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Abstract: In this chapter, we trace collaborative problem solving as an interactive, 
layered building of meaning among learners working as a small group. Our 
analytic aim is to investigate how students through their inscriptive signs 
collaboratively build mathematical ideas, heuristics and lines of reasoning in 
the VMT environment. 
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Similar to other computer-mediated communication systems, the VMT 
environment presents communicative affordances and constraints that influence 
users’ discursive interactions. We are interested in how students use the affordances 
of the virtual environment—including the shared, dynamic whiteboard space, chat 
feature and referencing tool—as well as what mathematical ideas, heuristics and 
lines of reasoning are visible in their interactions. In addition, we are interested in 
how constraints of the system intervene in student discursive interactions. 

Online communication systems present affordances and constraints to researchers, 
as well. VMT presents methodological challenges and opportunities to researchers 
interested in investigating how students exchange and interactively develop emergent 
mathematical ideas, heuristics and lines of reasoning. Consequently, we explore an 
analytic approach for inquiring into the archived interactions of students 
collaborating on mathematical problem solving through the online dual-interaction 
space. While analyses of users’ online problem solving typically focus on their chat 
text, in the analysis that we present, for reasons that we will discuss, our analytic 



attention focuses almost exclusively on the evolution of participants’ whiteboard 
inscriptions as a means to gain insight into the interactive development of their 
mathematical ideas, heuristics and reasoning as they solve an open-ended 
mathematics problem. 

Conceptual Framework 
In this chapter, key conceptual terms include discourse, student-to-student or peer 

mathematical discussion, collaborative interaction, problem solving, heuristics, 
mathematical ideas and inscriptions. Discourse here refers to language (natural or 
symbolic; oral, gestic or inscriptive) used to carry out tasks—for example, social or 
intellectual—of a community. In agreement with Pirie and Schwarzenberger (1988), 
student-to-student or peer conversations are mathematical discussions when they 
possess the following four features: are purposeful, focused on mathematical notions, 
involve genuine student contributions and are interactive. We define collaborative 
interaction as individuals exchanging ideas and considering and challenging each 
other’s ideas so as to affect one another’s ideas and working together for a common 
purpose. In the context of the data of this study, the student-to-student, discursive 
collaborations involve only minimal substantive interaction with a teacher or 
researcher. 

The term heuristics applied to human beings and machines has various uses and 
meanings in fields as diverse as philosophy, psychology, computer science, artificial 
intelligence, law and mathematics education. We construe heuristics to mean actions 
that human problem solvers perform that serve as means to advance their 
understanding and resolution of a problem task. We do not imply that when problem 
solvers implement a set of heuristics that they will necessarily advance toward a 
solution but only that their intent is to do so. Our sense of heuristics includes explicit 
and implicit general strategies such as categories outlined by Pólya (1945/1973, pp. 
xvi-xvii, 112-114) and others (Brown & Walter, 1983; Engle, 1997; Mason, 1984; 
Mason, 1988; Schoenfeld, 1985) and pertains to other actions such as a group of 
problem solvers’ decision to assign subtasks to each other to later pool their 
outcomes to influence their progress on the larger problem at hand (Powell, 2003). 
Furthermore, we distinguish heuristics from reasoning, which we view as a broad 
cognitive process of building explanations for the outcome of relations, conclusions, 
beliefs, actions and feelings. 

A paramount goal of mathematics education is to promote among learners 
effective problem solving. In our view, mathematics teaching strives to enhance 
students’ ability to solve problems individually and collaboratively that they have not 
previously encountered. Nevertheless, the meaning of mathematical problem solving 
is neither unique nor universal. Its meaning depends on ontological and 
epistemological stances, and on philosophical views of mathematics and 
mathematics education. For the purposes of this chapter, we subscribe to how Mayer 
& Wittrock (1996) define problem solving and its psychological characteristics: 



Problem solving is cognitive processing directed at achieving a goal when no 
solution method is obvious to the problem solver (Mayer, 1992). According to this 
definition, problem solving has four main characteristics. First, problem solving is 
cognitive—it occurs within the problem solver’s cognitive system and can be 
inferred indirectly from changes in the problem solver’s behavior. Second, 
problem solving is a process—it involves representing and manipulating 
knowledge in the problem solver’s cognitive system. Third, problem solving is 
directed—the problem solver’s thoughts are motivated by goals. Fourth, problem 
solving is personal—the individual knowledge and skills of the problem solver 
help determine the difficulty or ease with which obstacles to solutions can be 
overcome. (p. 47) 

Coupled with these cognitive and other psychological characteristics, 
mathematical problem solving also has social and cultural dimensions. Some features 
include what a social or cultural group considers to be a mathematical problem (cf., 
D’Ambrosio, 2001; Powell & Frankenstein, 1997), the context in which individuals 
may prefer to engage in mathematical problem solving, and how problem solvers 
understand a given problem as well as what they consider to be adequate responses 
(cf., Lakatos, 1976). In instructional settings, students’ problem solving are strongly 
influenced by teachers’ representational strategies, which are constrained by cultural 
and social factors (Cai & Lester Jr., 2005; Stigler, 1999). Moreover, with online 
technologies, the affordances and constraints of virtual environments provide another 
dimension to the social and cultural features of problem solving since “such 
technologies are intertwined in the practices used by humans to represent and 
negotiate cultural experience” (Davis, Sumara & Luce-Kapler, 2000, p. 170) and 
how problem solvers think and act. Finally, the framing of abstract combinatorial 
concepts in the cultural context of a “pizza” problem (which is presented in the next 
section) also offers conceptual affordances and constraints. 

In offline as well as online environments, users express objects, relations and 
other ideas graphically as text and as inscriptions. These are special instances of the 
more general semiotic category of signs. A sign is a human product—an utterance, 
gesture, or mark—by which a thought, command or wish is expressed. As Sfard 
notes, “in semiotics every linguistic expression, as well as every action, thought or 
feeling, counts as a sign” (Sfard, 2000, p.45). A sign expresses something and, 
therefore, is meaningful and as such communicative, at the very least, to its producer 
and, perhaps, to others. Some signs are ephemeral such as unrecorded speech and 
gestures, while others like drawings and monuments persist. Whether ephemeral or 
persistent, a sign’s meaning is not static; its denotation and connotation are likely to 
shift over time in the course of its discursive use. 

As a discursive entity, a sign is a linguistic unit that can be said to contain two, 
associated components. Saussure (1959) proposes that a sign is the unification of the 
phonic substance that we know as a “word” or signifier and the conceptual material 
that it stands for or signified. He conceptualizes the linguistic sign (say, the written 
formation) as representing both the set of noises (the pronunciation or sound image) 
one utters for it and the meaning (the concept or idea) one attributes to it. Examples 
of the written formation of a linguistic sign are “chair” and “cos2(x) “—each with 



associated, socially constructed meanings. Saussure observes further that a linguistic 
sign is arbitrary, meaning that both components are arbitrary. The signifier is 
arbitrary since there is no inherent link between the formation and pronunciation of a 
word or mathematical symbol and what it indexes. A monkey is called o macaco in 
Portuguese and le singe in French, and in English the animal is denoted “monkey” 
and not “telephone” or anything else. The arbitrariness of the signified can be 
understood in the sense that not every linguistic community chooses to make it 
salient by assigning a formation and a sound image to some aspect of the experiential 
world, a piece of social or perceptual reality. Consider, for example, the signifieds 
cursor, mauve and zero; they index ideas that not all linguistic communities choose 
to lexicalize or represent. 

Signs can be considered to represent ideas. However, Sfard (2000) argues that a 
sign is constitutive rather than strictly representational since meaning is not only 
presented in the sign but also comes into existence through it. Specifically, she 
states, 

Mathematical discourse and its objects are mutually constitutive: It is the 
discursive activity, including its continuous production of symbols, that creates the 
need for mathematical objects; and these are mathematical objects (or rather the 
object-mediated use of symbols) that, in turn, influence the discourse and push it 
into new directions. (p. 47, original emphasis) 

This theoretical stance on the mutually constitutive nature of meaning and sign 
provides a foundation for analysis of the discursive emergence of mathematical 
ideas, reasoning and heuristics. On the one hand, signs can represent encoded 
meanings that—based on previous discursive interactions—interlocutors can grasp 
as they decode the signs. On the other hand, through moment-to-moment discursive 
interactions, interlocutors can create signs and, during communicative actions, 
achieve shared meanings of the signs. In this sense, the sameness of meaning for 
interlocutors that allows for success of their communication is not something pre-
existing but rather an achievement of the communicative act. This accomplishment 
may compel interlocutors to bring into existence signs to further their discourse. 

Mathematical signs—objects, relations, symbols and so on—are components of 
mathematical discourse and are intertwined in constituting mathematical meanings. 
Signs exist in many different forms, and inscriptions or written signs are but one. 
They are produced for personal or public consumption and for an admixture of 
purposes: to discover, construct, investigate or communicate ideas. As 
mathematicians and other mathematics education researchers also emphasize 
(Dörfler, 2000; Lesh & Lehrer, 2000; Speiser, Walter & Maher, 2003; Speiser, 
Walter & Shull, 2002), building and discussing inscriptions are essential to building 
and communicating mathematical and scientific concepts. In a discussion of 
mathematics and science teaching, Lehrer, Schauble, Carpenter & Penner (2000) 
illustrate how learners work “in a world of inscriptions, so that, over time, the natural 
and inscribed worlds become mutually articulated” and illustrate the importance of a 
“shared history of inscription” (p. 357). In mathematics, the invention, application 
and modification of appropriate symbols to express and extend ideas are constitutive 



activities in the history of mathematics (Struik, 1948/1967). Some researchers claim 
that mathematical meaning only exists through symbols and that symbols constitute 
mathematical ideas. 

For researchers in mathematics education and in computer-supported 
collaborative learning, the arbitrariness of signifieds is a more significant point about 
Saussure’s observation concerning the arbitrariness of signs. The reason is that the 
conceptual material that a person (or a small group of people) lexicalizes—for 
example, with pencil and paper, with text in a chat window or with drawn objects on 
a shared, digital workspace—indicates to what that user attends, her insight into 
material reality that is external or internal to her mind. The inscriptions of 
individuals working online in a small group or team provide observers—who must 
interpret meanings constituted in the inscriptions—evidence of individual and 
collective thinking. The small group’s inscriptions present ideas it chooses to 
lexicalize or symbolize. By analyzing the unfolding and use of inscriptions, 
researchers can understand how participants constitute their mathematical ideas, 
reasoning and heuristics, the meanings they attribute to their inscriptions, and how 
their inscriptions influence emergent meanings. As Speiser, Walter & Maher (2003) 
underscore, what counts as mathematical in analyzing inscriptions is not the 
inscription itself, which are “tools or artifacts, but rather how the students have 
chosen to work” (p. 22, original emphasis) with their inscriptions. In the specific case 
of this study, in an online environment that offers resources for individuals to 
collaborate, what work they interactively accomplish with their inscriptions reveals 
their ideas, heuristics and reasoning. 

Although some of this conceptual framework derives from psychological theories 
focused on individual cognition, we have tried to show how it essentially involves 
group and social dimensions. Moreover, it can be interpreted in group-cognitive 
terms applied to small groups as the creative agents of problem-solving efforts. As 
will be seen in the following section, the study in this chapter looked at the 
interactions of a pair of dyads, rather than a small group of individuals, so the active 
cognizing subjects were themselves cognizing groups. 

Method 
The data come from a class of undergraduate teacher candidates for positions in 

urban schools who are enrolled in a semester course—“Mathematics and 
Instructional Technology”—whose theme is the use of digital technologies for the 
teaching of mathematics in elementary schools. This data differs from the PoW-wow 
and Spring Fest data in many of the other chapters of this volume in that it comes 
from a college classroom context where the chat was part of a larger curriculum 
(compare Chapters 23 and 24). The second author taught this course, which was 
developed by the first author. During a particular class session, students worked on 
an open-ended problem, the Pizza Problem, interacting in chat-room teams of four 
through the online, collaborative VMT environment. When students enter their 
assigned chat room, they are presented the problem shown in Figure 13-1. 



 
The Pizza Problem 

A local pizza shop has asked us to help them keep track of pizza sales. Their 
standard “plain” pizza contains cheese with tomato sauce. A customer can then 
select from the following toppings to add to the whole plain pizza: peppers, 
sausage, mushrooms, bacon, and pepperoni. 

How many different choices for pizza does a customer have? 

List all the possible different selections. Find a way to convince each other that 
you have accounted for all possibilities. 

Figure 13-1. The pizza problem. 

We chose this mathematical problem for three reasons: (1) it relates to the course 
module, which concerned number and algebra, (2) its context is familiar to students 
from urban and suburban communities and (3) mathematically it affords different 
solution approaches, ranging from simple listing procedures to more advanced 
methods involving combinatorial analysis. 

Epistemologically, we view learning or knowledge creation as a process of 
conceptual change whereby individuals and groups of individuals construct new 
understandings of reality. Through social interactions, learners engaged with 
mathematics seek meaning and search for patterns, relationships and dynamics 
linking relationships among objects and events of their experiential world. 

Our data sources are the mathematical problem and the persistent computer log of 
the chat-room interactions from the dual-interaction spaces that the VMT 
environment provides. To investigate the online, problem-solving actions of learners 
so as to understand how they build mathematical ideas, heuristics and reasoning, we 
code for instances in the data of their discursive attention to any of four markers of 
mathematical elements: objects, relations among objects, dynamics linking different 
relations and heuristics (Gattegno, 1988; Powell, 2003). In their chat text and 
whiteboard inscriptions, participants either communicate affirmations or 
interrogatives about these mathematical elements. We attend to eight different 
critical events that provide insight into learners’ general mathematical behavior. We 
use both inductive and deductive codes to make sense of the data. The matrix in 
Table 13-1 contains deductive codes we used to flag these critical events in the chat 
text and whiteboard inscriptions. We also coded the data for emergent themes as 
related to our research questions. These include ones about interactional behaviors 
(II for participant initiating an interaction) and about reasoning (RC for reasoning by 
cases and CV for controlling variable). We will provide an example of how we 
coded a version of our data in Table 13-2. 

Table 13-1. Matrix of event types.  

Subject and type 
of utterance or 
inscription 

Objects 
Relations 
among 
objects 

Dynamics 
linking 
different 

Heuristics 



relations 

Affirmations AO AR AD AH 

Interrogatives IO IR ID IH 

 
It is possible that an interaction receives multiple codes. We analyze the 

mathematical ideas and forms of reasoning that learners produce working 
interactively in dyads in a chat room, tracing the development of their ideas and 
reasoning patterns over the course of the problem-solving session. 

We grouped students into teams as they arrived in the classroom. Each team 
consisted of four students and was assigned to a chat room. In one virtual chat room, 
students were grouped in dyads, each dyad at one computer. In the other chat room, 
three students shared a computer and one student was alone at a computer. 

For this case study, we analyze data from one chat room, the one involving two 
dyads of students. After reviewing data of both chat rooms, using the VMT 
Replayer, we chose this dataset, realizing that given its paucity of chat text 
(compared to the wealth of whiteboard inscriptions) this chat would provide a 
particularly interesting analytic challenge. In what follows, we refer to the two 
students in each dyad collectively, using an abbreviation of the screen name of the 
one individual of the dyad who signed into the chat room. We refer to the first dyad 
as Silvestre; the participants are Sonia and Lyndsey, and they used Sonia’s screen 
name, SOSilvestre, in the chat room. We refer to the second dyad as Suzyn; the 
participants are Susan and Komal, and they used Susan’s screen name, suzyn17, in 
the chat room. In this report of our case study, although we are speaking of two 
dyads of students, to simplify things, we will refer to each dyad in the female 
singular as Silvestre and Suzyn for the sake of simplicity in our narrative. Although 
the dyads were co-located, they were asked to interact only through the chat room, 
pretending that they were located at distant sites. 

In analyzing our data, we realized that the data for this particular study provided 
an analytic challenge that had to be overcome to make sense of the chat room 
interaction of the participants. Specifically, the participants hardly interacted in the 
chat frame of VMT and used the whiteboard almost exclusively. This meant that we 
had to follow the evolution of their inscriptions on the whiteboard to understand the 
emergence of their mathematical ideas and reasoning as they solved the Pizza 
Problem. To analyze the evolution of the whiteboard inscriptions, we adapted a 
video-data analytic technique used for qualitative investigations into the 
development of learners’ mathematical ideas and reasoning (Powell, Francisco & 
Maher, 2003). This approach allows us to view our replayed data much as we would 
a video recording, through four recursive stages. 

Our first analytic move was to view attentively the data in the VMT Replayer 
several times at various speeds to familiarize ourselves with the real-time sequence 
of whiteboard actions and chat text postings. Afterwards, we discussed our sense of 
the data amongst ourselves. Also, as part of a professional development program for 



teacher candidates of secondary mathematics, we engaged undergraduate 
mathematics students in viewing and discussing the data.1 

After these initial viewings of the data, our second analytic move was to step 
carefully through the data with the VMT Replayer to create an objective description 
of actions that transpired in the chat and whiteboard spaces. We created these 
descriptions for each five-minute interval.  

Following the descriptions, our third move was to code the data deductively and 
inductively, while also writing analytic, interpretative notes of the problem solving 
and other interactive accomplishments occurring in the session. For the deductive 
codes, we used the markers of attention to mathematical elements indicated in Table 
13-1. For the inductive coding, we inquired into the heuristics and lines of reasoning 
evident in the data as well as to how the participants manage affordances and 
constraints of the virtual environment. We present the results of our coding in the 
next section of this report. In Table 13-2, we present an example of a description, 
interpretation and coding of three intervals of the chat-room actions, each less than a 
minute long, in three respective columns. In the three intervals (rows of the table) 
Silvestre contributes to Suzyn’s solution, and then Suzyn subsequently critiques this 
addition and induces Silvestre to make further changes. In the interpretation column, 
for each interval, we include rationale for our coding of a particular chunk of data. 
The letters, EC, which stand for “explanation of code,” precedes these rationales. 

Table 13-2. Time interval description. 

Example of 
time-interval 
description, 
interpretation, 
and coding of 
chat room 
(chat text and 
whiteboard 
inscriptions) 
data 
12:50:02 – 
12:50:16 

SOSilvestre creates an 
ellipse filled with the 
color red below the 
ellipse containing the 
textbox containing 
“M/B/R.” Within this 
red ellipse, 
SOSilvestre creates a 
textbox and types 
“P/S/R.” 

SOSilvestre creates an ellipse on suzyn17’s side, 
containing a textbox listing a pizza with pepper 
and two other toppings, presumably because 
SOSilvestre is done with her work, and wants to 
help out suzyn17. SOSilvestre seems to color the 
pizza red to have more fun with the problem. This 
seems to be the second attempt to collaborate since 
suzyn17 wrote “Plain Pizza” into the chat window. 
EC: (AO) SOSilvestre creates a pizza containing 
peppers, sausages, and pepperoni as toppings on 
Suzyn17’s side of the whiteboard 
EC: (AR) By creating a pizza for Suzyn17, 
SOSilvestre engages in a relation among the 
objects on Suzyn17’s side of the whiteboard. 
EC: (II) By creating a pizza for Suzyn17, 
SOSilvestre essentially initiates an interaction with 
Suzyn17, although the “interaction” here is not 
verbal. 

AO, 
AR, 
II 

12:56:24 – 
12:56:49 

Suzyn17 types into the 
chat window “WHO 
COLORED MY PIZZA?” 

EC: (AO) SOSilvestre creates a pizza with peppers 
as the only topping on Suzyn17’s side of the 
whiteboard. She then deletes this pizza. 

AO, 
AR, 
II 

                                                 
1 These students are teacher candidates for teaching high school mathematics in economically 

impoverished, urban school districts and recipients of Robert Noyce scholarships, sponsored by the 
US National Science Foundation and administered through a joint project of Rutgers University, New 
Jersey Institute of Technology, the Newark Public Schools and the Newark Museum. 



SOSilvestre types “i 
did I did”. SOSilvestre 
types “pizza red 
right?” SOSilvestre 
types “lol”. 

EC: (AR) By creating an additional pizza on 
Suzyn17’s side of the whiteboard, SOSilvestre 
engages in a relation among the objects on 
Suzyn17’s side. 
EC: (II) By asking “WHO COLORED MY PIZZA?” in 
the chat window, Suzyn17 attempts to initiate an 
interaction with SOSilvestre in the chat window 
around the pizza that SOSilvestre has drawn for 
Suzyn17. 

12:57:08 – 
12:57:43 

SOSilvestre adjusts 
the size of the ellipse 
containing the textbox 
containing “S/M/B/R”. 
suzyn17 types 
“WHERE’S THE 
CHEESE?” 
SOSilvestre colors the 
textbox containing 
“P/S/R” yellow. 
SOSilvestre types 
“there it is”. 

EC: (AO) SOSilvestre colors yellow the peppers, 
sausages, and pepperoni pizza on suzyn17’s side. 

AO 

 
Our third analytic move proceeded from our interpretations and EC rationales. We 

chunk the data by reorganizing them into specific categories based on the deductive 
and inductive codes. This allowed us further to understand the actions the team takes 
to make sense of the problem and the sequence of subsequent actions the participants 
perform to present and refine their solutions. In this stage, we also create a story line, 
deciding how the data informs our research question and what other interpretive 
frames the data suggest. The fourth stage of our analytic process was to compose a 
narrative, the report that you are reading. 

Our trajectory of analytic moves is far more recursive than the linear description 
we have just provided. For instance, we refined and corrected the description as we 
coded and composed interpretations of chunks of data. In some instances, deductive 
and inductive coding occurred almost simultaneously.  

Results 
With regards to our inquiry into the cognition of the team of participants, our 

investigation concerns two guiding questions: (1) How do learners interactively build 
(externally represented) mathematical meanings by collaborating in small groups, 
using a computer-mediated communication system? (2) In the process, what 
mathematical ideas, heuristics and reasoning do they develop? These are overarching 
questions of our research program. The data that we analyze here represents a small, 
preliminary case study. We present the results along several dimensions: interaction, 
heuristics, mathematical ideas, mathematical reasoning. Afterward, we discuss issues 
that emerge from our results and conclude with implications of our case study.  

The data of this case surprised us in that the team communicates sparingly with 
chat text and mainly through whiteboard postings. In our experience, most teams use 



the chat space to a much greater extent than this team does. Consequently, our 
analysis of the mathematical ideas and reasoning that the students engaged is not 
primarily based on their textual communication, but rather mainly on an examination 
of the evolution of their inscriptive whiteboard interactions. 

Interaction 

The student participants worked in dyads and the two dyads, as a team, interacted 
through the VMT system using two interaction spaces, the chat and the whiteboard 
frames. The dyads used the chat room to work through the problem, with one student 
of each dyad controlling the mouse and keyboard. The two dyads interacted with 
each other for the vast majority of the time through inscriptive postings on the 
whiteboard. In the nearly two hours of interaction, the students rarely used the chat 
frame to communicate with the other dyad.  

Our analyses of the data reveal how participants use the affordances of the VMT 
environment, how they managed constraints they encountered in it, and what 
mathematical ideas, heuristics and lines of reasoning are evident in their 
collaborative interactions. The initial work of the online group can be read as 
establishing its bearings. These include how to work within the affordances and 
constraints of the VMT environment, how to manage the shared workspace and how 
to represent the object with which they will work. 

Interactive Initiation of Inscriptive Phases 

The two dyads of participants, collaborating in a single chat room, develop 
inscriptions or, more specifically, discursive objects or artifacts that serve to 
simultaneously represent and beget their mathematical ideas and reasoning as they 
build solutions to the problem. As Sfard (2000) notes, “mathematical discourse and 
its objects are mutually constitutive” (p. 47, original emphasis). While building their 
solutions, the development of discursive objects occurs in what we discern as phases.  

Phase 1 is initiated when the dyad of participants, Silvestre, experiments with 
drawing ellipses, which seem to be analogous to pizza pies. The participant dyad, 
Suzyn, then also experiments with drawing ellipses. 

Phase 2 entails labeling ellipses. Suzyn types “Plain Pizza” in the chat frame and 
uses the reference tool to link this chat statement with an ellipse on the whiteboard. 
Afterward, Silvestre creates a textbox in an ellipse and types “plain T & C,” establishing 
that it perhaps is more convenient to indicate a pizza and its topping such as a plain 
tomato and cheese pizza with a textbox superimposed onto an ellipse rather than 
linking a chat statement with an element—an ellipse—drawn on the whiteboard. 
With this action, Silvestre appears to offer an implicit proposal. Both labeling 
approaches seem to be cumbersome for the participants, and in the next phase, each 
dyad modifies their approach.  

In phase 3, apparently influenced by Silvestre’s use of a textbox superimposed 
onto an ellipse, Suzyn incorporates this technique into her representation. Each 
ellipse that Suzyn creates is labeled with a textbox and represents a specific pizza 



with particular toppings. Suzyn employs this iconic representation for most of the 
remaining time in which she works. By this point, Silvestre and Suzyn type on 
separate parts of the whiteboard. Silvestre uses the left side while Suzyn uses the 
right side. 

In their modified representations, each dyad uses the symbol, P. However, what 
does P represent, peppers or pepperoni? Silvestre settles the question by creating a 
key in which she indicates what letter represents what topping: P for peppers, S for 
sausage, M for mushroom, B for Bacon and R for pepperoni. In a different way, 
Suzyn also announces what P stands for. She creates a textbox, types “PEPPERS” into 
it and lines up in a column under this heading her three pizzas that contain P: P/B, 
P/S and P/M. Instead of an ellipse representing a class of pizzas, each ellipse 
represents a different pizza, differentiated from the others by its topping. These 
objects or pizzas are also similar to each other in that each contains two toppings, 
one of which is P, indicating that Suzyn is engaged with relations among objects. 
This pattern is indicative of thinking about grouping different possible pizzas by 
cases. In this instance, the case is two-topping pizzas with each including P as a 
topping. Suzyn employs this iconic representation for most of the remaining time in 
which she works (see Figure 13-2). 

While Suzyn modified her representation, also in phase 3, Silvestre changes her 
notational scheme and develops a symbolic inscription. To indicate the mathematical 
objects with which she is working, she types P/S, P/M, P/S and P/R into a single textbox 
superimposed on an ellipse. Now, a single circular ellipse is not a single pizza but 
represents a class of pizzas. Her notation’s structure appears to be the following: a 
single pizza has two toppings and the toppings on a pizza are separated with slashes. 
Her inscription also indicates a relation among the objects with which she is 
engaged; namely, each object is a two-topping pizza with P as one of its toppings. 
Moreover, this pattern is suggestive of a strategy by which she may intend to list 
different possible pizzas. In this instance, it is grouping different, possible pizzas by 
cases. In this case, it is two-topping pizzas with P as one of the two toppings (see 
Figure 13-2). 

 

 

Figure 13-2. Screenshot of phase 3. 



Silvestre further modifies her notational scheme by removing forward slashes. 
Instead of using P/M or P/S to represent pizzas with peppers and mushrooms or pizzas 
with peppers and sausages, respectively, Silvestre uses PM and PS to represent these 
pizzas. In addition, she expands upon her representation and uses it to designate 
pizzas with more than two toppings. For instance, a pizza with sausages, bacon and 
pepperoni is represented by SBR. 

In phase 4, Suzyn finally seems to adopt Silvestre’s notational inscription to 
display her way of reasoning about a solution to the problem. Suzyn develops a 
symbolic inscription. To display her solution, she moves Silvestre’s inscriptions to 
the bottom of the whiteboard (see Figure 13-3, bottom center). Placing each case 
within a textbox, Suzyn lists and enumerates pizzas containing certain numbers of 
“combinations.” She lists one pizza with “0 Combinations” or no toppings, five pizzas 
with “1 Combination” or one topping, ten pizzas with “Two Combinations” or two 
toppings, ten pizzas with “Three Combinations” or three toppings, five pizzas with “Four 
Combinations” or four toppings and one pizza with “Five Combinations” or five toppings. 
Like Silvestre, Suzyn uses combinations of letters as the objects with which she 
exhibits her thinking about different possible pizza pies and relationships among 
these possibilities, but groups her pizzas according to total number of toppings as 
opposed to common toppings (see Figure 13-3, textbox on left). 

 

Figure 13-3. Screenshot of phase 4. 



Representing Objects and Engaging with Relations among Objects 

As we have seen, the groups develop two different representations for the objects 
with which they develop mathematical ideas and reasoning. The dyad designated by 
Suzyn initially uses an iconic inscription for each of their pizzas. It consists of an 
ellipse formed into a circle and a textbox with letters. The letters P, S, M, B and R are 
toppings and combinations of them are placed in a textbox atop an ellipse. Suzyn 
uses the two inscriptions—ellipse and a non-empty textbox—to represent a particular 
pizza pie. 

Different from Suzyn’s iconic representation, Silvestre develops a symbolic 
inscription. She uses combinations of letters as the objects with which she exhibits 
her thinking about different possible pizza pies and relationships among these 
possibilities. For instance, P, S, M, B and R stand for objects or pizza toppings and 
combinations of these letters such as M, PS or SBR designate different possible pizzas. 
In her semiotic system, Silvestre uses a letter or combination of letters to represent 
both particular toppings and pizza pies with particular toppings. That is, P can stand 
for one of the available toppings (peppers) or a one-topping pizza (of peppers). 
Unlike Suzyn’s inscriptive system, where two distinct types of inscriptions represent 
toppings and pizzas with toppings, Silvestre’s symbols play dual roles. Later Suzyn 
will appreciate the economy of this semiotic system and she will shift her notational 
usage. 

Interestingly, although at the start of the group’s problem-solving session 
Silvestre initiated constructing ellipses on the whiteboard and used textboxes to label 
an ellipse—such as when she created a “plain T & C” pizza—the chore or 
cumbersomeness of drawing and labeling within the whiteboard may have 
contributed to her development of another, more convenient representation. Drawing 
elliptical shapes and creating textboxes on the shared workspace are affordances of 
the system, which at the same time represent a constraint because of mechanical or 
motor difficulties involved in creating and coordinating these objects. This constraint 
may have impelled Silvestre to find a less representational, more symbolic and 
therefore computationally more powerful inscription. 

With her inscriptive objects, Silvestre engages with relations among their objects. 
Just as Silvestre and Suzyn developed different representations, they also engage 
with different relations among the objects or pizzas. Suzyn indicates relations among 
her objects spatially by locating pizzas that contain a particular, common topping, 
like peppers, under a column head by the name of the common topping. The column 
headed by “Peppers” has four pizzas each containing peppers with one different other 
topping and one pizza with just peppers as its topping; the column headed by 
“Sausage” has three pizzas each containing sausage with one different other topping 
and one pizza with just sausages as the topping; the column headed by “Mushroom” 
has two pizzas each containing mushrooms with one different other topping and one 
pizza with just mushrooms as the topping; the column headed by “Bacon” has one 
pizza containing bacon with one different other topping and one pizza with just 
bacon as the topping; the column headed by “Pepperoni” has one pizza with just 
peppers as the topping. Each successive column had one less pizza than the one 



before it because it does not include the topping used in the previous column. Suzyn 
seems to realize this before labeling her pizzas since, as she went along, she drew 
just the right number of ellipses under each column heading. 

Silvestre presents her perception of relationships among objects, the different 
possible pizzas. In turn, she considers each available topping and, in separate 
textboxes, lists all possible pizzas that contain it as a topping (see the five textboxes 
at the bottom of Figure 13-3). That is, first, she lists all possible different pizzas 
containing P or peppers; second, all possible, different pizzas containing S or 
sausage, except for those that contain P since they were already accounted for; third, 
all possible, different pizzas containing M or mushroom, except for those that contain 
P or S since they have already been accounted for; fourth all possible, different pizzas 
containing B, except for those that contain P, S or M since they have already been 
represented, and finally, all possible, different pizzas containing R, except for those 
that contain P, S, M or B since they have already been indicated.  

Engaging with Dynamics Linking Different Relations 

The work of Suzyn and Silvestre evidence their engagement with dynamics 
linking different relations or, in other words, relations among relations. Silvestre 
listed, for example, pizzas containing peppers, P, in a textbox. This listing by itself is 
a relation. Ultimately, she arranged the possible pizzas containing in turn each of the 
five available toppings into separate textboxes. The textbox containing pepper pizzas 
is to the left of the textbox containing sausage pizzas, which is to the left of the 
textbox containing mushroom pizzas, which is to the left of the textbox containing 
bacon pizzas, which is to the left of the textbox containing the pepperoni pizza. Her 
inscriptive and spatial work indicates that Silvestre views each listing as distinct 
from the others. In this sense, she is also engaged with dynamics linking—by 
distinction—different relations. 

In an analogous manner, Suzyn signals her engagement with relations among 
relations. She lists different possible pizzas by considering cases. In the long, 
rectangular textbox on the left in Figure 13-3, Suzyn lists in turn all possible pizzas 
with 0 toppings, 1 topping, 2 toppings, 3 toppings, 4 toppings and 5 toppings. Each 
case indexes a relation and is distinct from the others. Her listing indicates Suzyn’s 
engagement with dynamics linking different relations. 

Each of the participants—Suzyn and Silvestre—considers different dynamics 
linking different relations. The structure of their thinking in this regard reveals 
different perceptions of the underlying mathematical structure of the problem. We 
elaborate on this in the discussion section below. 

Inventing Heuristics 

Both Suzyn and Silvestre seemed to invent heuristics based on the resources 
within the VMT environment. For example, both started off by drawing ellipses 
using the ellipse tool. It seems that Suzyn then realized, after using the referencing 
tool to label an ellipse as a plain pizza, that the textbox could be better used for this 



purpose. Thus, for the early part of her work session, Suzyn used ellipses labeled by 
textboxes to represent her pizzas. Her solution representation is iconic. 

For Silvestre, the drawing of ellipses may have seemed too cumbersome. Silvestre 
used a symbolic method of representation. Specifically, she used the textbox tool to 
list pizza possibilities. Within separate textboxes, Silvestre listed pizzas containing 
peppers as a topping, pizzas containing sausage as a topping that have not already 
been listed, and so on. 

Suzyn’s evolution of heuristic use from iconic representation to symbolic 
representation may have been influenced by Silvestre’s use of symbolic 
representation in her solution method. That Silvestre was able to list more pizzas 
with her method than Suzyn was able to list with her iconic representation may have 
influenced Suzyn to use a symbolic representation to complete her solution. 
Interestingly, although both Suzyn and Silvestre end up with symbolic 
representations, their solutions are quite different. 

Reasoning about Possibilities 

The work of the team and of each of the two dyads in the team exemplifies 
particular types of mathematical analysis: reasoning by cases and reasoning by 
controlling variables. The teams of Silvestre and Suzyn both begin their work by 
indicating possible pizzas with two toppings in which one is P, peppers. On the one 
hand, this line of reasoning continues to dominate the work of Suzyn throughout the 
session. Suzyn reasons by cases by counting and listing pizzas with one topping, 
pizzas with two toppings, pizzas with three toppings and pizzas with four toppings. 
Suzyn continues reasoning by cases by listing additional combinations in her 
textbox. She lists the combination of no toppings, a plain pizza and the combination 
of all toppings, a pizza containing peppers, sausages, mushrooms, bacon and 
pepperoni. 

 On the other hand, Silvestre shifts from reasoning by cases to reasoning by 
controlling for variables. When Silvestre creates a textbox and types in four pizzas 
containing peppers as a topping with the combinations of peppers and sausage, 
peppers and mushroom, peppers and sausage, and peppers and pepperoni, this is the 
first instance of reasoning by cases. Later on, Silvestre controls for the variable P, as 
she lists one-, two-, three- and four-topping pizzas containing peppers. Silvestre then 
creates a textbox and lists pizzas containing sausages, sausages and two other 
toppings, and sausages and three other toppings.  

Within each textbox, Silvestre also engages in reasoning by cases. She adjusts her 
list of pizzas with peppers so that one-, two-, three- and four-topping pizzas all 
appear in separate columns. Before the adjustment, pizzas with three and four 
toppings appeared in the same column. In a similar fashion, Silvestre arranges her 
listing of pizzas containing sausage, not containing peppers, by grouping the 
possibilities according to the number of toppings. 



Discussion 
Our aims were to investigate—based on data gathered from chat-room 

participants’ mathematical problem solving within the VMT environment—how to 
study chat-room participants’ development of mathematical ideas and lines of 
reasoning, and what ideas and reasoning are evident in the data. In the following 
sections, we discuss the significance of the results in the light of our theoretical and 
cognitive perspectives. 

Discourse Creating Objects and Objects Shaping Discourse 

To explore, develop and communicate their mathematical ideas, the four 
students—acting as dyads Suzyn and Silvestre—interactively unfold an inscriptive 
system composed of objects as well as implicit relations among the objects and 
relations among the relations. After entering their assigned chat room in the VMT 
environment and after reading the statement of the Pizza Problem, the students 
experiment drawing circular ellipses and initially default to pictorial or iconic 
representations of pizzas. Suzyn types “Plain Pizza” and uses the reference tool to link 
this chat statement to an ellipse on the whiteboard. Immediately afterward, Silvestre 
creates a textbox superimposed on an ellipse and types “plain T & C,” which we 
understand to mean a plain pizza of tomato and cheese. In subsequent actions of 
creating objects on the whiteboard, Suzyn incorporates Silvestre’s technique of 
drawing an ellipse and labeling it by typing into a textbox superimposed on the 
ellipse. Each ellipse that Suzyn creates is labeled with a textbox and represents a 
specific pizza with particular toppings, with each of the toppings separated by a 
slash. Each ellipse also represents a different pizza, differentiated from the others by 
its indicated toppings. Both Suzyn and Silvestre use ellipses in their representations 
of pizzas perhaps because representing pizzas in a pictorial manner makes the 
problem more personal, less abstract and easier to work with in early stages of their 
thinking. Their initial discourse in the chat and whiteboard spaces concerns 
experiments with designs for the objects on which they will work. 

After Silvestre experiments with using an ellipse labeled with a textbox as a way 
of indicating pizzas, she changes from an iconic to a symbolic representational 
scheme. The chore of drawing and labeling within the VMT system may have 
contributed to her development of a less pictorial, more symbolic, and therefore, 
computationally more powerful inscription. 

To indicate the mathematical objects with which they are engaged, Silvestre’s 
initial symbolic inscription involved a list of letters and slashes—P/S, P/M, P/S and 
P/R—typed into a single textbox superimposed on an ellipse, indicating pizzas and 
their toppings. The structure of the notation appears to be the following: each group 
of two letters with a slash between them is a single pizza with two toppings with 
each topping indicated by a letter. The ellipse is not a single pizza but indexes a class 
of pizzas and a relation among them. The relation that it indexes seems to be all two-
topping pizzas containing peppers, P. This pattern may suggest how Silvestre intends 
to list different possible pizzas, distinguishing classes of pizzas by means of ellipses. 



There is an interaction between Silvestre’s objects and her problem-solving 
strategy. The objects push her discourse in new directions. Silvestre modifies and 
extends her inscriptive and problem-solving strategy. She uses combinations of 
letters without slashes as objects to represent different possible pizza pies and 
relationships among these possibilities. For instance, P, S, M, B and R stand for the five 
different pizza toppings and combinations of these letters such as M, PS or SBR 
designate different possible pizzas. Silvestre uses a letter or combination of letters to 
represent both particular toppings and pizza pies with particular toppings. That is, P 
can stand for one of the available toppings (peppers) or a one-topping pizza (of 
peppers). 

Silvestre’s development of a more cogent and computationally powerful 
inscription parallels shifts in her discourse. That is, this notational scheme allows her 
to not only illustrate pizzas with different combinations of topping but also to engage 
with patterns and relationships of these combinations and to use these patterns and 
relationships to engage with and illustrate relations among the relations. In her final 
solution, she presents in five different textboxes different classes of pizzas: first, all 
different possible pizzas containing peppers, P; second, all pizzas containing sausage, 
S, but not containing peppers; and so on. Examining these textboxes makes 
Silvestre’s strategy for listing pizzas evident. In the textbox with pizzas containing 
peppers, a one-topping pizza containing peppers is listed first. Then, for each two-
topping combination containing peppers, peppers is listed first, followed by single-
topping combinations of sausages, mushrooms, bacon, or pepperoni, listed in this 
order. A similar systematic strategy is followed for pizzas containing other toppings. 
Note that the order in which pizzas containing certain toppings are presented (pizzas 
containing peppers, pizzas containing sausages, pizzas containing mushrooms, pizzas 
containing bacon, and finally pizzas containing pepperoni) is the same as the order of 
the toppings presented in each textbox (Figure 13-4). 

 

Figure 13-4. Screenshot of Silvestre’s final solution. 



The content of the textboxes displays particular relations among the pizzas and 
the different textboxes distinguish relations among these relations. This inscriptive 
system that Silvestre develops illustrates the theoretical point about the signs learners 
choose and how their signs provide an analytic window into the signified field of 
conceptual material or ideas with which they engage (Powell, 2003). 

The team’s initial and later work to create and use their mathematical objects 
exemplifies another theoretical point. Sfard (2000) theorizes, “mathematical 
discourse and its objects are mutually constitutive” (p. 47, original emphasis). 
Through their discourse, the students in our data develop approaches to represent the 
objects on which they work in their solution space. They consider and modify an 
initial proposal for how to represent their objects—pizzas with particular toppings. 
Each dyad elects to work with a different representation, one iconic and the other 
symbolic. The emergence to these inscriptive systems usher into the discourse two 
directions of work toward a solution of the problem. Indeed, the process of designing 
objects shapes their respective solution space. Silvestre’s symbolic representation 
supports her reasoning about the different possible pizzas as collections in which 
they control variables, holding P (peppers) fixed and listing first all possible pizzas 
containing P. Though Suzyn’s iconic representation supports her reasoning—cases 
defined by the number of toppings—it proves cumbersome and inefficient. Toward 
the end of the problem-solving session, she abandons it in favor of Silvestre’s 
symbolic representation. The iconic representation communicates the physicality of a 
pizza—an ellipse—and in a textbox displays its toppings. The symbolic 
representation—concatenated letters—simultaneously lists the toppings of a pizza 
and stands for the pizza itself. The meaning of the objects and the meaning presented 
through the objects are constituted through their use. From their discursive 
interactions in the two interactive spaces of VMT, the teams implicitly agree that 
what distinguish pizzas from one another are their toppings. Therefore, it is sufficient 
to list their toppings without having to draw pictures of pizzas. Through their 
discursive interaction the team constitutes the objects and, in turn, their objects shape 
and advance the discourse. This point is further evidenced in the next section.  

Dyads Influencing Dyads 

When Suzyn and Silvestre enter the VMT space, they both begin by drawing 
ellipses. Suzyn uses a chat posting of “Plain pizza” to link to one of her ellipses as a 
way of labeling it as a plain pizza. Silvestre takes one of her ellipses and places a 
textbox inside, and labels it “plain T&C.” Suzyn seems to be influenced by this and 
subsequently uses this notational scheme to develop her solution. 

While both dyads use letters to represent the pizza toppings, the letter P can 
represent either peppers or pepperoni. Silvestre settles this problem by creating a key 
in which she indicates what letter represents what topping: P for peppers, S for 
sausage, M for mushroom, B for Bacon and R for pepperoni. In a different way, Suzyn 
also announces what P stands for. She creates a textbox, types “PEPPERS” into it, and 
lines up in a column under this heading her three pizzas that contain P. After 
Silvestre creates this key, Suzyn appears to adopt Silvestre’s notation. 



Unlike Suzyn’s inscriptive system, where two distinct types of inscriptions 
represent toppings and pizzas with toppings, Silvestre’s symbols play dual roles. The 
economy of this semiotic system is appreciated by Suzyn and she shifts her 
notational usage to a symbolic notational scheme.  

Throughout the session, both Suzyn and Silvestre influenced each other in various 
ways. In the beginning of the session, Silvestre was influenced by Suzyn to use 
ellipses to represent pizzas, but used textboxes instead of linked chat statements to 
label the ellipse. Later on, Silvestre switched to a symbolic representation of pizzas, 
perhaps seeing that the iconic representation was not suitable for generating large 
numbers of possibilities. Near the end, that Silvestre was able to list more pizzas 
with her method than Suzyn was able to list with her iconic representation may have 
influenced Suzyn to use a symbolic representation to complete her solution. 

Within the session, through mutual influences the gradually shared semiotic 
conventions were established as a system of shared meaning underlying the on-going 
social practices or methods jointly available to the two dyadic participants. 

Dyadic Reasoning  

Interestingly, Suzyn and Silvestre engage similar reasoning processes but with 
different inscriptive results. They both reason by cases. Moreover, within each case, 
they reason by controlling variables. However, their distinct inscriptive results 
emerge from their differentiated cases. In her final symbolic inscription, Suzyn lists 
her pizzas by separating them into cases, according to the number of toppings and, 
within each case, controls variables. Under 0 topping pizzas, she lists a plain pizza 
(tomato sauce and cheese). Under 1-topping pizzas, she lists a pizza containing only 
peppers as a topping, then a pizza containing only bacon, followed by a pizza 
containing only pepperoni, then a pizza containing only mushrooms, and finally a 
pizza containing only sausages. Under 2-topping pizzas, she lists all pizzas 
containing peppers and one other topping; then all pizzas containing bacon and 
another topping different from peppers; then lists all pizzas containing pepperoni and 
another topping different from peppers or bacon; followed by all pizzas containing 
mushrooms and another topping different from peppers, bacon, or pepperoni. At this 
point, she has exhausted all of the possibilities for 2-topping pizzas. She continues to 
engage reasoning by cases and by controlling variables to list all her 3-, 4-, and 5-
topping pizzas. 

As for Silvestre, she lists her pizzas by separating them into cases of pizzas 
containing peppers, pizzas containing sausages but excluding those previously listed, 
pizzas containing mushrooms but excluding those previously listed, pizzas 
containing bacon but excluding those previously listed, and pizzas containing 
pepperoni but excluding those previously listed. Within each case, she controls 
variables by indicating the common topping first and followed methodically varying 
other toppings. For example, for pizzas containing peppers, she lists the following 
ones: P, PS, PM, PB, PR, PSM, PSB, PSR, PMB, PMR, PSMB, PSMR, PMBR, PSBR. The peppers 
topping is always listed first, followed by variations containing sausage, mushroom, 
bacon, and pepperoni always listed in that order. Afterward, she methodically lists all 



possible pizzas containing sausage and other toppings, not including in the list those 
pizzas containing sausage that were already indicated in the previous list of pizzas 
containing peppers. Working in this fashion, each of her cases is separated in a 
different textbox and within each she controls variables. Since Silvestre’s cases are 
distinct from those of Suzyn, her inscriptive result also differs. 

By the end of the session, Suzyn’s thinking has progressed to the point where 
Silvestre was earlier. Both are now thinking beyond the idea of just generating 
different pizzas, but rather of producing combinations of toppings to generate 
patterns, and to use these patterns to ensure that they have accounted for all 
combinations. 

Viewed as individual actors, Suzyn and Silvestre (who are themselves actually 
each a dyad of human students) are seen to influence each other while still 
maintaining different perspectives on their shared problem. Viewed as an interacting 
small group, they develop shared meanings, a joint problem space, common methods 
and accepted practices. These elements of group cognition can be seen to emerge and 
evolve out of the situation or activity context including the driving problem, the 
technical environment and the unfolding interaction. 

Mathematical Significance  

As a small group, Suzyn and Silvestre built sophisticated cognitive structures that 
can provide insight into Pascal’s triangle and combinatorial analyses. From an 
analytical viewpoint, we find these structures to be significant since they establish 
cognitive foundations upon which students can build and extend their understanding 
of binomial structures. In Figure 13-4, Silvestre’s representation of her solution 
nearly mimics successive rows of Pascal’s triangle. Her listing of pizzas with 
peppers almost represents the fourth row of Pascal’s triangle (see Figure 13-5). First, 
she lists a pizza with peppers, pizzas with peppers and one other topping, pizzas with 
peppers and two other toppings, pizzas with peppers and three other toppings and a 
pizza with peppers and four other toppings. The number of pizzas in each of these 
sub-categories is the same as one of the numbers in the fourth row of Pascal’s 
triangle: 1 4 6 4 1. That is, there is one pizza with peppers only, four pizzas with 
peppers and one other topping, six pizzas with peppers and two other toppings, four 
pizzas with peppers and three other toppings and one pizza with peppers and four 
other toppings. 

 
Zeroth row            1 
First row         1  1 
Second row       1  2  1 
Third row     1  3  3  1 
Fourth row   1  4  6  4  1 
Fifth row 1  5 10 10 5 1 

Figure 13-5. The initial rows of Pascal’s triangle. 

Combinatorially speaking, for the case of all possible pizzas containing peppers, 
since each pizza must have peppers as a topping, there are four remaining toppings 



from which to choose. Using combinatorial notation, n
r






, which means the number 

of ways to select r items from a collection of n of them, the following are the 
possible pizzas containing peppers: 

• Pizzas with peppers only 

€ 

=
4
0
 

 
 
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 
 = 1, since out of four choices of toppings none are 

chosen, 

• Pizzas with peppers and one other topping 

€ 

=
4
1
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 = 4 , since out of four choices of 

topping one is chosen, 

• Pizzas with peppers and two other toppings 
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4
2
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 = 6 , since out of four choices of 

topping two are chosen, 

• Pizzas with peppers and three other toppings 
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4
3
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 = 4 , since out of four choices 

of topping three are chosen and 

• Pizzas with peppers and four other toppings 

€ 

=
4
4
 

 
 
 

 
 = 1, since out of four choices of 

topping four are chosen. 
In Silvestre’s representation of all possible pizzas with peppers as a topping, she 

misses the pizza with peppers, bacon and pepperoni, and instead lists it as a pizza 
with bacon, peppers and pepperoni under her listing of pizzas with bacon as a 
topping (see Figure 13-2). She also places within her listing of pizzas with peppers as 
a topping a plain pizza. Aside from these two inconsistencies, Silvestre’s listing of 
pizzas with sausages as a topping, mushrooms as a topping, bacon as a topping and 
pepperoni as a topping represent the third, second, first and zeroth rows of Pascal’s 
triangle, respectively, and can also be described in a combinatorial fashion as above. 
Finally, Silvestre’s solution method represents the sum of all rows of Pascal’s 
triangle up to the fifth row. 

In contrast to Silvestre’s solution method, which represents the sums of each of 
the first five rows of Pascal’s triangle, Suzyn’s solution method mimics the sixth row 
of Pascal’s triangle: 1 5 10 10 5 1. Within a textbox, she first lists at the top a key 
containing abbreviations for each of the toppings, and then underneath in successive 
rows she lists pizzas under the following headings: 
• 0 Combination = 1 Possibility (one possible pizza with no toppings) 
• 1 Combination = 5 Possibilities  
• 2 Combinations = 10 Possibilities  
• 3 Combinations = 10 Possibilities  
• 4 Combinations = 5 Possibilities and 
• 5 Combinations = 1 Possibility 

In our analysis of the data, we did not find evidence in the students’ discourse that 
they were aware of Pascal’s triangle or of the mathematics of binomial structures. 
Nevertheless, if the student sessions were to be continued over a longer period of 
time, students could be engaged with other problems that would provide them with 



opportunities to construct mathematical ideas and frameworks that underlie the rich 
concepts and structures of Pascal’s arithmetic triangle (Edwards, 1987). In a 
mathematics classroom or during virtual mathematics problem-solving sessions, to 
promote the construction of ideas and framework, a curriculum unit could be built 
around a sequence of open-ended, well-designed mathematics tasks that engage 
teams of students with binomial structures in varied contexts. To make information 
on Pascal’s triangle available to students as they are solving these tasks, we may do 
one of several things: Either an online moderator can direct students while they are 
in VMT to websites featuring discussions of Pascal’s triangle, or a time-sensitive 
Wiki on Pascal’s triangle may be made available to students only after they have 
completed a certain problem within a sequence of related problems. 

In our study, the sophisticated cognitive structure that the two dyads built and 
made available on the shared whiteboard for each other emerged from interactional 
work. After the first ten minutes of nearly 120 minutes of work, the two dyads of 
students started to work as two separate units. In this sense, the two dyads were 
themselves like two entities of a single dyad. In the psychological literature on 
problem solving, it is commonly argued that when a dyad is engaged in solving a 
problem one student typically begins to solve the problem while the other listens to 
the ensuing solution attempt (e.g., Shirouzu, Miyake & Masukawa, 2002). The 
speaker may be talking out loud while solving a problem while her partner listens. 
Analogously, one of our dyads presenting her solution on the whiteboard is like a 
speaker talking aloud about their problem-solving process. However, the data of this 
case study shows that instead both entities of the dyad simultaneously “talked” aloud 
their ensuing solution and that the non-ephemeral nature of their communication 
medium allowed each entity to “hear” the other while “talking” aloud their problem-
solving attempt. An affordance of the virtual environment may have allowed for this 
simultaneous solving of the problem by both entities of the chat group. In a 
traditional dyad, it would be difficult for both members to solve a problem out loud 
while paying attention to each other as well as to their own work, because two 
people cannot speak at once face to face. Moreover, it is difficult to think in one way 
when a different way of thinking is being described aloud. In this virtual 
environment, perhaps because the workspace is shared, relatively large, equally 
visible to both dyads and communication is non-aural, it is easier for each dyad to go 
about problem solving individually while still paying attention to what the other 
dyad was doing. 

As we have attempted to demonstrate, while solving the Pizza Problem, the 
interactional and collaborative work of Silvestre and Suzyn establishes important 
mathematical bases for their future action. These include ways of reasoning 
mathematically as well as particular combinatorial structures. Stahl (2006) suggests 
that “[t]he being-there-together in a chat is temporally structured as a world of future 
possible activities with shared meaningful objects” (p. 115). The interactive work of 
the four students in the chat room that we have analyzed leaves them with tools for 
future collaboration. Interactively, they have built a discursive world of 
mathematical entities with which to engage particular combinatorial ideas and lines 
of reasoning. Silvestre and Suzyn experienced interacting together in the chat room, 



and this leaves them prepared for further collaborative mathematical actions with 
sets of shared, meaningful mathematical objects, relations among the objects and 
dynamics linking relations. 
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