Course Description

This course has been renamed, revised and updated to present a more contemporary view of the field. INFO 405 examines selected human, social and technical issues and concepts of computer-supported cooperative work, computer-supported collaborative learning and social networking. Topics include the ways that groups work in the networked organization; analysis and design of group-support systems; the technological underpinnings of selected groupware technologies; the design and implementation of groupware; social-networking technologies; and future directions of these technologies.

When you have completed this course, you should be able to:

- Apply collaborative, cooperative and social computing concepts and techniques to analyze potential organizational requirements;
- Apply selected collaboration and social computing systems to meet specific application requirements;
- Evaluate behavioral aspects of collaborative work environments;
- Read and understand research literature on social and collaboration computing.

Groupware systems are socio-technical systems, so their design must be driven by the human and social needs of users and user communities. Accordingly, this course looks at various approaches for studying, analyzing and evaluating system requirements—particularly for cooperative, collaborative and social-computing systems. Course readings cover classic papers defining the CSCW field, examples of groupware applications for cooperation in the workplace and for collaborative learning, and considerations for groupware evaluation. This quarter, a special focus will be on virtual learning communities.

This course is designed and organized to support collaborative learning; work in small groups is the primary learning activity; the instructor’s role is primarily to structure, assess and guide the experience. Students will prepare presentations on the readings, working in online small groups. Critical, creative, well-grounded perspectives on the readings are encouraged. The course will focus on a group design project that explores the leading edge of research on CSCW, allowing the selection of current topics to follow student interests.

The course requires careful reading of 50-75 pages a week. It requires writing critical reviews of the readings, collaboration on a group project with group reports, and participation in class discussion.

This one-time course offering may not be repeated in the future. The content and instructor of this course change each time it is offered. This is an opportunity to benefit from the instructor’s own perspective on groupware design and research and from the special focus on learning communities this term.
Course Readings

The course content is presented by the readings. Students are expected to read them carefully, take notes and be critical. The reading assignments are listed in the Course Assignments table below. The book that you must purchase is:

This book is available on two-hour loan from the Drexel Library. See http://innoserv.library.drexel.edu/search/r?SEARCH=info405. However, it is recommended that you purchase a copy of the book as the library copy will be busy when you most need it.

You can download the other course readings as Course Materials in Blackboard.

Here are the reading assignments:

Course Assignments

<table>
<thead>
<tr>
<th>Wk</th>
<th>Dates</th>
<th>Readings</th>
<th>Group Review</th>
<th>Comments</th>
<th>Weekly Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 9 - 15</td>
<td>Web 2.0</td>
<td>1, 2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jan 16 - 22</td>
<td>Web 2.0</td>
<td>4, 5, 6, 7, 8, 9</td>
<td>1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Jan 23 - 29</td>
<td>VMT</td>
<td>10, 11, 12</td>
<td>4, 5, 6, 7, 8, 9</td>
<td>VMT trial</td>
</tr>
<tr>
<td>4</td>
<td>Jan 30–Feb 5</td>
<td>Groupware</td>
<td>13, 14, 15</td>
<td>10, 11, 12</td>
<td>Design proposal</td>
</tr>
<tr>
<td>5</td>
<td>Feb 6 – 12</td>
<td>CSCW</td>
<td>16, 17, 18</td>
<td>13, 14, 15</td>
<td>Design requirements</td>
</tr>
<tr>
<td>6</td>
<td>Feb 13 - 19</td>
<td>CSCW</td>
<td>19, 20, 21</td>
<td>16, 17, 18</td>
<td>Design alternatives</td>
</tr>
<tr>
<td>7</td>
<td>Feb 20 - 26</td>
<td>CSCL</td>
<td>22, 23, 24</td>
<td>19, 20, 21</td>
<td>Feedback on projects</td>
</tr>
<tr>
<td>8</td>
<td>Feb 27–Mar 4</td>
<td>Virtual Community</td>
<td>25, 26, 27</td>
<td>22, 23, 24</td>
<td>Design presentation</td>
</tr>
<tr>
<td>9</td>
<td>Mar 5 – 11</td>
<td>Analysis</td>
<td>28, 29, 30</td>
<td>25, 26, 27</td>
<td>Final design documentation</td>
</tr>
<tr>
<td>10</td>
<td>Mar 12 - 19</td>
<td>Design</td>
<td>28, 29, 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(No exam)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Due dates: All written group assignments are due by midnight (East Coast time) on Sunday at the end of the week shown on the table of Course Assignments above. Individual comments are due in Blackboard by midnight on Tuesday following the deadline for the group reviews. Class presentations are in the Wednesday class following the deadline for the written assignment.

Course Requirements

READINGS: Read the assigned chapters or papers carefully by the end of the week—do not fall behind the schedule of readings above. Take notes. Think about the main purpose of each reading and its central points. How does it make its argument to support its main points? What terms, concepts, ideas, techniques or arguments are unclear? Is the argument of the reading supported by analysis of data or examples? How could the reading be improved?
GROUP REVIEWS OF READINGS: Meet with your group online to draft a review of the reading assigned to your group. You might want to each post ideas for the review to a group asynchronous space in advance of meeting; then meet synchronously for about an hour to discuss how to put the ideas together and to develop them further; then polish the review and agree on it as a group asynchronously; and finally post it to the Blackboard discussion forum by the end of the week listed above for the group review. Be concise and to the point: your group reviews should be 400-500 words long; they should state the main idea or argument of the reading and should point out its value and its limitations; suggest some ways the reading could be improved or its argument could be strengthened. What is the reading trying to accomplish—within its book or within the scientific community; how does its rhetorical and literary style help or hinder this? Do not simply state opinions; back up your claims or arguments with references to the data or to the detailed wording. At the top of your reviews (and all group products in the course), list the names of the people who actively participated in writing the review. These group reviews are due in Blackboard by Sunday night—e.g., the group reviews of readings 1, 2 and 3 are due January 15.

INDIVIDUAL COMMENTS ON OTHER GROUPS’ REVIEWS OF READINGS: Read the reviews of the readings that your group did not review last week. As an individual, post a comment on each of them of about 100-200 words long to the Blackboard discussion forum. Do not simply agree or disagree with the review; do not simply give your personal opinion or talk about your personal experiences. Be specific and reference the claims you are disputing. Try to deepen the discussion by extending the argument of the reading, the review and other people’s comments. Some of the readings are difficult and require background knowledge that not everyone will have; try to fill in some understanding that you think was missing in the other postings. These individual comments on the group reviews are due in Blackboard by Tuesday night—e.g., the comments on readings 1, 2 and 3 are due January 17, in preparation for class discussion on January 18.

GROUP TRIAL OF VMT SOFTWARE. During class early in the course, you will have an opportunity to try a prototype of collaboration software under development at the iSchool. Your group should summarize its experience with the software and post the summary to Blackboard.

The other Course Requirements involve the collaborative design project:

GROUP PROJECT PROPOSAL DOCUMENT. (See below.)

GROUP DESIGN NEEDS AND REQUIREMENTS DOCUMENT. (See below.)

GROUP EXPLORING DESIGN ALTERNATIVES DOCUMENT. (See below.)

INDIVIDUAL FEEDBACK ON OTHER GROUPS’ DESIGNS. Post to Blackboard your individual feedback and suggestions on the design alternatives presented by the other groups. Try to help them produce the best designs possible.

PRESENTATION OF DESIGN DEVELOPMENT. Present your design project in class. This should be closely related to your documentation of your group’s design development.

DOCUMENTATION OF DESIGN DEVELOPMENT. (See below.)

Collaborative Design Project

The focus of this class is the design of an interactive system. Toward this end, groups will identify an interesting problem space and will design and prototype an interactive system. Small groups will be formed based on when they can get together outside of class and will also have time to work together in class. Sample projects are:
• Extend blog technology to support community learning.
• Extend blog technology to support knowledge sharing in a company.
• Extend wiki technology to support community literature review.
• Extend wiki technology to support a company digital library.
• Adapt Facebook technology for classroom learning.
• Adapt Facebook technology for a company social network.
• Extend VMT for sharing summaries from the chat and drawing in the wiki.
• Extend VMT to support forming groups online outside of schools.

Document 1: Project proposal
Post a brief statement in Blackboard proposing a project design space and listing the members of the
design group. List several important relevant sources in the research literature that you will be
reviewing for your design.

Document 2: Design needs and requirements
In this document, your group will describe the goals for your design project. This includes both your
process for conducting a needs analysis and gathering requirements as well as what you found.
This document should include:
• An overview of what the system will do and a rationale for building it. (Who cares about this
design problem? Who might find it useful/fun/helpful?)
• A brief review of several papers from the research literature that discuss design issues relevant to
your project.
• A description of the anticipated users of the system.
• A task analysis consisting of
 o A description of the important characteristics of the tasks performed by users.
 o A description of important characteristics of the task environment.
 o A simple structured task analysis of the problem.
• An analysis of an existing system including its strong points and deficiencies (e.g., a simple blog
without your extension).
• A description of the larger social and technical system that your technological design will intersect,
including data gathered using one or more contextual-inquiry methods.
• An initial set of criteria for success that would be used in the eventual evaluation of your design.
• A description and justification of how the above information was gathered.
• As you address each of these topics, engage in a discussion of the implications of what you learned
above for the design of your system. I.e., do not just describe the users, environment, etc., but also
explain how these attributes should/will influence your design.
Document 3: Exploring Design Alternatives

The goal of this document is to use what you learned in preparing Document 2 to develop a set of design alternatives for your problem space. This is the stage of "informed brainstorming"; multiple design alternatives should explore the potential design space for the problem. Each group should develop mock-ups, storyboards, and sketches of three interface designs. That is, you should provide pencil-and-paper or electronic images of the interfaces at various stages; you do not need to build working prototypes, but your design sketches should be sufficiently detailed for a potential user to provide useful feedback about the design. Along with each of your design mock-ups, you should provide a brief narrative walk-through of how the system would work. Most importantly, you should include justifications for why design decisions were made, and what you consider to be the relative strengths and weaknesses of your different designs.

The design process you follow here is important. Don't do the following: The group splits up and everyone creates one design, then these are all your alternatives to be turned in. This is not how a good, creative design process should work. It should be more like a brainstorming session with all team members present. You should seek to create multiple, fundamentally different design ideas, ideas that represent different corners of the potential design space for the problem you have chosen. The key is to push the boundaries of what’s possible. The key in this part of the project is to come up with at least three substantially different design ideas, not just variations on one basic design. Your document should include all the explanatory material mentioned above as well as all the design sketches, drafts, storyboards, etc., that you generated. Make sure that your report adequately reflects the design process that your group undertook.

You should develop the following items in this part, and you should communicate them through your report:

- At the beginning of this document, write an updated one-paragraph description of your project and less than one page summarizing the key points of your requirements. Your understanding may have changed slightly as you thought through designs.

- Design Space: Describe the design space of the potential interfaces for your system. What requirements may be difficult to realize? What are some tradeoffs that you should explore? How could your interface support some tasks easier than others? Describe the design alternatives that you considered exploring and then give a brief description and justification of the three (or more) alternatives that you did explore.

- Present at least three interface designs (prototypes) illustrating some portion of your product. With each design you should include:
 - A rationale for this design.
 - Some illustrations of the design (sketches, storyboards, ….)
 - At least one scenario from an end-user's perspective.
 - An assessment of the design. This assessment should include feedback from potential users.

- A summary of your modifications to your requirements specification and your usability criteria.

We will spend most of a class as a presentation session for design alternatives. Each group will present their design ideas in class and we will discuss the alternatives. The idea here is that each group can use this opportunity to get feedback about their design ideas as they narrow their design space and begin the next part of the project.
Document 4 –Documenting design development

Your group should construct a detailed prototype of an interface that can be used to demonstrate the completion of two or more tasks. You can use any prototyping tools that you would like to assist this process. You should be able to represent the form and functionality for some tasks in enough detail that you could do basic user testing with your prototype.

The document that accompanies your prototype should include a text description of your system prototype. The key idea is to justify why you settled on the design that you chose. What's special about this particular design with respect to your problem?

The document that accompanies your prototype should include an initial evaluation plan for the system and a description of what you believe most needs to be tested with users in order to refine your design. What kinds of benchmark tasks would you have users perform to help further the design of the interface? Some of these should be performable in your prototype. How critical would it be to observe the deployment of your system in a real operational context? How would you do it? The key here is not to do some exhaustive description of an evaluation plan, but to motivate why the particular plan you propose is appropriate for this interface.

Specifically, you should develop the following items in this part, and you should communicate them through your report:

• Include an updated one-paragraph description of your project and one-page summary of key requirements for your system just to make sure we're still all on the same page.
• Design Summary: Project an overall description of your final design.
• Prototype(s): You will communicate your design through prototypes that all are part of one, hopefully coherent, design.
• A detailed textual description of the prototype(s) and sufficient visual material to explain it in the document.
• At least one scenario from an end-user's perspective.
• Your rationale for why you created this prototype
• A preliminary assessment of this prototype. This assessment should include some feedback from potential users.
• Your evaluation plan detailing the requirements and usability criteria that it addresses. The plan should reference the use of the individual prototypes and any others you might not have built.
• A final summary including any modifications to your requirements specification and your usability criteria and a description of your design and implementation process.

As a final presentation, you will demo your prototypes for the class.

Course Grading

Grading will be based partially on your individual participation in the course and in your group; partially on the work of you and your group.

Because your class mates will be building on your ideas, it is essential that you post all your assignments on time and that you participate actively in all group activities (both asynchronous and synchronous). Grades will be reduced at least in half for assignments submitted after the deadlines.
Grading is not curved: We are trying to build knowledge collaboratively. It is possible for all groups and even all individuals to earn an A in this course. The grading is not competitive, but simply acknowledges the work that you have done on schedule. Most students who take an honest interest in the course and exert reasonable effort in all aspects of the course can receive an A. Failure to do your share in your group work, or to meet deadlines for postings and assignments will lower your grade. Your grade should be a measure of what your group and you have accomplished in this course.

<table>
<thead>
<tr>
<th>#</th>
<th>points</th>
<th>max</th>
<th>A+</th>
<th>99</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4</td>
<td>36</td>
<td>A</td>
<td>92</td>
<td>98</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>36</td>
<td>A-</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>B+</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>B</td>
<td>82</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>20</td>
<td>B-</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C+</td>
<td>78</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C-</td>
<td>70</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D+</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D-</td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>0</td>
<td>59</td>
</tr>
</tbody>
</table>

Generic Information

Problems & Questions. Please raise questions in the class discussion board if possible. This is the best place to raise questions because other students may have the same question and they can benefit from seeing the answer; also, other students can respond with their views on the issue. If it is an urgent or personal problem, email the instructor. If you believe that your group assignment is not going to work out, discuss it with the instructor by email. Email with the instructor is the best medium for confidential concerns, such as concerns about other students in your group or personal events that will interfere with your course work.

No Excuses. No one is interested in excuses. If you need to miss any group activity, notify the instructor and the other members of your group as soon as possible and explain how you will contribute to the group. You are responsible for doing your share of the group work during the term; when you ask others to cover for you, let them know how you will make up for it. Everyone knows that things come up, sometimes unexpectedly, but that does not relieve you of your responsibilities. Your group is your support system in the course – let them know what is going on so they can help you. See http://www.drexel.edu/provost/policies/academic_dishonesty.asp.

Plagiarism. Obviously, plagiarism is not tolerated at Drexel and can result in failure. Plagiarism is passing off someone else’s ideas, work or words as your own. Collaboration is encouraged, but always give credit to individuals or groups whose ideas, work or words you are reporting, quoting or summarizing.
Academic Honesty. Cheating, academic misconduct, plagiarism and fabrication are serious breaches of academic integrity and will be dealt with according to University Policy (Section 10 of the Student Handbook.) Students are responsible for their own finished work. Penalties for first offenses range from 0 on an assignment to an F in the course. All offenses are reported to the University Office of Judicial Affairs. See http://www.drexel.edu/studentlife/judicial/honesty.html.

Late Policy. All individual and group assignments are due online by midnight (East Coast time) of the due date. Group presentations cannot be rescheduled. Grades for late work will be lowered substantially.

Special Needs Students. If you have any special need that must be accommodated, please let the instructor know the first week of class. Contact with the Office of Disability Services (215) 895-2506/7) is strictly confidential. See http://www.drexel.edu/ods/student_reg.html.

Privacy Notice

In general, all work and communication in this course should be treated as public:

• Your work in this course may be studied by other students in the course.

• Any communication on the Internet may end up being seen by people for whom it was not originally intended.

• The web spaces for this course can be viewed by anyone in the world through the Web.

• ISchool courses may be recorded and streamed for educational purposes. Presentations and other activities in class may be videotaped and made available in the future.

• The instructor and other Drexel faculty, students and staff may have access to anything in Blackboard or the web spaces.

• Future researchers may have access to these materials as data. Although they do not have permission to publish any data about you and although they should ensure anonymity and confidentiality of all personal data, you should assume that activities taking place in this course may be subject to viewing.

• Students in future courses may have access to your work.

Please let the instructor know if you have an objection to your work being made available to others.

Instructor's Background

Hi. My name is Gerry Stahl. I am available every day by email at Gerry.Stahl@drexel.edu. Send me an email if you want to meet with me in person or to inquire about urgent or personal questions.
My professional research area is the field of CSCL (Computer-Supported Collaborative Learning). I think that collaborative learning is an exciting and especially effective way to learn. I believe that there is great potential to design good computer support for it. I have been experimenting with a number of CSCL prototypes and have written many papers on the theory, design and evaluation of interactive systems to support collaborative learning. We will be taking advantage of what I have learned from my research in this course, and I hope you will benefit from this.

In 2006 I published a book on CSCL entitled *Group Cognition: Computer Support for Building Collaborative Knowledge* and launched the *International Journal of Computer-Supported Collaborative Learning*. In 2009 I published a book on the VMT Project that I direct at the iSchool @ Drexel. I have published over 200 conference papers, journal articles, book chapters and essays. My background is in computer science and philosophy. At Drexel, I teach mainly HCI courses; before coming to Drexel, I worked at a large research organization in Germany; before that I was a Research Professor at the University of Colorado in Boulder. The 2002 international CSCL conference was at Boulder and I was the Program Chair for it; I have been in charge of workshops at CSCL 2003 in Norway, CSCL 2005 in Taiwan, ICCE 2006 in Beijing, CSCL 2007 in New Brunswick and CSCL 2009 in Greece; I was a Program co-Chair for CSCL 2011 in Hong Kong.

Let me know if you have any questions about my background or check out my home page, where you can see more details and read my papers: http://GerryStahl.net. You can download my reflections on “A Career in Informatics” at: http://GerryStahl.net/personal/career.pdf.

Note on this Document

This Course Overview may be revised from time to time. The latest version will always be available at http://GerryStahl.net/teaching under the entry for this course.