
Chapter 19

Helping Agents in VMT

Yue Cui, Rohit Kumar, Sourish Chaudhuri, Gahgene Gweon & Carolyn
Penstein Rosé
YCui@cs.cmu.edu, RohitK@andrew.cmu.edu, Sourish@cmu.edu, GKG@cmu.edu,
CPRose@cs.cmu.edu

Abstract: In this chapter we describe ongoing work towards enabling dynamic support
for collaborative learning in the Virtual Math Teams (VMT) environment
using state-of-the-art language technologies such as text classification and
dialogue agents. The key research goal of our long-term partnership is to
experimentally learn broadly applicable principles for supporting effective
collaborative problem solving by using these technologies to elicit behavior
such as reflection, help seeking, and help provision, which are productive
for student learning in diverse groups. Our work so far has yielded an
integrated system that makes technology for dynamic collaborative learning
support—which has proved effective in earlier lab and classroom studies—
available for experimental use within the “wild” VMT environment.

Keywords: Dialog agents, dynamic support, helping behavior, cognitive tutors, Tag-
Helper, Basilica

Introduction
We are in the beginning stages of a long-term partnership, the goal of which is to

enhance participation and learning in the Virtual Math Teams (VMT) online math
service by designing, developing, implementing, testing, refining and deploying
computer-based tools to support facilitation and collaborative learning in this lightly-
staffed service. This project brings together the Drexel VMT Project—with the Math
Forum’s long track record and infrastructure for hosting and facilitating collaborative
math problem-solving experiences in “the wild”—and the Carnegie Mellon team—

with expertise developing effective, state-of-the-art language technologies—to
pursue the potential to create a new, more dynamic form of computer-supported
collaborative learning than what has been possible in VMT until now. In addition to
complementary technologies provided within the scope of this strategic partnership,
insights from complementary methodologies come together in a powerful way. In
this chapter, we describe our progress to date, both in terms of technological
development and new insights gained from a “full circle” methodology, which takes
insights from naturalistic observations, confirmed and refined through experimental
lab studies, implemented within a technical infrastructure, and finally provided for
future cycles combining naturalistic observations in the wild and refinement in
controlled settings.

In the VMT environment, collaboration is currently supported with a combination
of script-based support and human moderation. The script-based structuring is stage-
based. Students typically work in small groups on the same problem over three or
four sessions. In the first session, they work out solutions to the problem. In between
the first and second sessions, students receive feedback on their solutions from
human moderators. In the second session, students discuss the feedback they
received on their respective solutions and step carefully through alternative correct
solutions. In that session and the subsequent session, they also discuss additional
possible ways of looking at the problem including variations on that problem in order
to take a step back and learn larger mathematics principles that apply to classes of
problems rather than individual problems. Although the problem provides the
opportunity to investigate multiple possible solutions and to engage in deep
mathematical reasoning, VMT researchers have found from analysis of chat logs
where students have worked together that students tend to jump to finding one
solution that works rather than taking the opportunity to search for alternative
solutions. Prior work comparing students working with well defined versus non-
specific problem-solving goals supports the belief that students can benefit from
exploring multiple solutions, when those alternative solution paths provide
opportunities to learn different concepts (see Chapter 10 for an example of re-use of
problem-solving methods). Thus, there is reason to believe this typical pattern of
narrowing to a single solution prematurely is counter-productive for learning. To
address this and other issues, the moderator plays an important role in stimulating
conversation between students, encouraging knowledge sharing and probing beyond
a single acceptable solution.

While support from human moderators is extremely valuable to students, it is a
rare commodity. Currently, only a tiny fraction of the approximately one million
visitors to the Math Forum site each month have the opportunity to benefit from this
expert-facilitated group-learning experience. Thus, our long-term goal is to greatly
expand this capacity by using technology to support collaboration in this
environment in two main ways, both of which leverage our prior research on
automatic collaborative process analysis (Donmez et al., 2005; Rosé et al., 2008;
Wang & Rosé, 2007). The first approach is to deploy conversational agents to offer
fully automated support. As in our previous investigations in other collaborative
environments, agents in VMT would participate in the student conversation.

Automatic analysis of the collaborative-learning process can be used to detect when
a conversational agent should intervene in a conversation. Another direction we plan
to pursue is to use the automatic analysis of the conversation to construct reports that
inform human facilitators of which groups are most in need of support (Joshi &
Rosé, 2007; Kang, 2008; Rosé et al., 2007). In this chapter, we focus primarily on
the first approach.

The key research goal in the long term is to optimize a design and implementation
for dynamic feedback in support of collaborative problem solving that will maximize
the pedagogical effectiveness of the collaboration by eliciting behavior that is
productive for student learning in collaborative contexts, including but not limited to
the VMT environment. Towards this end, we have conducted a series of
investigations across multiple age groups and multiple domains related to the design,
implementation and evaluation of conversational agents that play a supportive role in
collaborative-learning interactions (Chaudhuri et al., 2008; Gweon et al., 2006;
Kumar, Rosé et al., 2007; Wang et al., 2007). We are working towards supporting
collaboration in a dynamic way that is responsive to what is happening in the
collaboration rather than operating in a “one size fits all” fashion, which is the case
with state-of-the-art static forms of support such as assigning students to roles
(Strijbos, 2004), providing prompts during collaboration (Weinberger, 2003),
designing structured interfaces (e.g., with buttons associated with typical
“conversation openings”) (Baker & Lund, 1997), guiding learners with instructions
to structure their collaboration (Webb & Farivar, 1999), or even various forms of
training in collaboration (Rummel, Spada & Hauser, 2006). Our investigations thus
far have been in lab and classroom studies. The far less controlled VMT environment
provides a more challenging environment in which to test the generality and
robustness of our prior findings, while at the same time providing a context where
successful technology for supporting collaborative-learning interactions can reach a
broad spectrum of students in need of support in their mathematics education.

While there has been much work evaluating a wide range of conversational agents
for supporting individual learning with technology (Kumar et al., 2006; Rosé et al.,
2001; Rosé & Torrey, 2005; Rosé & VanLehn, 2005; VanLehn et al., 2007), a similar
effort in collaborative contexts is just beginning. We have observed in our recent
research that working collaboratively may change the way students conceptualize a
learning task and similarly how they respond to feedback (Wang & Rosé, 2007;
Wang et al., 2007). For example, Wang & Rosé found that students approached an
idea-generation task more broadly when they worked in pairs rather than as
individuals, in particular behaving in a way that indicated more of a fluid boundary
between tasks, whereas students who worked individually focused more narrowly on
one task at a time. Correspondingly, students who worked in pairs with feedback
showed even more evidence of a connection between tasks, where individuals with
feedback during idea generation simply intensified their success within their original
narrow focus. This difference in how students responded to feedback when they
worked individually and in pairs tells us that before we will be able to effectively
support collaborative learning—with tutorial dialogue technology (Gweon et al.,
2005; Jordan et al., 2007; Rosé et al., 2001) in particular as well as intelligent

tutoring technology more generally—it will be essential to re-evaluate established
approaches that have proven effective for individual learning now in collaborative
contexts, and we have begun to engage in such comparisons (Gweon et al., 2007;
Kumar, Rosé et al., 2007).

Our initial investigations using dialogue agent technology as collaborative
learning support have been tremendously successful (Chaudhuri et al., 2008; Kumar,
Gweon et al., 2007; Wang et al., 2007), suggesting that the presence of dialogue
agents in the conversation increase learning of human participants as much (Kumar,
Gweon et al., 2007) or more (Wang et al., 2007) than the human collaborators do.

 We begin this chapter by describing our research methodology, which benefits
from a combination of qualitative investigations conducted by Drexel’s VMT team
with insights from experimental studies and quantitative discourse analysis from our
Carnegie Mellon team. Next, we describe our investigations of helping behavior,
which are still in progress, but which have already suggested directions for dynamic
support in the VMT environment. We will then describe our current integration
between the technology for dynamic collaborative-learning support and the VMT
environment, which we have now piloted with college-aged students in both math
and thermodynamics (Chaudhuri et al., 2008). We will conclude with plans for future
work.

Full-Circle Methodology: Complementary Insights from
Complementary Contexts

In recent years, the CSCL community has grown in its openness to mixed
methods and has made progress towards bridging a wide spectrum of methodological
approaches from qualitative, ethnographic-style investigations to highly controlled,
highly quantitative approaches. In that spirit, we leverage a broad spectrum of
methodologies, ranging from high-internal-validity studies in the lab and in the
classroom, with pre/post-test designs, to high-external-validity investigations in the
“wild” VMT environment, where the same analyses of observable collaborative
behavior are possible even with naturalistic, non-controlled observation, but
experimental designs are less practical and must be administered with caution
because of the way imposing too much control may interfere with the natural
working of the community.

As an illustration of our full-circle, mixed-methods approach, we offer an
example of how our informal collaboration to date is already yielding synergistic
findings. This investigation provided the data for the quantitative investigation of
math helping behavior discussed later in the chapter. Because our ultimate goal is to
achieve success in the “wild” VMT environment, we begin with insights gained from
an ethnomethodological analysis of chat logs collected in the VMT environment (see
Chapter 5). In one notable chat session, the VMT team observed a group of students
that was successful at solving problems collaboratively that none of them were
capable of solving alone. On close inspection of the chat logs, a student who at first
appeared as “the class clown” emerged as a tone setter in the analysis, putting his

team mates at ease, and allowing them to forge ahead as a group to solve a
particularly challenging problem. From this analysis, a hypothesis emerges that
interventions that inject humor in a collaborative-learning setting may act as a
“social lubricant,” and thereby may increase success in collaborative problem
solving. The Carnegie Mellon team has tested this hypothesis experimentally in a
classroom study in which students worked in pairs in a collaborative problem-
solving environment that shares some common simple functionality with the VMT
environment. We refer to this study as the Social Prompts study (Kumar, Rosé et al.,
2007).

Experimental Infrastructure

The Social Prompts study was run as a classroom study with middle school
students learning fraction arithmetic using a simple collaborative problem-solving
environment (see Figure 19-1), which was a precursor to the integrated version of the
VMT environment discussed later in the chapter. Although this study took place in a
school computer lab, students worked in pairs, communicating only through text
chat.

Figure 19-1. Early environment for collaborative math problem solving.

The interface in Figure 19-1 has two panels. On the left is a chat interface, which
allows students to interact with each other as well as with conversational agents that

are triggered at different occasions during the problem-solving session to offer
support to the collaborating pairs. The panel on the right is the problem-solving
interface, which allows students to work collaboratively on a given problem. In this
case the interface in the right panel was built using the Cognitive Tutor Authoring
Tools (CTAT) (Aleven, McLaren & Koedinger, 2006). The problem-solving panel
has a problem layout and a hint button. The hint button triggers support built into the
environment. The hint messages are displayed in the chat window. Both panels of the
interface maintain a common state across both the participants at all times, creating a
shared experience for the student dyad. All actions performed by a student in either
of the panels are immediately communicated and reflected on the interface of the
other student. This integrated shared experience of problem solving is unique to this
interface in contrast to systems used in our earlier experiments where VMT was used
to manage the shared-problem-solving interaction (Gweon et al., 2007; Gweon et al.,
2006).

Experiment and Results

The purpose of the experiment was to test the facilitative effect of off-task, social
conversation on collaborative problem solving. Our hypothesis was that in a
condition in which this form of social interaction was encouraged, students would
work together better, offering each other more help, and thus benefiting more from
the collaboration.

The experimental procedure extended over 4 school days, with the experimental
manipulation taking place during days two (i.e., lab day 1) and three (i.e., lab day 2).
The fourth day of the experiment was separated from the third day of the experiment
by a weekend. Teams remained stable throughout the experiment. The students were
instructed that the teams would compete for a small prize at the end of the study
based on how much they learned and how many problems they were able to solve
together correctly. The second and third days were lab days in which the students
worked with their partner. Each lab session lasted for 45 minutes. At the end of each
lab period, the students took a short quiz, which lasted about 10 minutes. At the end
of the second lab day only, students additionally filled out a short questionnaire to
assess their perceived help received, perceived help offered, and perceived benefit of
the collaboration. On the fourth experiment day, which was two days after the last
lab day, they took a posttest, which was used for the purpose of assessing retention
of the material.

In the experimental condition of the Social Prompts study, before a problem is
displayed in the shared problem-solving space, a tutor agent first asks each student
what we refer to as a social question. For example, the agent may first ask student 1
“Student 1, if you had to choose between a long flight or a long car ride, which seems more
uncomfortable?” The student indicates that a car ride would be preferable. Then the
tutor agent may ask, “Student 2, which are more entertaining—books or movies?” The student
may respond that books are more amusing. These two pieces of information are then
used to fill in slots in a template that is used to generate personalized wording for the
math problem. In particular, the resulting story problem says, “Jan packed several books

to amuse herself on a long car ride to visit her grandma. After 1/5 of the trip, she had already finished 6/8
of the books she brought. How many times more books should she have brought than what she
packed?” The lighthearted nature of the word problem was meant to inject a note of
humor into the conversation, and possibly spark off-task discussion, because the
focus of the questions was on personal preferences of the students rather than strictly
on math. In order to control for content and presentation of the math content across
conditions, we used exactly the same problem templates in the control condition, but
rather than presenting the social questions to the students, we randomly selected
answers to the social questions “behind the scenes” Thus, students in both conditions
worked through the same distribution of problems.

The results of the Social Prompts study provided some evidence in support of the
hypothesis that emerged from observations in the VMT environment. We began our
analysis by investigating the socially-oriented variables measured by means of a
questionnaire, which we designed as a subjective assessment of perceived problem
solving competence of self and partner, perceived benefit, perceived help received
and perceived help provided. Each of 8 questions included on the questionnaire
consisted of a statement such as “The other student depended on me for information or help to
solve problems.” and a 5 point scale ranging from 1 (labeled “strongly disagree”) to 5
(“strongly agree”). For perceived benefit and perceived confidence, scores were high
on average (about 4 out of 5) in both conditions, with no significant difference
between conditions. However, with perceived help offered as well as perceived help
received, there were significant differences between conditions (see Table 19-1).
Students in the experimental condition rated themselves and their partner
significantly higher on offering help than in the control condition. Interestingly, there
is more evidence of requesting help in the control-condition chat logs. However,
these requests were frequently ignored.

Table 19-1. Questionnaire results.

 Control Experimental
Perceived Self Competence 4.2 (.56) 4.1 (.23)
Perceived Partner Competence 4.3 (.62) 3.9 (.49)

Perceived Benefit of Collaboration 4.5 (.74) 4.4 (.70)
Perceived Help Received 1.8 (1.3) 3.3 (.69)
Perceived Help Provided 1.8 (1.1) 3.1 (1.1)

The learning-gains analysis is consistent with the pattern observed on the

questionnaire, and offers some weak evidence in favor of the experimental condition
on learning. The trend was consistently in favor of the experimental condition across
tests and across units of material on the test. The strongest effect we see is on lab day
2 where students in the experimental condition gained marginally more on
interpretation problems (p=0.06, effect size 0.55 standard deviations). The student
chat logs contain rich data on how the collaborative problem-solving process
transpired.

We also conducted a qualitative analysis of the conversational data recorded in
the chat logs in order to illuminate the findings from the test and questionnaire data
discussed above. Overall, we observed that students were more competitive in the
control condition. Insults like “looser,” “you stink” or “stupid” occurred frequently in
the control condition, but never in the experimental condition. Instead, in the
experimental condition we observe light-hearted teasing. Furthermore, students
referred to themselves as a group more frequently in the experimental condition.
More details of the analysis of the chat logs are presented in the next section.

The full-circle methodology that we follow begins with ethnographic observations
from interactions in the VMT environment. These observations lead to hypotheses
that can be tested in high-internal-validity environments such as lab and classroom
studies. These studies help us to confirm causal connections between actions and
subsequent effects, between which we observe a correlation in our earlier
ethnographic analyses. Discovered causal connections can then form the basis for the
design of full-scale interventions, which can be prototyped and tested in the VMT
environment. These investigations can eventually serve both as a test of the
generality and robustness of findings from the lab and classroom studies as well as a
source of new insights, forming the basis for new hypotheses that can be tested in
further cycles—although only a large-scale controlled study evaluating the full
intervention, such as we plan in the future, can provide definitive evidence of its
effectiveness.

Analysis of Helping Behavior
Many of the benefits of collaborative learning are experienced through the

discussions that students have in these contexts, so much of our work is focused on
the dynamics of those conversations. For decades, a wide range of social and
cognitive benefits have been extensively documented in connection with
collaborative learning, which is mediated by conversational processes. The exchange
of help is one valuable aspect of this process. Because of the importance of these
conversational processes, in our evaluation of the design of conversational agents for
supporting collaborative learning we must consider both the learning that occurs
when individuals interact with these agents in the midst of the collaboration (i.e.,
learning from individual direct interaction with the agents) and learning that is
mediated by the effects of the agents on the group interaction between the students.
A formal analysis of helping behavior in our collected chat logs allows us to do that.

Theoretical Foundation

The help that students offer one another in the midst of collaborative learning
ranges from unintentional help provided as a byproduct of other processes, to help
offered with full intentionality. Beginning with unintentional help, based on Piaget’s
(1985) foundational work, one can argue that a major cognitive benefit of
collaborative learning is that when students bring differing perspectives to a
problem-solving situation, the interaction triggers consideration of questions and

ideas that might not have occurred to the students individually. This stimulus could
help them to identify gaps in their understanding, which they would then be in a
position to address. This type of cognitive conflict has the potential to lead to
productive shifts in student understanding.

Related to this notion of cognitive conflict, other benefits of collaborative learning
focus on the consequences of engaging in intentional teaching behaviors, especially
the articulation of deep explanations (Webb, Nemer & Zuniga, 2002). Other work in
the CSCL community demonstrates that interventions that enhance argumentative
knowledge construction, in which students are encouraged to make their differences
in opinion explicit in collaborative discussion, enhances the acquisition of multi-
perspective knowledge (Fischer et al., 2002). Furthermore, based on Vygotsky’s
seminal work and his concept of the zone of proximal development (Vygotsky,
1930/1978), we know that when students who have different strengths and
weaknesses work together, they can provide scaffolding for each other that allows
them to solve problems that would be just beyond their reach if they were working
alone. This makes it possible for them to participate in a wider range of hands-on
learning experiences.

While the cognitive benefits of collaborative learning are valuable, they are not
the only positive effect of collaborative learning. In fact the social benefits of
collaborative learning may be even more valuable for fostering a productive
classroom environment. These are obviously strongly related to the social interaction
between students, which could be greatly enhanced by conversational interactions.
By encouraging a sense of positive interdependence among students—where
students see themselves both as offering help and as receiving needed help from
others—collaborative learning has been used as a form of social engineering for
addressing conflict in multi-ethnic, inner-city classrooms (Slavin, 1980). Some
examples of documented social benefits of successful collaborative learning
interactions include: increases in acceptance and liking of others from different
backgrounds, identification with and commitment to participation in a learning
community, improvements in motivation and aptitude towards long-term learning.

The social benefits of collaborative learning are closely connected with the
Vygotskian foundations of collaborative learning because the positive
interdependence that is fostered through collaborative learning is related to the
exchange of support, or scaffolding, that students offer each other. Our own research
has affirmed this connection. For example, in a previous study where we used a
dynamic support intervention to encourage helping behavior, we observed anecdotal
evidence that the manipulation increased helping behavior, and we observed a
significant positive learning effect in the condition where we observed the increase
in helping behavior (Gweon et al., 2006). In a subsequent study where we
manipulated the availability of help from the problem-solving environment, we
observed a significant positive correlation between the frequency of help offered and
learning by the help provider (Gweon et al., 2006). In the same study, we observed
that students perceived more benefit and learned more in the condition where they
offered more help. Below we demonstrate through an analysis of the chat logs from
the Social Prompts study introduced earlier that the presence of social dialogue

agents that show an interest in the personal preferences of participants not only
created a more positive atmosphere between students and increased the perception of
both help offered and help received, but also increased the concentration of actual
verbal help exchanged per problem. As noted, the manipulation resulted in a
marginal increase in learning on the second lab day of the study. All of these studies
offer evidence of the value of helping behavior, consistent with what would be
predicted by the theoretical foundations for collaborative learning put forward by
Piaget, Vygotsky and others.

Simple Coding Scheme for Helping Behavior

In order to investigate whether students in the experimental condition actually
offered each other more help in the Social Prompts study, we coded the chat logs
from each lab day with a coding scheme developed in our previous work (Gweon et
al., 2007). In order to make the sometimes cryptic statements of students clearer
during our analysis, and also to provide an objective reference point for segmenting
the dialogue into meaningful units, we merged the log-file data recorded by the
problem-solving interface with the chat logs recorded from the chat window using
time stamps for alignment. We then segmented the conversational data into episodes
using the log files from the tutoring software as an objective guide. Each episode was
meant to include conversation pertaining to a single problem-solving step as reified
by the structured problem-solving interface. Between problems, conversation related
to a single social prompt counted as one episode, and conversation related to one
cognitive support agent also counted as one episode. All entries in the log files
recorded by the tutoring software refer to the step in the action it is associated with
as well as any hints or other feedback provided by the tutoring software. Note that
steps where no conversation occurred did not have any episode associated with them
in our analysis.

The simple coding scheme consisted of five mutually exclusive categories: (R)
Requests Received, (P) Help Provision, (N) No Response, (C) Can’t Help and (D)
Deny Help. Along with the “other” category, which indicates that a contribution does
not contain either help seeking or help providing behavior, these codes can be taken
to be exhaustive.

The first type of conversational action we coded was Request Received (R). Help
requests are conversational contributions such as asking for help on problem solving,
asking an explicit question about the domain content, and expressing confusion or
frustration. Not all questions were coded as Requests Received. For example, there
were frequent episodes where students discussed coordination issues such as whether
the other student wanted to go next, or if it was their turn, and these questions were
not coded as help requests for the purpose of addressing our research questions.

Adjacent to each coded Request Received, in the column associated with the
partner student, we coded four types of responses. Help Provisions (P) are actions
that attempt to provide support or substantive information related to the other
student’s request, regardless of the quality of this information. These actions are
attempts to move toward resolving the problem. Can’t Help statements (C) are

responses where the other student indicates that he or she cannot provide help
because he or she doesn’t know what to do either. Deny Help (D) statements are
where the other student responds in such a way that it is clear that he or she knows
the answer but refuses to stop to help the other student. For example, “Ask [the
teacher], I understand it” or “Hold on [and the other student proceeds to solve the
problem and never comes back to answer the original question]” are type D
statements. And finally, No Responses (N) are statements where the other student
ignores help requests completely. Each chat log was coded separately by two coders,
who then met and resolved all conflicts. Note that often where Requests Received
are not met with a verbal Help Provision, the students are still able to collaboratively
or independently work out an answer to their questions, at least at the level of
moving forward with the problem solving. In some cases, however, the students
seem to move forward through guessing.

Log 19-1 shows two example episodes where a Request Received is met with a
Help Provision:

Log 19-1.

Student 1: What operation do we do?
<Student 2 tries multiplication and gets negative feedback from the problem-solving environment>
<Student 2 tries divide and gets positive feedback from the problem-solving environment>
Student 2: We divide. Now look at the problem, what is the other fraction we must divide by?

Student 1: What do we put on top of the fraction?
Student 2: Did you find a common denominator?
<Student 1 correctly finds the common denominator>

In Log 19-2 are two example episodes where a Request Received is met with a

Can’t Help response. In the second example, the student who requested help
eventually figured out what to do on his own.

Log 19-2.

Student 1: Why 16?
Student 2: I don’t know.

Student 1: I need help.
Student 2: Same
Student 1: 23/2
Student 2: What’s 23/2?
Student 1: 11.5

Log 19-3 provides two example episodes where a Request Received is met with a

Deny Help response. In the first case, the student who asked for help was able to
figure out the answer by guessing.

Log 19-3.

Student 1: I don’t get it
Student 2: hold on

<Then Student 1 tried something and got negative feedback from the problem-solving environment>
<Finally Student 1 tried something else, which was correct, and got positive feedback from the
problem-solving environment>

Student 1: I don’t know what to do
Student 2: click on the help button

Two example episodes where a Request Received is met with No Response are

given in Log 19-4. In both cases the students seem to find the answer by guessing.

Log 19-4.

Student 1: I don’t get it
<Student 2 tries something and gets negative feedback from the problem-solving environment>
<Student 2 tries something else and gets negative feedback from the problem-solving environment>
<Student 2 clicks on the help button>
<Student 1 tries something that is correct and gets positive feedback from the problem-solving
environment>

Student 1: ?
<Student 2 tries something and gets negative feedback from the environment>
<Student 1 tries something, which is correct, and gets positive feedback from the environment>

The results from our coding of the corpus are displayed in Table 19-2. First, we

see that there are a significantly larger total number of episodes on the transcripts
from the Experimental condition. Recall that all episodes contain some conversation.
Steps where no conversation occurred do not count in our total number of episodes.
The larger number of episodes in the Experimental condition is primarily due to the
fact that episodes in which social prompts were given to students only occurred in
the Experimental condition, and two of these occurred between every problem
solved during the Experimental condition.

Table 19-2. Results from corpus analysis.

 Experimental
(Day 1)

Experimental
(Day 2)

Control
(Day 1)

Control
(Day 2)

Total Episodes 47.1 (8.2) 61.3 (12.3) 33.8 (17.9) 49.1 (26.9)

Social Prompt Episodes 24.1 (9.9) 33.7 (16.2) 0 (0) 0 (0)

Solicited Help Episodes (P)
Unsolicited Help Episodes

.79 (1.6)
1.7 (2.1)

.36 (1.1)
3.2 (6.0)

1 (1.3)
2.1 (3.2)

1.4 (2.9)
1.9 (3.2)

Unanswered Help Requests
(C+R+N)

2.4 (2.7) 1.4 (1.9) 2.2 (1.9) 1.4 (1.4)

Non-Help Episodes 19.9 (5.6) 35.8(9.3) 30.6 (16.3) 46.3 (25.1)

Looking at the totals in Table 19-2, our finding regarding the average number of

Help Provisions was that—contrary to what we might suspect based on the
questionnaire data—there was no significant difference between conditions, although
there was a non-significant trend for fewer verbal Help Provisions to be given in the

Experimental condition. The number of Requests Received met with no verbal form
of help was not different between conditions. However, there were significantly
more non-help related conversational episodes in the control-condition transcripts.
Furthermore, there were significantly more help episodes per problem in the
Experimental condition F(1,15) = 16.8, p < .001, effect size 1 s.d. Thus, the students
in the control condition may have perceived less help behavior because there was a
lower proportion of helping behavior, both on a per problem basis (in terms of total
amount of help per problem) as well as on an overall basis (in terms of proportion of
conversational episodes altogether that were help related).

Ultimately it became clear to us that limiting our scope to verbal help was not
adequate. As we examined both the verbal and non-verbal behavior of students, we
began to see that sometimes where it appeared from the chat behavior that an explicit
help request went unanswered, we saw behavior from the other student in the
problem-solving logs that suggested that the student’s intention was indeed to offer
help, however not verbally. Thus, our recent work, discussed in the next section, has
focused on characterizing help more broadly. Ultimately, we believe our efforts to
monitor and support helping behavior in the VMT environment will need to account
for both verbal and non-verbal behavior of students (e.g., through the VMT’s
whiteboard).

Extended Coding Scheme for Verbal and Nonverbal Helping Behavior

We are at the beginning stages of developing a coding scheme that captures both
verbal and non-verbal helping behavior. This is a tricky analysis problem since from
the non-verbal problem solving behavior we see it is often difficult to distinguish a
case where a student is offering assistance non-verbally, from a case where a student
is simply taking over the problem solving, and moving ahead without the partner.

From the collaborative problem-solving environment discussed earlier, log-files
were generated that combined time-stamped records of each attempt to fill in a
problem-solving step, along with who contributed that step and whether the
contribution was correct or not, as well as time-stamped records of every
contribution to the chat interface. We used the problem-solving behavior as an
objective guide for segmenting the log-files into units for analysis. We used the
problem-solving step as our unit of analysis. So all of the attempts to fill in a step
counted together as one unit along with any chat contributions that were submitted
during that time. Because the step was our unit of analysis, rather than coding each
helping action as we had done in our earlier coding scheme, we coded each segment
for what was the most explicit helping behavior, if any, we observed for each
participant. Thus, at most we would assign one Request Received code and one Help
Provision code per student, per segment. In what follows, we will describe the multi-
step coding process.

The first step in the coding process is to mark for each step which student
eventually entered the correct answer. This is used in the process of interpreting non-
verbal help. We say that a non-verbal help request is initiated whenever the same
student has contributed two unsuccessful attempts for the same step. The first time

this condition is true within a step, the student who is responsible for contributing
that step is said to have non-verbally requested help by demonstrating a lack of
ability. A code is then assigned that indicates how that help request was resolved,
i.e., whether the student who initiated the help request was able to eventually
contribute the right answer for the step without any intervention, either verbally or
non-verbally from the other student, or whether the other student was the one who
contributed the correct answer for the step, or whether the first student eventually
contributed the right answer after receiving some form of help from his partner.

One interesting finding from this analysis was that between the experimental and
control conditions of the Social Prompt study there were no significant differences in
raw number of help requests, or number of help requests where the other student
completed the step. However, between the experimental and control conditions there
were marginally more cases in the experimental condition where a student requested
help, received help from his partner, and then was able to complete the step himself
using that help (p = .07).

Virtual Math Teams with Adaptive Support
In our recent work, we have integrated our technology for automatic analysis of

the collaborative-learning process with our technology for supporting conversational
interactions with computer agents into a single unified framework, which we refer to
as Basilica. Conceptually, this framework allows monitoring conversational
interactions as they unfold, which allows it to track behaviors such as argumentation,
helping and explanation. Based on this analysis, conversational agents that are
capable of engaging students in discussion on a variety of topics can be triggered.
The purpose of this integrated framework is to make it possible to easily integrate
these technologies with a wide range of collaborative environments. For example, we
have recently integrated Basilica with the massively multi-player on-line
environment called Second Life (Weusijana, Kumar & Rosé, 2008).

Example Interactions in the Integrated VMT-Basilica Environment

We have just begun to collect pilot data with the integrated VMT-Basilica
environment using the types of open-ended math problems that are characteristic of
prior investigations in the VMT environment. Here we describe our small pilot
investigation in the math domain. A larger, experimental study in the
thermodynamics domain is described elsewhere (Chaudhuri et al., 2008).

Figure 19-2 displays the interface for the integrated VMT-Basilica environment.
It is identical to the original VMT environment, except that chat agents can
participate along with a group of human students in the chat. (Note “Tutor” in the list
of Current users and as the second poster in Figure 19-2.) On the whiteboard is
displayed the problem statement the students are working on. Below it is a drawing
one of the students has pasted on in order to share it with his partner. The goal of the
exercise is for students to understand that they can use a binary search strategy to

solve the problem of finding a heavier weighted coin among a set of other coins that
all weigh the same as each other.

Figure 19-2. Integrated version of the VMT environment.

In Log 19-5, we see that the students first think together about a strategy for
approaching the problem.

Log 19-5.

Student2: i was thinking what if you weighted them all out
Student2: and then took an average
Student2: but i guess you cant do that
Student2: because we cant know the weight
Student1: i was thinking of weighing them all, then weigh one (and hope it's not fake XP)
Student2: haha

After a short time, the tutor agent jumps in with a hint that the students then take

up and use in their problem solving (see Log 19-6, from Figure 19-2).

Log 19-6.

Tutor: HINT: If you split a group of coins into half and they weigh equal, then that whole set doesn't
contain the fake coin. It must be in the other set from the previous weighing. This also tells you whether
the fake coin is heavier or lighter.
Student2: oh!
Student2: thanks tutor
Tutor: Solving this problem can be a lot of fun if you cooperate well together.
Student1: *bows in respect*
Student2: haha

Student 1 has worked out a solution based on the tutor’s hint and then pasted it

onto the whiteboard. This is indicated on Figure 19-2 with a small square in the chat
following Student 1’s “hm…” (see Log 19-5). When Student 2 clicks on this square,
an arrow appears that points to what Student 1 has pasted onto the whiteboard.
However, Student 2 is not able to fully understand Student 1’s drawing (see Log 19-
7).

Log 19-7.

Student2: but how does it tell you if its heavier or lighter
Student1: but how does that....
Student1: hm...
Student2: ok so that can reduce it to 6
Student2: sorry i dont know what that thing is
Student2: once we know its in one group of 6

After Student 2 has expressed confusion, Student 1 jumps in with a further

explanation of the hint that originally had come from the Tutor agent (Log 19-8).

Log 19-8.

Student1: hm...so you recommend...first splitting the whole thing into groups of 3
Student2: yeah
Student1: then weighing two groups of 3 against each other
Student1: if they're equal, we use this as a benchmark against another group

The students were then able to move on from there to solve the problem. In

addition to individual hints, the tutor agent is also able to engage students in multi-
turn directed lines of reasoning, as in our previous investigations (Chaudhuri et al.,
2008; Kumar, Gweon et al., 2007).

Technical Description: The Basilica Framework

Based on our experiences with designing and engineering collaborative-learning
systems that involve integrating the state of the art in text classification and
conversational-agent technology, we recognized the need for a framework that
facilitates such integration. In this section, we describe our continuing work to
develop such a framework. Initial specification of the desiderata of our framework
included reusability of component technologies, compatibility with other platforms,

and the ability to provide flexibility to system designers to select from a wide range
of existing components and then to synchronize, prioritize and coordinate them as
desired in a convenient way.

While we continue to make further improvements to the framework to better
achieve these specifications, in its current form the Basilica framework is an event-
driven framework that enables development of conversational agents by using two
basic components, referred to as Actors and Filters. These components communicate
using Events. The Actor component, as the name suggests, displays behavior. Filters,
on the other hand, observe behavior. Behavior and data are encapsulated into Events.
For example if an Actor component generates a text message to be shared by the
other participants in the conversational interface, it broadcasts a TextMessageEvent.
Similarly, if a human logs into the conversational interface, a LogInEvent is sent to
all relevant filters.

The Basilica framework implements a set of abstract software classes, which
correspond to components, events and other supporting elements of the framework
like channel independent communication, logging and process management. Along
with these abstract classes, the Basilica framework now has a growing set of reusable
Actors, Filters and Events that can be used to rapidly build custom conversational
agents.

Supporting procedural behavior in an event-based framework like Basilica brings
together two very different approaches of generating conversational behavior within
the same framework. With this integration, we can view the conversational task as a
space of graphs. Each graph represents a procedural behavior and graphs are
triggered by events. The traversal of each graph once it is triggered is guided by the
control strategy of the behavior associated with the graph. This has implications for
the amount of effort involved in developing conversational applications of very
different scales. In a procedural framework, the task may be represented by a simple
graph or a quite complex graph. However if the task is designed appropriately, by
using Basilica a complex graph can be divided into several smaller graphs, allowing
distributed development with fewer dependencies and higher possibility of reuse of
behavior. The event-driven approach adopted by Basilica has further advantages for
building multi-modal conversational applications. This is particularly relevant if the
different human participants engage in the conversation through different media like
text, speech, short message service (SMS), gesture, etc. The programmatic approach
to authoring taken by Basilica enables easier integration with devices and software
for which a conversational interface has been developed.

A Basilica component can be defined on the basis of the events it observes and
the operations it performs when it observes each of those events. These operations
may include updating its beliefs, accessing its resources and generating events.
Building a conversational agent under this framework is essentially an exercise in
instantiating the desired actors and filters from a library of reusable components and
establishing communication links, called Connections, between them. The exercise
involves ensuring that all components are well connected to receive events they
require. In some cases the exercise may involve creating new actors and/or filters to
generate or observe some new behavior.

Figure 19-3 shows the design of Basilica within the integrated VMT-Basilica
environment. Each Basilica component is represented by a polygon with three
sections. The bottom section is marked with an out-pointing arrow on its left side and
the text in that box is right aligned. The events generated by the component are listed
in this box. The middle section is marked with an in-pointing arrow on its right side
and text in this box is left aligned. The events received by the component are listed in
this box. The name of the component is written in the top section. The shape of the
top box determines the type of component it represents. An Actor component is
drawn as a parallelogram and a Filter component is drawn as a rectangle. An “x”
sign is placed in the corresponding box if a component does not receive or send any
event.

Figure 19-3. Configuration of Basilica.

In this integrated environment, the Basilica agent communicates with a VMT chat
room (maintained by the ConcertChat server) using the PresenceActor and the
ChannelFilter. The PresenceActor exhibits agent behavior like tutor turns, login and
logout in the chat room while the ChannelFilter observes similar behavior by the
students. All incoming text messages are encapsulated as TextMessageEvent and

routed to all Filters that need it through the CCTextFilter. On the output end, all
outgoing messages are spooled through the OutGoingMessageSpoolingFilter.

There are four specific behaviors exhibited by the agent. These behaviors are
distributed across four actors in the design. The PromptingActor prompts students at
different times to inform them about the time left and also to give them certain
motivating prompts at fixed time-points during the exercise. The HintingActor
presents hints to the students to help them cover concepts that they have not yet
discussed but which may be helpful in improving their design. The HintingActor
works with the HintingFilter, which continuously monitors the students’
conversation to evaluate which of the key concepts have been least discussed in the
student conversations. Depending on that, the HintingFilter triggers the HintingActor
to produce an appropriate hint at fixed time-points during the exercise. A hint is
produced only once, and it is not reused during the exercise for the same students.

The AttentionGrabbingActor and the TutoringActor work together along with the
AttentionGrabbingFilter, TutoringFilter and TurnTakingFilter to initiate and
complete the instructional dialog session. At fixed time intervals during the exercise,
the agent interacts with the students about certain concepts relevant for the exercise.
Before an instructional dialog begins, to grab the student’s attention, the tutor
produces an AttentionGrabbing prompt. An example of an AttentionGrabbing
prompt is “Now might be a good time for some reflection.” The strategy to produce an
AttentionGrabbing prompt is motivated from our past experience with building
conversational support in a collaborative-learning environment. Students tend not to
notice the tutor’s instructional turn in between their turns, and the tutor never gains
the floor in the conversation. We think that an AttentionGrabbing prompt may be
successful at getting the tutor the floor in a text-based conversational environment.

Current Directions
In this chapter we have described our vision for enhancing the quality of support

offered to students in the VMT environment. We began by discussing our mixed-
methods approach to studying this problem and iteratively developing an evidence-
based design. We have discussed our findings and continued explorations related to
helping behavior as well as describing the current integrated environment that we
have developed.

A major direction of our current work is to continue with our analysis of helping
behavior. Ultimately, we would like to use TagHelper tools (Rosé et al., 2008) to
automate this analysis, so that helping behavior in the VMT environment can be
tracked and supported.

References
Aleven, V., Sewall, J., McLaren, B. M., & Koedinger, K. R. (2006). Rapid authoring of

intelligent tutors for real-world and experimental use. Paper presented at the 6th IEEE

International Conference on Advanced Learning Technologies (ICALT 2006).
Proceedings pp. 847-851.

Baker, M., & Lund, K. (1997). Promoting reflective interactions in a CSCL environment.
Journal of Computer Assisted Learning, 13, 175-193.

Chaudhuri, S., Kumar, R., Joshi, M., Terrell, E., Higgs, F., Aleven, V., et al. (2008). It’s not
easy being green: Supporting collaborative “green design” learning. Paper presented at
the Intelligent Tutoring Systems (ITS ’08).

Donmez, P., Rose, C., Stegmann, K., Weinberger, A., & Fischer, F. (2005). Supporting
CSCL with automatic corpus analysis technology. Paper presented at the International
Conference of Computer Support for Collaborative Learning (CSCL 2005), Taipei,
Taiwan.

Fischer, F., Bruhn, J., Gräsel, C., & Mandl, H. (2002). Fostering collaborative knowledge
construction with visualization tools. Learning and Instruction. Special issue on
measurement challenges in collaborative learning research, 12, 213–232.

Gweon, G., Arguello, J., Pai, C., Carey, R., Zaiss, Z., & Rosé, C. P. (2005). Towards a
prototyping tool for behavior oriented authoring of conversational interfaces. Paper
presented at the ACL Workshop on Educational Applications of NLP.

Gweon, G., Rosé, C. P., Albright, E., & Cui, Y. (2007). Evaluating the effect of feedback
from a CSCL problem solving environment on learning, interaction, and perceived
interdependence. Paper presented at the CSCL 2007, Rutgers University.

Gweon, G., Rosé, C. P., Zaiss, Z., & Carey, R. (2006). Providing support for adaptive
scripting in an on-line collaborative learning environment. Paper presented at the CHI
06: ACM conference on human factors in computer systems.: ACM Press.

Jordan, P., Hall, B., Ringenberg, M., Cui, Y., & Rosé, C. P. (2007). Tools for authoring a
dialogue agent that participates in learning studies. Paper presented at the AIED 2007.

Joshi, M., & Rosé, C. P. (2007). Using transactivity in conversation summarization of
educational dialogue. Paper presented at the SLaTE Workshp on Speech and Language
Technology in Education.

Kang, M., Chaudhuri, S., Joshi, M., Rosé, C. P. (2008). Side : The summarization integrated
development environment. Paper presented at the Association for Computational
Linguistics.

Kumar, R., Gweon, G., Joshi, M., Cui, Y., & Rosé, C. P. (2007). Supporting students
working together on math with social dialogue. Paper presented at the SLaTE Workshop
on Speech and Language Technology in Education.

Kumar, R., Rosé, C. P., Aleven, V., Iglesias, A., & Robinson, A. (2006). Evaluating the
effectiveness of tutorial dialogue instruction in an exploratory learning context. Paper
presented at the Intelligent Tutoring Systems Conference.

Kumar, R., Rosé, C. P., Wang, Y. C., Joshi, M., & Robinson, A. (2007). Tutorial dialogue as
adaptive collaborative learning support. Paper presented at the AIED 2007.

Piaget, J. (1985). The equilibrium of cognitive structures: The central problem of intellectual
development: Chicago University Press.

Rosé, C., Wang, Y.-C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., et al. (2008).
Analyzing collaborative learning processes automatically: Exploiting the advances of
computational linguistics in CSCL. International Journal of Computer-Supported
Collaborative Learning (ijCSCL), 3(3), 237-272.

Rosé, C. P., Gweon, G., Arguello, J., Finger, S., Smailagic, A., & Siewiorek, D. (2007).
Towards an interactive assessment framework for engineering design learning. Paper
presented at the ASME 2007 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference.

Rosé, C. P., Jordan, P., Ringenberg, M., Siler, S., VanLehn, K., & Weinstein, A. (2001).
Interactive conceptual tutoring in Atlas-Andes. Paper presented at the AI in Education.

Rosé, C. P., & Torrey, C. (2005). Interactivity versus expectation: Eliciting learning
oriented behavior with tutorial dialogue systems. Paper presented at the Interact ‘05.

Rosé, C. P., & VanLehn, K. (2005). An evaluation of a hybrid language understanding
approach for robust selection of tutoring goals. International Journal of AI in Education,
15(4).

Rummel, N., Spada, H., & Hauser, S. (2006). Learning to collaborate in a computer-
mediated setting: Observing a model beats learning from being scripted. Paper presented
at the Seventh International Conference of the Learning Sciences (ICLS 2006),
Bloomsberg, IN: Lawrence Erlbaum Associates.

Slavin, R. (1980). Cooperative learning. Review of Educational Research, 50(2), 315-342.
Strijbos, J. W. (2004). The effect of roles on computer supported collaborative learning.

Unpublished Dissertation, Ph. D., Open Universiteit Nederland, Heerlen, the Netherlands.
VanLehn, K., Graesser, A., Jackson, G. T., Jordan, P., Olney, A., & Rosé, C. P. (2007).

Natural language tutoring: A comparison of human tutors, computer tutors, and text.
Cognitive Science, 31(1), 3-52.

Vygotsky, L. (1930/1978). Mind in society. Cambridge, MA: Harvard University Press.
Wang, H. C., & Rosé, C. P. (2007). Supporting collaborative idea generation: A closer look

using statistical process analysis techniques. Paper presented at the AIED 2007.
Wang, H. C., Rosé, C. P., Cui, Y., Chang, C. Y., Huang, C. C., & Li, T. Y. (2007). Thinking

hard together: The long and short of collaborative idea generation for scientific inquiry.
Paper presented at the CSCL 2007.

Webb, N., & Farivar, S. (1999). Developing productive group interaction. In O'Donnell &
King (Eds.), Cognitive perspectives on peer learning: Lawrence Erlbaum Associates.

Webb, N., Nemer, K., & Zuniga, S. (2002). Short circuits or superconductors? Effects of
group composition on high-achieving students’ science assessment performance.
American Educational Research Journal, 39(4), 943-989.

Weinberger, A. (2003). Scripts for computer-supported collaborative learning: Effects of
social and epistemic cooperation scripts on collaborative knowledge construction.
Unpublished Dissertation, Ph. D., University of Munich.

Weusijana, B. K., Kumar, R., & Rosé, C. P. (2008). Multitalker: Building conversational
agents in second life using basilica. Paper presented at the SLcc08: The Second Life
Community Convention, Tampa, FL.

