn n=4,5,6” at 6:26:25. 

 
 
Table 1: Chat discussion following the drawing activity 

Chat 
Index 

Time Start 
Typing 

Time of 
Posting Author Content 

26 18:27:13 18:27:32 davidcyl the nth pattern has n more squares than the (n-1)th pattern 
 18:27:30 18:27:47 137 [137 has fully erased the chat message] 
 18:27:47 18:27:52 137 [137 has fully erased the chat message] 
27 18:27:37 18:27:55 davidcyl basically it's 1+2+..+(n-1)+n for the number of squares in the nth pattern 
 18:27:57 18:27:57 137 [137 has fully erased the chat message] 
28 18:28:02 18:28:16 137 so n(n+1)/2 
29 18:27:56 18:28:24 davidcyl and we can use the gaussian sum to determine the sum: n(1+n)/2 
30 18:28:27 18:28:36 davidcyl 137 got it 

 
In the next line, Davidcyl elaborates on his description by providing a summation of integers that 

accounts for the number of squares required to form the nth stage. In particular, the expression “1+2+..+(n-
1)+n” describes a method to count the squares that form the nth stage. Since Davidcyl made his orientation to 
columns explicit through his prior drawing work while he methodically added a new column to produce a next 
stage, this expression can be read as a formulation of his column-by-column counting work in algebraic form. In 
other words, Davidcyl achieves a (narrative) transition from the visual to the algebraic, which is informed by 
his methodic construction of specific stages of the staircase pattern that allowed him to isolate relevant 
components of the general pattern and derive a systematic counting method. 

As Davidcyl composes a next posting, 137 posts a so-prefaced math expression at line 28, "So 
n(n+1)/2" that (a) shows 137 has been attending to the organization of Davidcyl’s ongoing exposition, (b) 
displays 137's recognition of the next problem-solving step projected by prior remarks, (c) offers an algebraic 
realization of the procedure described by Davidcyl, and (d) call on others to assess the relevance and validity of 



his claim. Davidcyl’s message at line 29 (which is produced in parallel with line 28 as indicated by the typing 
times) is a more elaborate statement that identifies how his prior statements, if treated as a Gaussian sum, yield 
the same expression that 137 put forward at line 28 (viz. "n(n+1)/2"). Given that 137 anticipated Davidcyl’s 
Gaussian sum, Davidcyl announces in the very next posting that "137 got it,” which recognizes the relevance of 
137’s posting at that particular moment in interaction, and treats 137’s coordinated contribution as an act of 
understanding. 

Discussion 
Given the characterization of deep mathematical understanding in the math education literature, methodic ways 
through which participants coordinate their actions across the whiteboard and chat spaces are of particular 
interest to our investigation of mathematical understanding or meaning making at the small-group level. The 
episode we analyzed above includes a situation where a user, who has been active in the whiteboard, moves on 
to the other interaction space and posts a message referring to his prior drawing work. The chat message 
sequentially followed the drawings, and hence presumed their availability as a shared referential resource, so 
that the interlocutors can make sense of what is possibly referred to by the indexical expression “n=4,5,6” 
included in the posting. Davidcyl’s explicit orientation to timing or sequencing is further evidenced by his use 
of the past perfect tense and his temporal positioning of the message immediately after the final step of the 
drawing. Moreover, the chat posting reflexively gave further specificity to the prior drawing work by informing 
everyone that the diagrams should be seen as specific cases of the staircase pattern described in the task 
description. This suggests that temporal proximity among actions can serve as an interactional resource/cue for 
the participants to treat those actions in reference to each other, especially when the actions are performed 
across different interaction spaces. In short, Davidcyl has demonstrated a method that one can call verbal 
referencing, which is employed by VMT users when they need to communicate to each other that a 
narrative/symbolic account needs to be read in relation to a whiteboard object.  

Davidcyl’s use of the algebraic reference “n=4,5,6” at this moment in interaction is also informative in 
terms of respective limitations of each medium and their mutually constitutive function for communication. 
Davidcyl’s chat message not only provided further specificity to the recently produced diagrams, but also 
marked or announced the completion of his drawing work. This is revealing in terms of the kinds of 
illocutionary acts (Austin, 1962) that can be achieved by users in this dual-media online environment. In 
particular, although a drawing and its production process may be available for all members to observe in the 
shared whiteboard, diagrams by themselves cannot fulfill the same kind of interactional functions achieved by 
text postings such as “asking a question” or “expressing agreement.” In other words, whiteboard objects are 
made interactionally relevant through chat messages that either (a) project their production as a next action or 
(b) refer to already produced objects. This can also be seen as members’ orientation to a limitation of this online 
environment as a communication platform; one can act only in one space at a given time, so it is not possible to 
perform a simultaneous narration of a drawing as one can do in a face-to-face setting. Therefore, each 
interaction space as a communicative medium seems to enable and/or hinder certain kinds of actions, i.e., they 
carry specific communicative affordances (Hutchby, 2001) for collaborative problem solving online.  

The way Davidcyl has put some of the features of the whiteboard —like dragging and copy/paste—into 
use in the episode described above demonstrates some of its key affordances as a medium for producing shared 
drawings. In particular, we have observed how copying and pasting is used to avoid additional drawing effort, 
and how collections of objects are selected, dragged, and positioned to produce specific stages of a geometric 
pattern. Such possibilities for action are supported by the object-oriented design of the whiteboard. Davidcyl’s 
drawing actions show that, as compared to other physical drawing media such as paper or blackboard, the 
electronic whiteboard affords unique possibilities for constructing and modifying shared mathematical diagrams 
in ways that have mathematical, collaborative, semantic and communicative power.  

It is analytically significant that Davidcyl changed from building the pattern row-wise in Figure 2 to 
building it column-wise subsequently and that he “computed” the height of the new column in several different 
ways in Figures 3, 4 and 5. This indicates that he did not have an explicit solution “in his head”—a mental 
model that he just had to illustrate in the world with the whiteboard. Rather, he worked out the solution 
gradually through emergent whiteboard activities and his recognition of what appeared in the whiteboard. 
Significantly, the other group members could observe the same thing. 

An important concern for our group-cognitive approach is to investigate how students make use of the 
technological features available to them to explore mathematical ideas in an online environment like VMT. 
Drawing features such as copy/paste, dragging, coloring, etc. are important affordances of the shared 
whiteboard not simply because of their respective advantages as compared to other drawing media. The 
mathematical significance of these features relies on the way single actions like copy/paste or dragging are 
sequentially organized as part of a broader drawing activity that aims towards constructing a shared 
mathematical artifact. For instance, through such a sequence of drawing actions Davidcyl demonstrated to us (as 
analysts) and to his peers (a) how to construct a stair-step pattern as a spatially organized assemblage of squares, 



and (b) how to derive a new stage of the stair-step pattern from a copy of the prior stage by adding a new 
column of squares to its right. Moreover, Davidcyl’s engagement with the squares (rather than with the sticks 
that make up the squares) displays his explicit orientation to this particular aspect of the shared task (i.e., finding 
the number of squares at a given stage). Hence, the availability of these drawing actions as a sequence of 
changes unfolding in the shared visual space allows group members to witness the reasoning process embodied 
in the sequential and spatial organization of those actions. In other words, the sequentially unfolding details of 
the construction process provide specificity (and hence meaning) to the mathematical artifact that is being 
constructed.  

Besides figuring out ways to connect their own actions across dual-interaction spaces, VMT users also 
coordinate their actions with the actions of their peers to be able to meaningfully participate in the ongoing 
discussion. The ways participants produce and deploy mathematical artifacts in the shared space implicate or 
inform what procedures and methods may be invoked next to produce other mathematical artifacts, or to modify 
existing ones as the discussion progresses towards a solution to the task at hand. For instance, 137’s competent 
contribution to Davidcyl’s sequentially unfolding line of reasoning in Table 1 shows that shared mathematical 
understanding at the group level is an interactional achievement that requires coordinated co-construction of 
mathematical artifacts. The co prefix for the term “co-construction” highlights the intersubjective nature of the 
mathematical artifacts produced during collaborative work; they are not mere mental constructs easily ascribed 
to certain individuals. As we have just observed in the excerpt above, intersubjectivity is evidenced in the ways 
participants organize their actions to display their relevance to prior actions. 137’s anticipation and production 
of the next relevant step in the joint problem-solving effort serves as strong evidence of mutual understanding 
between him and Davidcyl. Moreover, the term construction signals that mathematical artifacts are not simply 
passed down by the mathematical culture as ready-made Platonic entities external to the group. Once enacted in 
group discourse, culturally transmitted artifacts such as “Gaussian Sum” need to be made sense of and 
appropriated in relation to the task at hand. Hence, our use of the combined term co-construction implies an 
interactional process of sense making by a group of students—even in an excerpt like the present one in which 
one individual takes an extended turn in the group discourse to develop a complex presentation. The fact that it 
is a visible construction worked out in collaborative media and designed for reception by others makes it a co-
construction from which the speaker is as likely to learn as are the other group members. 

When co-construction takes place in an online environment like a chat tool, the construction process 
must take place through observable interactions within technical media. This requires student groups to invent, 
adapt or appropriate methods to co-construct mathematical artifacts. It also makes it possible for them to 
explicitly reflect on the persistent traces of their co-constructions by investigating the persistent content 
provided by the technology. Therefore, the persistent nature of actions provides the necessary infrastructure for 
joint action, and hence is a key affordance of CSCL environments like VMT, where actors work at a distance in 
a disembodied environment. In addition, the persistent records of interactions also allow researchers to analyze 
the co-construction process as it unfolded in real-time, as this paper demonstrates. 

Through similar case studies of other VMT sessions, we observed that students make use of additional 
resources (such as the explicit referencing tool, locational pronouns, color names in chat) to methodically 
achieve referential relationships between shared diagrams and chat messages (Cakir, Zemel & Stahl, 2009). 
Chat postings use a broad and sophisticated array of such methods to refer to matters constructed graphically. 
Due to their recurrent appearance as a practical concern for the participants in this dual-media online 
environment, we refer to the collection of these methods as referential practices. Referential practices are of 
particular importance to the study of mathematical understanding as a group-cognitive phenomenon, because 
they are enacted in circumstances where participants explicitly orient to the task of achieving relationships 
between the textual and graphical contributions that they have been exchanging online—a phenomenon that is 
given significance in the math education literature as characterizing deep mathematical understanding. 
Likewise, one can use the term representational practices to refer to the spatial and temporal organization of 
whiteboard actions that produce shared diagrams, which simultaneously give further specificity to the 
mathematical artifacts that the team has been working on—e.g., Davidcyl’s methodical sequencing of 
copy/paste operations to indicate growth patterns. Through referential and representational practices, 
participants co-construct mathematical artifacts that reify mathematical understandings. The understanding or 
meaning is not simply located inside students’ individual brains or in the chat/drawing artifacts themselves. The 
meaning is embodied in the sequentially organized and coordinated actions through which those artifacts were 
co-constructed. To sum up, group referential and representational practices play a key role in the ways 
mathematical artifacts are (a) appropriated by active teams from historically developed cultural tools, and (b) 
emergent from ways of communicating and symbolizing within local collectivities as shared, meaningful 
resources for mathematical discourse, collaborative learning and group understanding.  
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