Virtual Math Teams:

Studying and Supporting Online Collaborative Problem-solving

Annie Fetter
Johann W. Sarmiento
The Math Forum @ Drexel University

Overview

- •Intro: The Math Forum Services and the VMT
- •VMT Goals, Questions and Activities up to date.
- •Let's try it together!
- Analyzing Student's Online Collaboration
- Research on Cooperative/Collaborative Learning
- •Computer-support for Online Collaborative Problem-Solving
- Your students can participate in the VMT project!

The Math Forum's Services

- Ask Dr. Math
- Math Tools digital library and community
- Teacher2Teacher
- Problems of the Week (PoWs)
- And many more!

The Math Forum's Problems of the Week (Pow)

www.mathforum.org/pow/

- Designed to provide creative, non-routine challenges for students in grades three through twelve.
- Problem-solving and mathematical communication are key elements of every problem
- 4 areas: Math Fundamentals, Pre-Algebra Algebra, and Geometry

Virtual Math Teams: Overview

- Promote collaborative problem-solving
- Enable kids to help each other at The Math Forum and make better use of the limited expert mentoring
- Provide an important kind of engaged learning experience for students
- Investigate the nature of online collaboration for math problem-solving
- 5-year NSF-funded project

Driving Questions

- What forms of collaboration are more effective for math learning?
- What types of problems work best for collaborative problem-solving?
- What kind of human and software support are necessary?
- What research methods help us understand online collaboration better?

Some VTM Activities to date

- Invited small groups of students to collaborate online to solve the Math Forum's Problem of the Week
- Investigated 5 different software platforms: AOLIM, Blackboard, WebCT, Open-Source Chat + Shared Whiteboard, ConcertChat
- Offered series of weekly, one-hour "Pow-wow" sessions with Algebra and Geometry PoWs.
- Conducted initial analysis of chat transcripts
- Explored software-support prototypes

Let's try a collaborative PoW: "A Tangent Square and Circle"

Let's Reflect on our Collaborative Problem-solving

- What are possible solution paths?
- How does one come upon those?
- What did you notice in terms of doing it alone or with others?
- How was this experience different than collaborative problem-solving in your classroom?

- 1. AME how close are you
- 2. KIL i know that its less than four
- 3. AME No its more
- 4. KIL ya thats wut i meant
- 5. KOH hahaha... typo...
- 6. KIL anyone else get any closer?
- 7. AME I solved it
- 8. KOH I solved it, too!
- 9. KIL ic
- 10. KOH hey, AME, tell me about your way first...
- 11. AME I need my pic

..

15. KOH I know you got the right answer, but your way is kinda wrong...

• • •

- 21. AME My way is fine
- 22. AME Its works
- 23. AME If the answer is right than what gives?
- 24. KOH well... ok...
- 25. KOH all goes well that ends well
- 26. KOH but I need explaination...
- 27. AME ok ...

KOH so AME, please explain your way...

KIL yea please?

AME well I just used some equations

AME equation 1- x + r = 8

KOH ok... simple equations or complicated ones?

KIL yes

AME Simple

KOH ok...

AME As I was Saying

KOH where did that 1 came from?

AME The first equation is x + r = 8

KOH yes!

KIL i get it...

AME The second is $16 + x^2 = r^2$

AME Now we substitute

KIL ic

AME And we are DONE!!!

KOH thats my way!!!

KIL i c now!

AME My way just makes more sense

KIL ic so 1) x + r = 8

KOH hey, so where do that x come from and how does it help ya?

KIL 2) $x^2 + r^2 = 16$

AME r + x = 8

1. ALR: Okay, I think we should start with the formula for the area of a triangle

2. SUP: ok

3. ALR: A = 1/2bh I believe

4. PIN: yes

5. PIN: i concue (*concur*)

6. ALR: then find the area of each triangle

7. ALR: oh, wait

8. SUP: the base and heigth are 9 and 12 right?

9. ALR: no 10. SUP: o

11. ALR: that's two separate triangles

12. SUP: 000 ok

13. ALR: right

14. ALR: i think we have to figure out the height by our

15. ALR: if possible

16. PIN: i know how

17. ALR how?

18. ALR right

19. SUP proportions?

20. ALR this is frustrating

21. ALR I don't have enough paper

22. PIN i think i got it

23. PIN its a 30/60/90 triangle

24. ALR I see

25. PIN so whats the formula

. . .

- 28. PIN so whats the formula
- 29. PIN to find it
- 30. PIN i think i remember
- 31. AVR to find what
- 32. AVR the height?
- 33. PIN ya
- 34. SUP if its equilateral its it a 45/45/90 triangle?
- 35. SUP o wait
- 36. SUP thats isosceles
- 37. AVR yeah
- 38. AVR ...
- 39. AVR equilateral is 60/60/60 triangle
- 40. PIN ya
- 41. AVR not 30/60/90
- 42. PIN anyone remember formula for 30/60/90 triangle?
- 43. PIN nooooo
- 44. PIN but look
- 45. PIN you drew the triangle
- 46. PIN here wait
- 47. AVR no I didn't
- 48. PIN let me make a pic
- 49. AVR okay
- 50. PIN wait a couple min
- 51. AVR okay
- 52. SUP so holws it goin
- 53. AVR I'll try to draw one in the meantime
- 54. PIN super!

- 55. AVR equilateral means all sides are equal
- 56. AVR therefore all angles are equal too
- 57. SÜP yes
- 58. SUP 60
- 59. AVR so it can't be 30/60/90
- 60. AVR it's not a 30/60/90 triangle
- 61. SUP thats what i was thinking
- 62. SUP is there a formula for a 60/60/60?
- 63. AVR I have no idea
- 64. AVR I think once we find the formula it should be pretty easy
- 65. AVR I don't think there's a formula, though
- 66. PIN search google
- 67. AVR I think we find it some other way
- 68. AVR that's what I'm doing
- 69. SUP what does itmeans by edglengths?
- 70. SUP jone of the 3 sides?
- 71. AVR edgelength means length of a side
- 72. SUP ok ...

1. AVL: okay, Mod, just a question

2. AVL: basically, he's solving it by trial and error

3. AVL: by like putting random numbers in as sides and

seeing if they work out

4. PIN: ya, and im pretty darn close

5. AVL: yeah

6. AVL: but is there any way else to do it

7. AVL: like, using a formula

8. PIN: hey Mod answer me this

9. OFS: thats what i was thinkin ov

10.PIN: is it 21.213X

11.AVL: because if you submit the solution you're not

gonna say "do trial and error"

12.OFS: using a formula

13.PIN: where X is another number

14.PIN: is it or no

15.OFS: howd u get 21.213

16.PIN: trial and error

Research on Cooperative/Collaborative Learning and Achievement (Slavin, R.E.)

- "Research on cooperative learning is one of the greatest success stories in the history of educational research."
- However, There is still a some confusion and disagreement about why cooperative learning methods affect achievement and, even more importantly, under what conditions cooperative learning has these effects.
- A great deal of knowledge about the effects of many types of cooperative interventions and about the mechanisms responsible for these effects.
- Cooperative learning is not only a subject of research and theory; it is used at some level by millions of teachers.

Slavin, R.E. Research on Cooperative Learning and Achievement: What We Know, What We Need to Know http://www.successforall.com/Resource/research/cooplearn.htm

Cooperative/Collaborative Learning

Students who work together to clarify questions, discuss and select problem-solving strategies, co-construct solutions, and resolve controversies usually demonstrate greater gains in concept development and problem-solving abilities than similar students who work alone.

Davidson, N. (1985). Small group cooperative learning in mathematics: A selective view of the research. In R. Slavin (Ed.), "Learning to cooperate: Cooperating to learn." (pp.211-30) NY: Plenum.

Also: Elizabeth Cohen, Paul Cobb, Mercer & Wegeriff

Bridging Research and Practice

- How to achieve effective grouping
- How to motivate participation and use appropriate rewards
- How to provide feedback and teach students to collaborate
- What authentic tasks work best for collaborative activities?
- How to align collaobrative activity with curricular goals

Share your experiences...

- Jigsaw?
- Complex instruction / Project-based Learning?
- Student teams-achievement divisions?
- Survivor Algebra anyone?

Some Sources:

- Handbook of cooperative learning methods. Shlomo Sharan, (Ed.).
- Cooperative Learning in Mathematics: A Handbook for Teachers. Davidson, Neil. (Ed.).: Addison-Wesley, 1990
- Artzt, Alice F. & Claire M. Newman. How to Use Cooperative Learning in the Mathematics Classroom. National Council of Teachers of Mathematics, 1990

Software Supports

- Supporting activity awareness and coordination
- Threading
- Opportunistic Group formation
- Full-featured whiteboard
- Math support
- Online Community for sustained participation

ConcertChat

Your students can be part of Virtual Math Teams @ The Math Forum!

http://mathforum.org/vmt/

Cooperative/Collaborative Learning

- Davidson (1985) reviewed 79 research studies comparing student achievement in small group and traditional whole-class instruction, and found that in more than 40% of these studies students in the classes using small group approaches significantly **outscored** control students on measures of student performance.
- From a review of 99 studies of cooperative group-learning methods, Slavin (1990) concluded that cooperative methods were effective in improving student achievement. The most effective methods emphasized both group goals and individual accountability.
- Davidson, N. (1985). Small group cooperative learning in mathematics: A selective view of the research. In R. Slavin (Ed.), "Learning to cooperate: Cooperating to learn." (pp.211-30) NY: Plenum.
- Slavin, R.E. (1990). Student team learning in mathematics. In N. Davidson (Ed.), "Cooperative learning in math: A handbook for teachers". Boston: Allyn & Bacon, (pp. 69-102).
- Cited in the ERIC digest "Improving Student Achievement in Mathematics, Part 1: Research Findings." (2000) Grouws, Douglas A. Cebulla, Kristin J. ERIC Clearinghouse for Science Mathematics and Environmental Education http://www.ericdigests.org/2003-1/math2.htm

Virtual Math Teams Research

- How to group students for effective online collaboration (opportunistic group formation)
- How to design rich mathematical problems that foster collaboration and deep mathematical reasoning (task scaffolding)
- How to structure the online collaborative experience (interaction design for learning)
- How to study the forms of collaboration and reasoning that take place (multidisciplinary research)

1. Mod: If two equilateral triangles have edgelengths of 9 cubits and ...

ALR: 2. hmmm

3. ALR: interesting

4. If you create a picture that you would like to share... Mod:

5. PIN:: verv

ALR: I think we can crack it, though **7**. ALR: **begins to scribble on paper**

or should I not do that? ALR:

PIN:: 9. doesnt matter

10. ALR: qot it

11. ALR: **proceeds with scribbling..**

12. ALR: Okay, I think we should start with the formula for the area of a triangle

13. SUP: ok

14. ALR: A = 1/2bh15. ALR: I believe

16. PIN: ves

17. PIN: i concue 18. PIN: concur*

19. ALR: then find the area of each triangle

20. ALR: oh, wait

21. SUP: the base and height are 9 and 12 right?

22. ALR: no 23. SUP:

24. ALR: that's two separate triangles

25. SUP: 000 26. SUP: ok

27. ALR: right

28. ALR: i think we have to figure out the height by ourselves

29. ALR: if possible 30. PIN:: i know how

30

60