Distinguished Lecture School of Communication and Information Rutgers University--New Brunswick Friday, February 24, 2012

Translating Euclid into CSCL

Issues in Design-Based Research on Computer-Supported Collaborative Learning of Significant Mathematical Discourse

Euclid constructing a right angle on a clay tablet

Dynamic Geometry in GeoGebra

Accountable Talk – (idealized) log of discourse with agent about construction

Sam: I drew a circle around A to find a point the same distance as B

Agent: Chris, can you check that Max is following Sam?

Chris: Hey Max, can you explain what Sam just did?

Max: Yeah, I think he found a point C such that AC = AB

Chris: But how do you know the lengths are exactly the same?

Max: Because all radii of a circle are equal

Sam: Now I am drawing circles around C and B

Exploration & Discourse: VMT-with-GeoGebra construction & chat

1. Translating Euclid

Classic Education –constructing a right angle on a clay tablet

Dynamic Geometry – constructing using GeoGebra tools

Accountable Talk –discourse with agent about constructing

Exploration & Discourse – constructing, visualizing, exploring in VMT-with-GeoGebra

The VMT Project Today: Intro

- 1. The Promise of CSCL: From clay tablets to iPads
- 2. The Domain of Geometry Education
- 3. The Role of Discourse
- 4. The Approach of Design-Based Research
- 5. The Enactment of Technology
- 6. Design Issues
- 7. The Use of Conversation Analysis
- 8. The Philosophic Issues

2. Math Education with Dynamic Geometry

Guiding development of skills & tacit understanding

- Visualization
- Exploration
- Dependencies
- Multiple Representations
- Concrete & Abstract
- Math Talk

3. Discourse

- Socialization in math community
- Language of math & practices
- Collaborative learning thru discourse
- Accountability to each other, to math domain, to math community standards
- Conceptualization & articulation

Accountable Talk: Model or Software Agent

Ideal Agent-Mediated Accountable Talk Response Structure										
Agt	S1	S2	S3							
•	1			1	S1 states something					
2			1	2	Agent responds to S1 by prompting S2					
		3		3	S2 responds to the agent, asks S3 to restate S1' content					
			4	4	S3 restates S1's statement as mediated by the agent					
	5			5	S1 accepts S3's restatement					
			6	6	S3 builds on S1's restatement					
7			<u>7</u>	7	Agent prompts S2 to add to S3 and S1					
		8		8	S2 adds to S3 and S1's statements as mediated by the agent					

Threading of responses

Mediation of accountable talk

Content uptake

4. Design-Based Research

- Innovation nothing fully known or fixed
 - Technology, Practices of usage, User needs, user skills, hypotheses, central concepts, assessment methods
- Start simple; explore in iterative cycles of trial, evaluation, re-design
- Evaluation of technology & scaffolds: observe use and enactment by nondesigners

Design-Based Research

5. "Virtual Math Teams" Computer Support

- An integrated socio-technical environment for individual, group and community cognition
- Lobby: find rooms, social networking, teacher administrative tools, activity overview tools
- Chat room: group chat, Web browser, Wiki editor, Topic viewer, Help manual
- GeoGebra: group and individual construction areas

The VMT Lobby

Virtual Math Teams 3.0-Dev.03

Welcome Professor

New to VMT?	View Chat Rooms as							
List of All Rooms								
My Profile	Math Subject Tree	Tabular List						
My Teammates								
My Rooms		Filter Chat Rooms By						
Messages	Project Last Activity							
Manage Activities		iSchool						
			•	SHOW AII	·			
VMT Help Pages	Apply filters Use default filters							
VMT Lounge Room								
VMT Wiki Pages								
VMT Replayer 2.2	Geometry (2 Topics)							
VMT Replayer 3 Dev 2 (12/22 - 1/30)	Activity1 (9 Rooms, 0 Active) Activity2 (9 Rooms, 0 Active)							
VMT Replayer 3 - current								
Logout (9 Rooms, U Active)								
Lucky Number 7_1 V								
		/ Team Bee_1 🤍						
		Username	# of Messages	Last Active				
		at373	10	Feb 1, 2012 19:50				
		cbartizek	25	Feb 1, 2012 19:56				
		charlie_mcmichael	141	Feb 1, 2012 19:50				
		gerry	12	Jan 31, 2012 23:19				
		professor	8	Feb 1, 2012 19:57				
		Add to Favorit	es Save as JNO	View Chat Log				

VMT chat room with multiple tabs

TabbedChat: Professor (CID:1328585967654)

File Edit Chat GeoGebra

000

- Summary whiteboard: textbox with mathML, referencing, history
- Wiki page for activity of group for Activity for group – for community
- Logs and Replayer
- Integrated curriculum of activities
- **Professional development and training** in individual intellectual, group collaborative and community accountable practices primarily in terms of significant mathematical discourse.

navigation

- VMT Lobby
- Wiki Main Page
- Recent changes
- Help

search

toolbox

- What links here
- Related changes
- Upload file
- Special pages
- Printable version
- Permanent link

Probability

discussion

edit

history

move

article

Here are a set of challenges related to probability problems. You can contribute by adding your ideas about applying a strategy to a problem (adding content to a P#S# page), proposing a new strategy (adding a new column) or adding a new challenge (row).

watch

Q Gerry my talk my preferences my watchlist my contributions

Probability Strategies & Problems	S1. Drawing balls from a jar	S2.Solve Complementary Problem	S3. Enumerate & Organize your cases	S4. Use a Tree Diagram	S5. New Strategy
P1. The sock drawer	P1S1	P1S2	P1S3	P1S4	P1S5
P2. Box with three cards	P2S1	P2S2	P2S3	P2S4	P2S5
P3. Seating arrangements	P3S1	P3S2	P3S3	P3S4	P3S5
P4. Baseball_World_Series	(P4-S1 Example)	(P4-S2 Example)	(P4-S3 Example)	(P4-S4 Example)	P4S5
P5. Duck hunters	P5S1	P5S2	P5S3	P5S4	P5S5
P6. Clock hands	P6S1	P6S2	P6S3	P6S4	P6S5
P7. Length of Random Chords	P7S1	P7S2	P7S3	P7S4	P7S5
P8. New Problem	P8S1	P8S2	P8S3	P8S4	P8S5

If you need them, here are some resources for probability

Categories: ProblemSolving I VMT

log out

The VMT Re-Player

Time to next: 0:00 (Message by: tutorA)

6. Current "Hot" Design Issues

- a) Instruction vs. exploration: explaining interface vs. notice and wonder
- b) Synchronous/collaborative chat vs. asynchronous/individual read and try vs. class replay and reflection
- c) Custom perspective for all, community, class, group, individual?
- **d) Custom tool** for all, community, class, group, individual?
- e) Agent intervention: scripting vs. help agent
- f) Curriculum design criteria
- g) Design-based research agenda

More exploration, less Instruction

TabbedChat: Professor (CID:1328585967654)

File Edit Chat GeoGebra

000

Shared & personal spaces; synch/asynch

TabbedChat: Professor (CID:1328585967654)

Custom perspectives tool

Custom right triangle tool

Accountable Talk – (idealized) log of discourse with agent about construction

Sam: I drew a circle around A to find a point the same distance as P

Agent: Chris, can you check that Max is following Sam?>

Chris: ney man,

just uld?

Max: Yeah, I think he found a point C such that AC = AB

Chris: But how do you know the lengths are exactly the same?

Max: Because all radii of a circle are equal

Sam: Now I am drawing circles around C and B

Math Education Design Criteria

Design-Based Research

7. Conversation Analysis: for Formative Evaluation

- Careful micro-analysis of discourse of users engaged in computer-mediated tasks
- From complete chat logs of interaction
- And replaying of technology usage
- Analysis of group interaction and problem-solving processes
- Based on visible evidence, not inferences about mental events or reliance on self reporting

Group cognition in math: The longer-sequence structure

Log 1. Open the topic Log 2. Decide to start Log 3. Pick an approach Log 4. Identify the pattern Log 5. Seek the equation Log 6. Negotiate the solution Log 7. Check cases Log 8. Confirm the solution Log 9. Present a formal solution Log 10. Close the topic

8. Philosophic Issues

- How can dynamic-math support enhance geometric cognition by individuals, small groups and classrooms?
- How can it integrate:
 - Rational planning of geometry, dependencies, software functions, scripts, curriculum, software agents
 - Normative social practices of collaborative learning, accountable talk, human motivation, undistorted communication

 Face-to-face with computer simulation: Seeing an artifact as meaningfully structured

Stahl, 2006, Group Cognition, p. 242

- Geometry is the paradigm of purposive-rational calculation. The structure of the classic proof is:
 - Statement of conjecture to be proven
 - Construction of deduction
 - Restatement of that which was to be proven
- This is the general form of planning:
 - Goal, implementation, reflection checking on completion
- This is also the form of computer programming:
 - Requirements, programming, testing
- Like computer programming, dynamic-geometry construction is a matter of assembling a (ideally optimal) set of constraints among dependent objects to achieve the desired realization.

Group geometric cognition can integrate purposive-rational thinking and socialnormative interaction. According to Habermas, there is a duality of the logic of efficient work and the logic of social interaction. By integrating geometric construction with collaborative discourse, we combine these.

The proper balance is the precondition of democracy.

Vygotsky, Dewey, Habermas

- Classical geometry epitomized a literate world-view, dominated by factual propositions and fixed truths. This logical, deductive, abstract view began with the early geometricians, was extended by Socrates, Plato and Aristotle, was codified by Euclid and was rigidified by Roman thought.
- Dynamic geometry can translate fixed views of formal truths into exploratory, temporal, humanconstructed systems of visible dependencies. Truths are seen to be socially constructed, understandable and modifiable. Proofs are not eternal and God-given; rather, students can construct systems of dependencies with designed consequences.

Conclusion

- Euclidean geometry pointed the way for rational thinking in literate Western society, culminating in CS and Al
- A CSCL approach to dynamic geometry learning can integrate such rational thinking with interpersonal understanding and can show the socially constructed and negotiable nature of rationality
- But successful implementation and deployment require meeting a complex and ill-defined set of diverse challenges

For Further Information:

- *"Group Cognition"* (2006, MIT Press)
- "Studying Virtual Math Teams" (2009, Springer)
- Gerry Stahl's e-Library (collections of papers free for iPad, Kindle, PDF or low-cost print-on-demand): GerryStahl.net/elibrary

These slides: GerryStahl.net/pub/rutgers2012.ppt.pdf

website: GerryStahl.net email: Gerry@GerryStahl.net