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Welcome 

These days, much student learning takes place in small “pods” of students working 
together. Often, they interact and communicate online. In addition, students engage 
in home-schooling, drawing upon online resources and media. 

Online and pod-based education opens new opportunities for highly motivating and 
effective approaches. However, success requires innovative and well-designed 
curriculum. The present “Dynamic Geometry Game for Pods” translates the learning 
of traditional Euclidean geometry into an engaging, stimulating and collaborative 
experience for online pods of students or for individual home-schooled students. 

Dynamic geometry is a recent transformation of classic geometry into an online app, 
which allows one to explore geometric figures by dragging them around the computer 
screen. Students can construct their own figures and receive immediate automated 
feedback about the results. This can provide a lively, hands-on experience of 
geometry. 

A free computer app, GeoGebra, is available at: www.geogebra.com. GeoGebra now 
includes a Class mode that is ideal for small pods of students working together under 
a teacher’s supervision. GeoGebra student apps and teacher Class dashboard can be 
shared in a Zoom session if desired. The Dynamic Geometry Pod Game can be 
opened at: https://www.geogebra.org/m/vhuepxvq#material/swj6vqbp. The game 
can be played immediately then. 

If you would like to print out a copy of the game – perhaps to take notes in – this pdf 
version is available at: http://gerrystahl.net/elibrary/game/game.pdf. 

Since the beginning of Western civilization 2,500 years ago, geometry has trained 
students in rigorous thinking. Perhaps dynamic geometry can help the next generation 
enhance their understanding of today’s complex world. 

At the end of this volume are two related academic articles: Stahl, G. (2021). 
Redesigning mathematical curriculum for blended learning. Education Sciences. 11(165), 
pages 1-12, and Stahl, G. (2024b). Mathematical group cognition in the 
Anthropocene. In M. Danesi & D. Martinovic (Eds.), Learning and teaching mathematics 
today: Cognitive science, technological and semantic perspectives. New York: Springer. 
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Intro for Adventurous Students 

The Dynamic Geometry Game for Pods is a series of Challenges for your pod to construct 
interesting and fun geometric figures. Many of the figures will have hidden features 
and your pod will learn how to design them. So put together your Pod with three, 
four, five or six people from anywhere in the world who want to play the game 
together online.  

The Game consists of several levels of play, each with a set of Challenges to do 
together online. The Challenges in the beginning levels do not require any previous 
knowledge about geometry or skill in working together. Playing the Challenges in the 
order they are given will prepare you with everything you need to know for the more 
advanced levels. Be creative and have fun. See if you can invent new ways to do the 
Challenges.  

Each Challenge has questions to think about and answer. These will help you to make 
sense of the Challenges and your solutions. Your responses to the questions will help 
your teammates in your pod to understand what you discovered about the Challenge 
and to know what you would like help understanding. Be sure to answer the questions 
and to read the answers from the rest of your pod. Try each Challenge at your level 
until everyone in your pod understands how to meet the Challenges. Then move on 
to the next level. Take your time until everyone has mastered the level. Then agree as 
a team to go to the next level. Most levels assume that everyone has mastered the 
previous level. The levels become harder and harder – see how far your pod can go.  

Geometry has always been about constructing dependencies into geometric figures 
and discovering relationships that are therefore necessarily true and provable. 
Dynamic geometry (like GeoGebra) makes the construction of dependencies clear. 
The game Challenges at each level will help you to think about geometry this way and 
to design constructions with the necessary dependencies. The sequence of levels is 
designed to give you the knowledge and skills you need to think about dynamic-
geometric dependencies and to construct figures with them.  

Your construction pod can accomplish more than any one of you could on your own. 
You can discuss what you notice and wonder about the dynamic figures. Playing as 
part of a team will prevent you from becoming stuck. If you do not understand a 
geometry word or a Challenge description, someone else in the pod may have a 
suggestion. If you cannot figure out the next step in a problem or a construction, 
discuss it with your teammates. Decide how to proceed together. Enjoy playing, 
exploring, discussing and constructing!  
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Intro for Parents and Teachers 

The Dynamic Geometry Game for Pods consists of 50 Challenges that introduce the player 
to basic ideas of dynamic geometry as implemented in GeoGebra and teach the most 
important software functions. The Challenges encourage thinking about geometric 
dependencies among points, lines, circles and polygons.  

The hope is that players will experience the excitement of mathematical discoveries 
and explore ways of deeply understanding and discussing geometry. The 50 
Challenges build step-by-step from doodling to major theorems of basic geometry. 
They provide hands-on involvement in problem solving and mathematical reflection. 
The sequence roughly follows Euclid and the US Common Core for geometry.  

The Challenges were originally designed for use in the Virtual Math Teams research 
project, in which small groups of middle-school students collaborated online, sharing 
a GeoGebra construction and a text-chat tab. The group of students worked together 
with no direct supervision, spending about an hour collaborating on each Challenge.  

In the current Game for Pods, the Challenges have been modified for use with the 
GeoGebra “Class” function, optionally within Zoom sessions. The new Challenges 
can be worked on by individual students, with a teacher observing a dashboard of a 
Class of students progressing through the Challenges.  

The Coronavirus has made it common for students to learn in online pods of about 
5 students, rather than in traditional classrooms of about 30 students. This opens the 
opportunity for a more collaborative online learning experience. Although the 
GeoGebra Class mechanism does not allow multiple students to share a joint 
construction, they can work in parallel and discuss their work as they do it. The Class 
dashboard can be made available to all the students. If the work takes place in a face-
to-face setting or in a Zoom session, the students can talk or chat with each other, as 
well as typing answers to the questions for each of the Challenges and seeing what 
each other writes.  

The Construction Pod Game can also be used for an individual student in home 
schooling. Ideally, the student would find several other students (either acquaintances 
or online peers) to form a pod and collaborate. Although it is structured as a game, 
the goal should not be to compete, but to advance together as a united pod. An 
individual student can be motivated by the game structure. 

Teachers who want to use the Game with their students should first make copies for 
themselves. Then they can modify their copies however they want, especially editing 
the text of the Challenges or the associated questions to suit their teaching style, 
curricular goals or student characteristics. They can save their copy, publish it and 
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press the “Create Class” button. Then they can invite a pod of students to the Class, 
both to work on the Challenges and to view the dashboard. The Class can be 
embedded in a Zoom meeting and the meeting can be recorded by the teacher for 
review.  

Hopefully the students can collaborate among themselves with little or no teacher 
intervention during Game sessions. Students should be self-motivated to work 
through the levels of increasing Challenges. The GeoGebra software provides 
extensive feedback about successful constructions, especially if students use the drag 
test. Pod mates can help each other in many ways.  

The teacher’s role can primarily be to integrate the sequence of Challenges with 
complementary sessions of teacher-led classroom discussion (both introductory 
presentations before Challenges and discussions of results afterward) and of 
individual student work (such as readings and homework). There can also be 
assignments such as reporting on Pythagoras, Thales, Euclid or Euler. The 
Construction Pod Game is divided into 5 Parts, each containing an average of 10 
Challenges. The GeoGebra resources for the 5 Parts are available at:  

Part A – https://www.geogebra.org/m/swj6vqbp  

Part B – https://www.geogebra.org/m/dnammypy  

Part C – https://www.geogebra.org/m/p7tx9vfp  

Part D – https://www.geogebra.org/m/vggypcdu  

Part E – https://www.geogebra.org/m/qhwajdzx  

Please let me know if you have any questions or to report on your experiences: Gerry 
Stahl – Gerry@GerryStahl.net -- August 2020  
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Game Part A 

LEVEL 1. BEGINNER LEVEL 
Here is where you and your pod start to play with points, lines and circles. 
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Challenge 1: Play House 

 
 
Questions. Please enter your answer to each question and read the 
answers of your pod mates. 
How can you tell if a new point is placed on a line that is already there?  

Dragging a point with the arrow tool is called the DRAG TEST in GeoGebra. It is a 
very important way to make sure that you constructed what you thought you were 
constructing – to be sure that things are connected properly. Always drag points you 
create to check them.  

If you want to construct a line segment, is it better to place the two end-points first 
and then make the segment go from one to the other, or should you just place the 
line and let it create its own end-points?  

If you want to create a circle, should you first create a point for its center and a point 
on its circumference, or should you just create the circle and let it create its own 
defining points?  

Type your answer here… 
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Challenge 2: Dynamic Stick Figures 

 
Questions. 
Which points in the stick woman can move independently?  

Which points move the whole woman? Which points move parts of the woman?  

Why do some points move independently and others always move other points and 
lines?  

Can you tell what order the woman was created in? What was the first point, etc.?  

Can you create a stick woman that moves differently? Use the DRAG TEST to make 
sure your stick figure is working the way you want it to. 

Type your answer here… 
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Challenge 3: Play around with Points, Lines and 
Circles 

 

Questions. 
How can you make a new point "stick" to an existing line segment?  

Can that point go off the ends of the line segment?  

How can you test to make sure that a point will always stay on a line segment?  

How can you test to make sure that one line segment always starts on another line 
segment?  

How can you test that a circle always has its center along a certain line segment?  

In the original construction, which points would you have to drag to test that end F 
of line segment CF always stays on the circumference of circle DE –no matter how 
any other points in the construction are dynamically moved? 

Type your answer here… 
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LEVEL 2: CONSTRUCTION LEVEL 
At this level, you will play with geometric figures. 

Challenge 4: Play by Dragging Connections 

 
 

Questions. 
What does each point in this construction control?  

Are there any points that cannot be dragged (except by dragging a different point)? 
Do they have different colors?  

What sequence of construction steps could have been used to build this? 

Type your answer here… 



Dynamic Geometry Game for Pods 

 

19 

Challenge 5: Play with Hidden Objects 

 
 

Questions. 
What is the difference between a Line and a Line Segment?  

What is the difference between a circle radius, a circle diameter and a circle 
circumference?  

Which steps did you have trouble doing?  

What is the difference between hiding an object and deleting that object?  

Which points are dependent on which other objects, even when those objects are 
hidden? 

Type your answer here… 
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Challenge 6. Construct Polygons in Different Ways  

 
 

Questions. 
What are polygons with 3, 4, 5 and 6 sides called?  

What differences do you notice about the polygons constructed in these three 
different ways?  

Drag all the points around. What stays the same? What does this make you wonder? 

Type your answer here… 
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LEVEL 3: TRIANGLE LEVEL 
At this level you will explore dynamic triangles. 

Challenge 7: Construct an Equilateral Triangle 
 

 

Questions. 
Did you construct your own equilateral triangle?  

Did you use the DRAG TEST to make sure it works properly?  

The equilateral construction opens up the world of geometry; if you understand how 
it works deeply, you will understand much about geometry.  

In geometry, a circle is defined as the set of points that are all the same distance from 
the center point. So, every radius of a certain circle is the same length.  

Drag each point in your triangle and discuss how the position of the third point is 
dependent on the distance between the first two points.  

Is your triangle equilateral (all sides equal and all angles equal)?  
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Why? How do you know? Does it have to be? 

Type your answer here… 

Challenge 8: Find Dynamic Triangles 

 
 

Questions. 
What kinds of triangles did you find in the figure?  

When you dragged the points, did any of the triangles change kind? For instance, can 
triangle ABF be a right triangle or equilateral? Discuss how this is possible.  

Are there some kinds of triangles you are not sure about? Why are you sure about 
some relationships? Does everyone in your pod agree? 

Type your answer here… 
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LEVEL 4: CIRCLE LEVEL 
At this level, you will start to explore circles. 

Challenge 9: Construct the Midpoint  
 

 

Questions. 
Do you think that point E is in the middle of line segment AB?  

Do you think that point E is in the middle of line segment CD?  

Do you think your point J is in the middle of line segment FG?  

Can you prove that any of these are true (without measuring)? 

Type your answer here… 
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Challenge 10: Construct a Perpendicular Line 
 

 

Questions. 
Compare this Challenge with Challenge 9. That construction of the midpoint also 
constructed a perpendicular. Challenge 10 extended the approach to construct a 
perpendicular through a point C that was not the midpoint of AB by making a 
segment DE that has midpoint C. Can you explain why this works?  

Can you extend the construction in this Challenge to work through a point H that is 
not on line AB at all?  

Can you explain how your extension works? Does is still work when you drag point 
H all around? 

Type your answer here… 
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Challenge 11: Construct a Parallel Line 
 

 

Questions. 
Do you see how to use the GeoGebra perpendicular line tool in the toolbar?  

It constructs something like you did in the last Challenge and hides all the 
construction lines and circles. Of course, you could also do the construction yourself. 
Most GeoGebra tools just automate constructions to save you steps. Do you prefer 
to do the construction yourself just using the elements of geometry: points, lines and 
circles?  

Did your new line (HI) stay parallel to your original line (EF) no matter what points 
you dragged?  

Explain why a perpendicular to a perpendicular is a parallel line.  

Imagine riding your bike in a city with a grid of streets. If you make two right turns, 
you will be riding a street parallel to your original street. Two more right turns (at right 
angles on the grid) might bring you back to your original street.  
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If a right angle is 90 degrees, how many degrees is two right angles?  

Type your answer here… 
 
Continue to "Construction Pod Game: Part B" 
Congratulations on mastering Part A! You now know how to construct basic 
geometric elements and relationships. In Part B you will learn how to make one 
element dependent upon another and how to copy lengths and angles that are 
interdependent. Part B starts on Level 5: Dependency Level. 
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Game Part B 

The Pod Game is a series of challenges for your pod to construct interesting and fun 
geometric figures. It is divided into five Parts. This is Part B. If your pod has not yet 
completed Part A, please go to Part A. Put your Pod together again with three, four, 
five or six people from anywhere in the world who want to play the game together 
online. Collaborate, share ideas, ask questions and enjoy. 

LEVEL 5: DEPENDENCY LEVEL 
This level will explore the idea that some parts of a GeoGebra construction are 
designed to be dependent on other parts. Understanding how this works is the key to 
understanding geometry. Euclid's book written 2,500 years ago showed how to 
construct dependencies. 

Euclid's book, "Elements" of Geometry, was read by more people in history than any 
other non-religious book. We still use Greek letters for labeling angles and Greek 
terms like "isosceles" ("same legs") and "equilateral" ("equal sides"). 
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Challenge 12: Triangles with Dependencies 

 
What is constrained for each of these triangles: poly1, poly2, poly3, poly4 and poly5? 

Drag each vertex point to see if you can change the type of angle or the relationships 
of the sides. 

Can you drag poly1 and each of its points so that it exactly covers any of the other 
triangles? 

Can you drag any other triangle and each of its points so that it exactly covers any of 
the other triangles? 

Can you name the type of each triangle? 

Type your answer here… 
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Challenge 13: An Isosceles Triangle 

 
Did you figure out how to do this challenge without looking at the hint? 

Did you think about the definition of a circle, where all radii are equal length? 

Can you drag your isosceles triangle to look like a right triangle or an equilateral 
triangle? 

 How do you think about the fact that it is always isosceles, but can sometimes look 
(or even measure) right or equilateral? 

Type your answer here… 
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Challenge 14: A Right Triangle 

 
Did you use the perpendicular tool or did you construct the perpendicular to your 
base segment going through one of its endpoints (like in Challenge 10)? 

Remember that a right angle measures 90 degrees. Can you construct a figure that 
combines two right triangles and shows that a straight line is an angle of 180 degrees? 

Can you construct a figure that combines four right triangles and shows that a circle 
has 360 degrees? 

Type your answer here… 
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Challenge 15: An Isosceles-Right Triangle 

 
Did you need the hints to do this? 

Is it interesting to you that one figure can have more than one dependency built into 
it? 

Why would this be a powerful idea? Now you can combine multiple dependencies in 
one figure or multiple figures (like four right-isosceles triangles) in one larger figure 
(like a square) with many dependencies. 

Type your answer here… 

LEVEL 6. COMPASS LEVEL 
In this level, you will learn how to use the GeoGebra compass tool. This is a very 
handy tool, but is tricky to use. It allows you to copy a length from one segment to 
another, making the second segment's length dependent upon the first one. 
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Challenge 16: Copy a Length 

 
Can you do this whole construction? Can you even follow it step-by-step? 

Imagine the ancient Greeks who invented geometry thinking up this complicated 
procedure. 

This method of copying a length is presented in the beginning of Euclid's book, 
because it is needed for many other constructions and proofs. It is preceded by the 
method for constructing an equilateral triangle (which you did in Challenge 7), 
because that is used in this method. 

Did you ever hear that "equality is transitive.”? That means that if A=B and B=C then 
A=C. Euclid use this to construct a long series of equal length segments to prove that 
the length of the final segment CH is equal to the length of the original segment AB. 
The equalities are based on the fact (or definition or axiom) that all radii of the same 
circle are equal length segments. 

Drag points A, B or C to see how the length of AB is copied no matter where these 
points are dragged. 
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Type your answer here… 

Challenge 17: Use the Compass Tool 

 
Using GeoGebra's compass tool is like using a physical compass (or caliper). You put 
one end at point A and one end at point B to set a span of length AB. 

Then move the compass to a desired point C. The other end of the compass can then 
be put anywhere on a circle around point C of radius AB. 

What happens to segment CE when you drag segment AB or one of its points? 

Next time you want to transfer a segment length, will you use the compass tool or do 
the construction from Challenge 16? 

Type your answer here… 
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Challenge 18: Make Dependent Segments 

 
In this challenge, you can see the difference between copying a length to a new 
segment (so that the new version is still dependent on the original segment) and using 
copy-and-paste to make a static copy of a length, which is not dependent on changes 
of the original segment. 

Which points, segments or circles are free to be dragged without constraint?  

Which are completely dependent and can only be moved indirectly be dragging 
another point upon which it is dependent? Are there any that can be moved 
somewhat, but only in a constrained way? 

Type your answer here… 
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Challenge 19: Add Segment Lengths 

 
For this challenge, the lengths of some segments are shown. You can show the length 
of a segment by selecting the segment with the arrow tool and then going to the menu 
item "Object Properties." Check the box for "Show Label" and select "Value" for the 
label. 

In geometry, you never really have to measure lengths or angles -- you just construct 
them to have the values you want. But it is sometimes reassuring to show their 
measures when you are learning with GeoGebra. 

Were you able to construct a segment whose length is equal to the lengths of two 
other segments? 

Can you construct a triangle and then construct a line segment whose length is equal 
to the sum of the lengths of the three sides of the triangle? Does is still work when 
you drag the vertices of the triangle? 

Type your answer here… 
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Challenge 20: Copy vs. Construct a Congruent 
Triangle 

 
Were you able to make both kinds of copies of your triangle? 

Did you have any problems or discover any tricks? 

Describe in your own words the difference between copying with copy-and-paste 
versus copying with the compass tool. 

Type your answer here… 
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Challenge 21: Construct a Congruent Angle 

 
Did you understand how to copy the angles? 

To copy an angle like BAC to a new angle like HDI requires two copies of lengths 
using the compass tool. First, use the compass to measure out from vertex A to some 
distance (like AF) out one of the sides (it does not matter what distance out). 

Then copy the distance to vertex D, creating DH, which equals AF. Also mark points 
G and I, where the compass crosses the other sides of the angles at A and D. Now 
use the compass tool to copy the distance FG to H and mark point I where the two 
circles for the compass lengths cross and construct a ray from point D going through 
point I. Now lengths AF = AG = DH = DI. The new angle HDI is the same size as 
angle FAG because the distance between the two sides of each angle is an equal length 
at the same distance out the sides. 
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GeoGebra does not have a tool for copying angles. You have to construct the equal 
angle using the compass tool. 

Do you understand how to construct a triangle "similar" to triangle ABC? 

Summarize in your own words how to construct a similar triangle by copying the three 
angles. 

Work with your teammates in your pod to write a brief proof of how you know the 
new triangle is similar to the original one. 

Type your answer here… 
 

Continue to "Construction Pod Game: Part C" 
Congratulations on mastering Part B. You now understand some of the most 
important methods of constructing geometry figures. In Part C, you will explore 
triangles in more depth, especially congruent and inscribed triangles. Part C starts on 
Level 7: Congruence Level. 
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Game Part C 

If your pod has not yet completed Part B, please go to Part B. 

Put your Construction Crew Pod together again with three, four, five or six people 
from anywhere in the world who want to play the game together online. Collaborate, 
share ideas, ask questions and enjoy. 

LEVEL 7: CONGRUENCE LEVEL 
This level will explore the idea of deductive proof in geometry. This was the great 
discovery in mathematics, that you could show by careful argument why something 
had to be true. In particular, a set of theorems about congruent triangles are very 
handy for proving many things in geometry. Understanding them will let you tackle 
some difficult challenges about inscribed polygons. 
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Challenge 22: Combinations of Sides and Angles 
of Triangles 

 
How many ways can you bring end-points G and H together to form a triangle? 

Given that their lengths are all constrained, what does that imply about the angles? 

If the lengths are not constrained, are there any limits on the size of the angles or 
sides when end-points C and D are brought together? 

What if the three angles are fixed? For instance, if they are all 60 degrees? Or 30, 60 
and 90 degrees? 

Can there be a combination of some side lengths and some angle sizes that determine 
a fixed triangle? 

Type your answer here… 
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Challenge 23: Side-Side-Side (SSS) 

 
When you created triangle DEF, was it congruent to ABC? How could you tell? 

Can you state a theorem (a provable rule) that summarizes what you discovered? 

In some geometry books, this is called the "Side-side-side" (SSS) rule: If two triangles 
have the same three side lengths, then the triangles are congruent. 

Many conclusions in geometry can be proven using this theorem. 

Type your answer here… 



Dynamic Geometry Game for Pods 

 

42 

Challenge 24: Side-Angle-Side (SAS) 

 
Can you recreate this pair of triangles: any triangle ABC and another triangle that has 
one angle and the two sides forming that angle congruent to the corresponding parts 
in ABC? 

Can you drag those triangles to show that they are congruent and remain congruent 
no matter how triangle ABC and its vertices are dragged? 

The theorem you have explored is called "Side-Angle-Side" or "SAS".  

Are two triangles necessarily congruent if they have one angle and two sides 
congruent, but the angle is not between the two sides? 

Type your answer here… 
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Challenge 25: Angle-Side-Angle (ASA) 

 
Can you copy segment AB and the angles at A and B to a new segment? 

Make a polygon connecting the intersection of the sides with the two copied vertices. 

There is a theorem called "Angle-Side-Angle" or "ASA" that says that if two triangles 
have two angles and the included side congruent, then the two triangles are congruent. 

Do you see that this is always true as you drag the vertices of the original triangle? 

Does this mean that if two triangles have two angles and any side equal, then the two 
triangles are congruent? 

Note that the three angles of a triangle always add up to 180 degrees. So, if two of the 
angles are fixed, then so is the third (180 minus the sum of the other two angles). 
Does this mean that two angles and any side will determine a congruent triangle? 

Type your answer here… 



Dynamic Geometry Game for Pods 

 

44 

Challenge 26: Side-Side-Angle (SSA) 

Can 
you 

Could you construct the two triangles? 

When is it possible to construct two different triangles with SSA fixed? 

What combinations of congruent sides and/or angles determine congruent 

triangles? E.g., SSS and SAS, but not SSA. 

Type your answer here… 
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LEVEL 8. INSCRIBED POLYGON LEVEL 
This level presents some challenging geometry problems involving a geometric figure 
inscribed inside another figure. 

Challenge 27: The Inscribed Triangles Challenge 
Problem 

Triangle DEF is "inscribed" in triangle ABC. This means that DEF fits exactly inside 

You know how to construct an equilateral triangle like ABC from Challenge 7. What 
happens when you try to construct the second equilateral triangle with a vertex on 
each side of the first triangle? 

In geometry, a point can be defined by two lines (or segments or circles), where they 
cross. The point's location is determined by or located at the crossing of the two lines. 
However, a point cannot be defined by three lines -- that would be overdetermining 
the point. Try to construct three lines (or segments or circles) to cross in one location 
and then use the point tool to place a point at that intersection. What happens? 

Follow the hint. Analyze how things evolve as you drag point D along side AC. 

Describe what you see about dependencies and relationships among items in the 
figures. 
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Try to construct a pair of inscribed triangles that reproduce those dependencies or 
relationships. 

Work together with your team-mates in your pod. This is a difficult challenge that 
usually takes people at least an hour to solve. 

If you solve it, can you say why it works? 

Type your answer here… 

Challenge 28: Inscribed Squares 

 
A "quadrilateral" is a four-sided figure. A pentagon has 5 sides. A hexagon has 6 sides. 
An octagon has 8 sides. 

A "regular" quadrilateral has four sides of equal length and four angles of equal size 
(right angles). It is a square. 

The slider in this challenge produces inscribed regular polygons of 3 to 9 sides. You 
can use the Regular Polygon tool (under the Polygon tool in the menu to create a 
regular polygon with a selected number of sides. 
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Can you construct an inscribed square? What did you notice by dragging point H and 
how did you use that in your construction? 

Can you construct an inscribed regular pentagon? An inscribed regular hexagon? An 
inscribed regular octagon? 

Type your answer here… 

Challenge 29: Prove Inscribed Triangles 

Work 
with your team-mates in your pod to complete the following proof that triangle DEF 
is equilateral: 

Given an equilateral triangle ABC and points D, E, F on its sides such that AD = BE 
= CF, prove that inscribed triangle DEF is equilateral. 
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If AD = BE, then CD = AE because CD = AC - AD and AE = AB - BE; where AC 
= AB because they are equal sides of an equilateral triangle. Subtracting equal lengths 
from equal lengths leaves equal lengths…. 

Triangles ADE, BEF and CDF are congruent triangles because they have equal 
corresponding sides and included angles (SAS). Therefore, corresponding sides DE 
= DF = DE, so the inscribed triangle DEF is equilateral, which is what was to be 
proven. 

Type your answer here… 
 

Continue to "Construction Pod Game: Part D" 
Congratulations on mastering Part C. You now understand some of the most 
important methods of proving theorems about geometry figures. Part D introduces a 
different approach to doing geometry that is much more recent than Euclid's 
approach. It also presents challenges involving quadrilaterals (four-sided figures), 
which have more options for dependencies than triangles. Part D starts on Level 9: 
Transformation Level. 
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Game Part D 

If your pod has not yet completed Part C, please go to Part C. 

Put your Construction Crew Pod together again with three, four, five or six people 
from anywhere in the world who want to play the game together online. Collaborate, 
share ideas, ask questions and enjoy. 

LEVEL 9: TRANFORMATION LEVEL  

This level will explore a different approach in geometry: transformations. There are 
different kinds of transformations, like translation, reflection and rotation. 

Transformations is not part of Euclid’s system of geometry, but is a newer way of 
constructing geometric figures. 

When you dragged a figure in the previous levels, the figure moved from its original 
position to the new one. When you transform a figure in this new level, the figure 
remains in its original position and a new copy of the figure appears in addition, in its 
new position. This takes some getting used to, but it has advantages in making it easier 
to compare the figure before and after the transformation, to help you understand 
what has changed. 
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Challenge 30: Translate by a Vector 

See the 
menu item for reflection about a line (the diagonal line with a blue point on one side 
reflected by a red point on the other). There are several GeoGebra tools for geometric 
"transformations". Try these tools out in this set of five Challenges. 

What did you notice that surprised you about how the translation transformation 
works in dynamic geometry? 

Type your answer here… 



Dynamic Geometry Game for Pods 

 

51 

Challenge 31: Reflect About a Line 

 
Could you reverse the two reflections to get back to the original position? 

Could you find another path of reflections to get back to the original position? 

Can you translate either of the reflections back to the original? 

Are the three triangles congruent to each other? Could you lay them on top of each 
other by translating them around? 

If you reflect ABC about line DE and then about line EF does that have the same 
result as reflecting ABC about line EF and then about line DE? 

Type your answer here… 
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Challenge 32: Rotate Around a Point 

How 
are rotations different from translations? 

Drag point D and then describe how ABC is rotated. 

Does the order of the two rotations matter? Would the final triangle be the same if 
ABC was first rotated about point E and then about point D? 

Give an example of a reflection of ABC followed by a translation that would end up 
the same as A'B'C'. 

Type your answer here… 
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Challenge 33: Combine Transformations 

Describe the transformations you did. 

Did you have any trouble doing the different tasks? 

Can you replace every translation with a series of reflections and rotations? 

Can you replace every reflection with a series of translations and rotations? 

Can you replace every rotation with a series of reflections and translations? 

Type your answer here… 
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Challenge 34: Create Dynamic Patterns 

 
Can you make dynamic patterns of triangles using a repeated rotation or a repeated 
reflection? 

Then drag points to move the pattern in interesting ways. 

What kind of pattern did you create? Did it behave like you expected? 

Type your answer here… 

LEVEL 10. QUADRILATERAL LEVEL 
In this level, you will explore four-sided figures. There are many more possibilities 
with four sides than with just three. 
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Challenge 35: Construct Quadrilaterals with 
Constraints 

What 
constraints do you think were constructed into poly1? 

What constraints do you think were constructed into poly2? 

What constraints do you think were constructed into poly3? 

What constraints do you think were constructed into poly4? 

Were you able to construct your own quadrilateral with the same constraints as one 
of the original ones? 

Did you drag it to make sure it had the same behavior? 

Type your answer here… 
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Challenge 36: Construct a Rhombus 

Describe the steps you used to construct a rhombus using circles. 

Describe the steps you used to construct a rhombus using reflections. 

Describe another way to construct a four-sided figure with equal side lengths (a 
regular quadrilateral or a "rhombus"). 

Type your answer here… 
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Challenge 37: Quadrilateral Areas 

 Were 
you surprised about the relation of the areas of the inscribed quadrilateral to the 
inscribing (exterior) quadrilateral? (The areas are displayed in the figure and change as 
you drag the vertices.) 

Were you surprised about the constraints on the inscribed quadrilateral being different 
from those on the inscribing (exterior) quadrilateral? Did you notice the relationship 
of opposite sides and of opposite angles? 

The proof of these features of the inscribed quadrilateral is complicated. You 
probably do not know enough theorems to prove it yourself. Are you able to follow 
the argument in the proof outlined in the hint? 

Type your answer here… 
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Challenge 38: Build a Hierarchy of Quadrilaterals 

Do you 
understand this diagram of constraints or dependencies? 

For instance, a square is a quadrilateral with all of the constraints: each of its angles is 
a right angle and each of its side lengths is dependent on the first side length. A 
rectangle is not constrained to have all its side lengths equal, but it must have two 
pairs of equal length sides (opposite each other) and four right angles. 

Can you make a diagram of this same hierarchy with the names of figures (like square, 
rhombus, kite, parallelogram, etc.) instead of the descriptions of constraints? 
("Quadrilateral", "rectangle" and "square" are already shown.) 

Are there some possible figures that do not have names? Are there some more 
possible combinations of constraints that could be added to the diagram? 

In Challenge 15, you constructed an isosceles-right triangle. Can you construct an 
isosceles-right quadrilateral now (with two equal sides and one right angles)? Where 
would it go in the diagram? 

Do you see how the diagram shows that all squares are rectangles? Do you see how 
the diagram shows that a rectangle can be a square, but it does not have to be? 

Type your answer here… 
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Congratulations on mastering Part D. You now understand some of the most 
important methods of transforming theorems about geometry figures and working 
with quadrilaterals. Part E presents challenges for advanced students, who have 
completed all the previous Parts. Part E starts on Level 11: Advanced Geometer 
Level. 

Continue to "Construction Pod Game: Part E" 
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Game Part E 

If your pod has not yet completed Part D, please go to Part D. Put your Construction 
Crew Pod together again with three, four, five or six people from anywhere in the 
world who want to play the game together online. Collaborate, share ideas, ask 
questions and enjoy. 

LEVEL 11: ADVANCED GEOMETER LEVEL 
This level will introduce you to a series of intriguing points within triangles. These 
special points are interconnected in mysterious ways. 

Challenge 39: The Centroid of a Triangle 
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Can you create a triangle with the polygon tool and construct its centroid? 

If you construct an isosceles triangle, where is its centroid? How about for a right 
triangle? 

Type your answer here… 

Challenge 40: The Circumcenter of a Triangle 

 
If you construct a circle with its center at the circumcenter of any triangle and its 
radius going to one of the triangle's vertices, the circle will go through all three 
vertices. That is the definition of the "circumcenter" (the center of the circumference 
or circle of the triangle). 
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Were you able to construct the circumcenter of your own triangle? 

Did you drag the vertices to see if the circumcenter is always inside the triangle? 

Do you wonder why all three perpendicular bisectors of the sides meet at the same 
point? (Remember that a point is defined by just two lines crossing.) 

Type your answer here… 
 

Challenge 41: The Orthocenter of a Triangle 

 
The "altitude" of a triangle is the line segment from the base of the triangle 
perpendicularly to the opposite vertex. If you take AB as the base, then FC is the 
altitude, if FC is perpendicular to AB. 
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You may know that the area of a triangle is 1/2 x base x altitude. How would you 
prove this? Construct a rectangle and connect two opposite vertices with a diagonal 
line segment, forming two congruent right triangles. The area of the rectangle is the 
base x height. So, what is the area of each right triangle? This proves a special case of 
a right triangle's area. 

Type your answer here… 

Challenge 42: The Incenter of a Triangle 

 
A circle with center at the incenter of a triangle and radius to a point where a vertex 
bisector meets a triangle side will be inscribed in the triangle. The inscribed circle will 
touch each side of the triangle at exactly one point (it will be "tangent" to the side). 

Can you construct a triangle with a circle inscribing the triangle and a circle inscribed 
inside the triangle? 
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Type your answer here… 

Challenge 43: The Euler Segment of a Triangle 

 
You can create new tools in GeoGebra. For instance, you can go back to your 
constructions of the centroid, circumcenter, orthocenter and incenter and make your 
own custom tools. Then you can use your custom tools to place each of these points 
in a new triangle here. 

To define a custom tool, go to the GeoGebra menu under Tools and select Create 
New Tool. Follow the steps: 1. select the triangle and the special point as output your 
computer from the Manage Tools option under the Tools menu. 

Custom tools are powerful. They are shortcuts to doing complicated things and you 
know exactly how they work. You can develop your own mini-domains of geometry 
with them. You can add new functions, like copying angles and inscribing triangles in 
circles. 

When you drag your triangle with these four special points, do you notice any possible 
dependencies among them? 

Type your answer here… 
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Challenge 44: The Nine-Point Circle of a Triangle 

Describe the nine points on the circle. 

As you drag the vertices, do the nine points stay on the circle and do the circumcenter, 
incenter and orthocenter stay on the Euler segment, whose midpoint stays in the 
center of the 9-point circle? 

Here are many points and lines with complicated dependencies among themselves 
and the vertices of the triangle. Can you prove why the nine points are all on the same 
circle? Can you prove why the circumcenter, incenter and orthocenter are all on the 
same line segment, whose midpoint is the center of the circle. If you looked carefully 
at the detailed steps in constructing all these points, lines and circles, you could work 
out much of the proof -- often using equalities of congruent triangles proven by 
theorems like SSS, SAS and ASA. 

Type your answer here… 
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LEVEL 12: PROBLEM SOLVER LEVEL 
In this level, you will solve three challenging problems. 

Challenge 45: Treasure Hunt 

 
 

Given the locations of the three trees, how would you construct the locations of the 

three pots of coins? 

Type your answer here… 
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Challenge 46: Square and Circle 

How did 
you construct the center of the circle? 

How did you figure out the radius length? 

Type your answer here… 
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Challenge 47: Cross an Angle  

  
What additional lines did you have to construct to determine locations for points E 
and F? 

Type your answer here… 

LEVEL 13: EXPERT LEVEL 
In this level, you will prepare to explore geometry, mathematics and the world beyond 
this game. 
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Challenge 48: How Many Ways Can You Invent? 

 
Describe the different ways that you constructed triangles that are always congruent 
to triangle ABC no matter how you drag A, B or C. 

Type your answer here… 
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Challenge 49: Dependencies in the World 

 
 

Answer questions 1 through 7 in Challenge 49 in your own words. 

Type your answer here… 
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Challenge 50: Into the Future 

 
Just do it!  

Invent a challenge for your teammates and others who have completed the Pod 
Game. 

Why did you choose this topic? 

Type your answer here… 
 

Continue to explore geometry and other branches of mathematics 
Congratulations on mastering Part E. You now know how to use the basic tools of 
GeoGebra to explore dynamic geometry. You can continue to explore the extensive 
range of GeoGebra tools and the infinite worlds of mathematics – with your pod 
mates and/or on your own. 
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Extra Bonus Dynamic Geometry 

The rest of this volume is a bonus for people who have conquered the Game. This 
material is not included in the online Game. 

A Special Challenge 
If you worked through the five levels of the Dynamic Geometry Game for Pods, then here 
is a challenge you might be able to meet. Personally, I found it difficult, although you 
know everything needed to do it. Even when I knew how to solve it, it took me a long 
time to figure out why it worked. 

If you solve it, you can tell your pod about it. If you cannot figure out a solution, read 
on and see if you can understand why the solution presented later works. In 
mathematics, a rigorous explanation showing that something is true is called a 
“proof.” Proofs are very important in mathematics, although students are not often 
shown proofs when they learn math in school. Historically, proof originated in the 
early Greek invention of geometry, so that students usually are first introduced to 
proof when they learn geometry. 
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To do this special challenge, first create a line through points A and B. Then construct 
two lines parallel to line AB through points D and E. Now figure out how to construct 
an equilateral triangle like DFG that has a vertex on each of the parallel lines. How 
do you know your triangle is equilateral, even when the parallel lines are dragged? 

Visualizing the World’s Oldest Theorem 
Scientific thinking in the Western world began with the ancient Greeks and their 
proofs of theorems in geometry.  

Thales lived about 2,600 years ago (c. 624–546 BCE). He is often considered the first 
philosopher (pre-Socratic), scientist (predicted an eclipse) and mathematician (the first 
person we know of to prove a mathematical theorem deductively). Pythagoras came 
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30 years later and Euclid (who collected many theorems of geometry and published 
them in his geometry book called Elements) came 300 years later. Thales took the 
practical, arithmetical knowledge of early civilizations—like Egypt and Babylonia—
and introduced a new level of theoretical inquiry into it. With dynamic-geometry 
software, you can take the classic Greek ideas to yet another level. 

Thales took a “conjecture” (a mathematical guess or suspicion) about an angle 
inscribed in a semi-circle and he proved why it was true. You can use dynamic 
geometry to see that it is true for all angles all along the semi-circle. Then you can prove 
that it is always true. 

Construction Process 
Follow these steps to construct an angle in GeoGebra inscribed in a semi-circle like 
the one in the Figure below. You will be able to move the angle dynamically and see 
how things change. 

Step 1. Construct a ray  like AB. 

Step 2. Construct a circle  with center at point B and going through point A. 

Step 3. Construct a point like point C at the intersection  of the line and the 
circle, forming the diameter of the circle, AC. 

Step 5. Construct a point  like D anywhere on the circumference of the circle. 

Step 6. Create triangle ADC with the polygon tool . 
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The Theorem of Thales. 

Step 7. Create the interior angles  of triangle ADC. (Always click on the three 
points forming the angle in clockwise order—otherwise you will get the measure of 
the outside angle.) In geometry, we still use the Greek alphabet to label angles: α, β, γ 
are the first three letters (like a, b, c), called “alpha,” “beta,” and “gamma.” 

Step 8. Drag  point D along the circle. What do you notice? Are you surprised? 
Why do you think the angle at point D always has that measure? 

Challenge 
Try to come up with a proof for this theorem. 

Hint: To solve a problem or construct a proof in geometry, it is often helpful to 
construct certain extra lines, which bring out interesting relationships. Construct the 

radius BD as a segment . 

Thales had already proven two theorems previously: 
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(1) The base angles of an isosceles triangle are equal. (An “isosceles” triangle is 
defined as having at least two equal sides.) 

(2) The sum of the angles α+β+γ=180° in any triangle. 

Can you see why α=β+γ in the figure, no matter how you drag point D? (Remember 
that all radii of a circle are equal by definition of a circle.) That means that 
(β+γ)+β+γ=180°. So, what does α have to be? 

Visualization #1 of Pythagoras’ Theorem 
Pythagoras’ Theorem is probably the most famous and useful theorem in geometry. 
It says that the length of the hypotenuse of a right triangle (side c, opposite the right 
angle) has the following relationship to the lengths of the other two sides, a and b: 

c2 = a2 + b2 

Below are figures that show ways to visualize this relationship. They involve 
transforming squares built on the three sides of the triangle to show that the sum of 
the areas of the two smaller squares is equal to the area of the larger square. The area 
of a square is equal to the length of its side squared, so a square whose side is c has 
an area equal to c2. 

Explain what you see in these two visualizations. Can you see how the area of the c2 
square is rearranged into the areas a2 and b2 or vice versa?  
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. 

Visualization #1 of Pythagoras' Theorem. 

 

Notice that these are geometric proofs. They do not use numbers for the lengths of 
sides or areas of triangles. This way they are valid for any size triangles. In the 
GeoGebra tab, you can change the size and orientation of triangle ABC and all the 
relationships remain valid. Geometers always made their proofs valid for any sizes, 
but with dynamic geometry, you can actually change the sizes and see how the proof 
is still valid (as long as the construction is made with the necessary dependencies). 

It is sometimes helpful to see the measures of sides, angles and areas to help you make 
a conjecture about relationships in a geometric figure. However, these numbers never 
really prove anything in geometry. To prove something, you have to explain why the 
relationships exist. In dynamic geometry, this has to do with how a figure was 
constructed—how specific dependencies were built into the figure. In this figure, for 
instance, it is important that the four triangles all remain right triangles and that they 
have their corresponding sides the same lengths (a, b, and c). If these lengths change 
in one triangle, they must change exactly the same way in the others. Can you tell what 
the side length of the square in the center has to be? 

Visualization #2 of Pythagoras’ Theorem 
The next figure automates the same proof of Pythagoras’ Theorem with GeoGebra 
sliders. Try it out. Move the sliders for α and s to see what they change. 
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Visualization #2 of Pythagoras’ Theorem. 

Visualization #3 of Pythagoras’ Theorem 
The next figure shows another way to visualize the proof of Pythagoras’ Theorem. 
Slide the slider. Is it convincing? 
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Visualization #3 of Pythagoras’ Theorem. 
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Visualization #4 of Pythagoras’ Theorem 
The next figure shows an interesting extension of the proof of Pythagoras’ Theorem: 

 

 
Visualization #4 of Pythagoras’ Theorem. 

Can you explain why it works for all regular polygons if it works for triangles? 

Visualization #5 of Pythagoras’ Theorem 
Finally, here is Euclid’s own proof of Pythagoras’ Theorem in his 47th proposition. It 
depends on some relationships of quadrilaterals. Drag the sliders in this GeoGebra 
figure slowly and watch how the areas are transformed. 
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Visualization #5 of Pythagoras’ Theorem. 

There are many other visual, geometric and algebraic proofs of this famous theorem. 
Which do you find most elegant of the ones you have explored here? 
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Proof of Special Challenge 

 
 

Here is the solution to the Special Challenge at the beginning of the Extra Bonus 
chapter. It includes a proof, based on the construction. Note that it uses two special 
cases to help solve and explain the construction. Considering special cases is often 
useful to working out a construction or a proof. While mathematical proofs can often 
be formal and not very insightful, they can also sometimes help to explain why or 
how something is true or valid. Visual proofs and proofs of special cases can 
contribute to such intriguing proofs. 

Proof Involving the Incenter of a Triangle 
In Euclid’s construction of an equilateral triangle, he made the lengths of the three 
sides of the triangle dependent on each other by constructing each of them as radii of 
congruent circles. Then to prove that the triangle was equilateral, all he had to do was 
to point out that the lengths of the three sides of the triangle were all radii of 
congruent circles and therefore they were all equal. 

In this topic, you will look at a more complicated conjecture about triangles, namely 
relationships having to do with the incenter of a triangle. Remember from Challenge 
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43 that the “incenter” of a triangle is located at the intersection of the bisectors of the 
three vertex angles of the triangle. This topic explores how identifying dependencies 
in a dynamic-geometry construction can help you prove a conjecture about that 
construction. 

The conjecture has a number of parts: 

1. The three bisectors of the vertex angles all meet at a single point. (It is unusual 
for three lines to meet at one point. For instance, do the angle bisectors of a 
quadrilateral always intersect at one point?) 

2. The incenter of any triangle is located inside of the triangle. (Other kinds of 
centers of triangles are sometimes located outside of the triangle. For 
instance, can the circumcenter of a triangle be outside the triangle?) 

3. Line segments that are perpendiculars to the three sides passing through the 
incenter are all of equal length. 

4. A circle centered on the incenter is inscribed in the triangle if it passes 
through a point where a perpendicular from the incenter to a side intersects 
that side. 

5. The inscribed circle is tangent to the three sides of the triangle. 

These may seem to be surprising conjectures for a simple triangle. After all, a generic 
triangle just consists of three segments joined together at their endpoints. Why should 
a triangle always have these rather complicated relationships?  

Construct the incenter of a general dynamic triangle and observe how the 
dependencies of the construction suggest a proof for these five parts of the conjecture 
about a triangle’s incenter. 

Construct an Incenter with a Custom Incenter Tool.  
In Challenge 44, you may have programmed your own custom incenter tool. Open 
the .ggt file for it with the menu “File” | “Open.” Then select your custom incenter 
tool. Click on three points A, B and C to define the vertices of a triangle. The tool 
will automatically construct the triangle as a polygon ABC and a point D at the 
incenter of triangle ABC. You can then use a perpendicular tool to construct a line 
through point D and perpendicular to side AB of the triangle at point E. Next 
construct a circle centered on D and passing through E. That is the state shown in 
the next figure. 
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Given triangle ABC, its incenter D has been constructed with a custom tool. 

 

Drag this figure around. Can you see why the five parts of the conjecture should 
always be true?  

Add in the three angle bisectors and the other two perpendiculars through point D. 
You can change the properties of the perpendicular segments to show the value of 
their lengths. Drag the figure now. Do the three angle bisectors all meet at the same 
point? Is that point always inside the triangle? Are the three perpendicular segments 
between D and the triangle sides all equal? Is the circle through D always inscribed in 
the triangle? Is it always tangent to the three sides? Can you explain why these 
relationships are always true? Can you identify dependencies built into the 
construction that constrain the circle to move so it is always tangent to all three sides? 

Construct the Incenter with Standard GeoGebra Tools.  
This time, construct the incenter without the custom tool, simply using the standard 
GeoGebra tools. Construct a simple triangle ABC. Use the angle-bisector tool (pull 
down from the perpendicular-line tool) to construct the three angle bisectors. They 
all meet at point D, which is always inside the circle. Now construct perpendiculars 
from D to the three sides, defining points E, F and G at the intersections with the 
sides. Segments DE, DF and DG are all the same length. Construct a circle centered 
on D and passing through E. The circle is tangent at E, F and G. That is the state 
shown below.  
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Given a triangle ABC, its incenter has been constructed with the GeoGebra angle-bisector 
tool. 

Drag this figure around. Can you see why the five parts of the conjecture should 
always be true? Can you identify dependencies built into the construction that 
constrain the incenter to move in response to movements of A, B or C so that the 
five parts of the conjecture are always true? 

Construct the Incenter with Elementary Line and Circle Tools.  
A formal deductive proof of the conjecture would normally start from a completed 
diagram like the preceding one. Rather than starting from this completed figure, 
instead proceed through the construction step by step using just elemental 
straightedge (line) and compass (circle) tools. Avoid using the angle-bisector tool, 
which hides the dependencies that make the produced line a bisector. 

As a first step, construct the angle bisectors of vertex A of a general triangle ABC (see 
Figure below). Construct the angle bisector by constructing a ray AF that goes from 
point A through some point F that lies between sides AB and AC and is equidistant 
from both these sides. This is the dependency that defines an angle bisector: that it is 
the locus of points equidistant from the two sides of the angle. The constraint that F 
is the same distance from sides AB and AC is constructed as follows: First construct 
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a circle centered on A and intersecting AB and AC—call the points of intersection D 
and E. Construct perpendiculars to the sides at these points. The perpendiculars 
necessarily meet between the sides—call the point of intersection F. Construct ray 
AF.  

AF bisects the angle at vertex A, as can be shown by congruent right triangles ADF 
and AEF. (Right triangles are congruent if any two sides are congruent because of the 
Pythagorean relationship, which guarantees that the third sides are also congruent.) 
This shows that angle BAF equals angle CAF, so that ray AF bisects the vertex angle 
CAC into two equal angles. By constructing perpendiculars from the angle sides to 
any point on ray AF, one can show by the corresponding congruent triangles that 
every point on AF is equidistant from the sides of the triangle. 

 

 
Given a triangle ABC, its incenter has been constructed with basic tools.  

As the second step, construct the bisector of the angle at vertex B. First construct a 
circle centered on B and intersecting side AB at point D—call the circle’s point of 
intersection with side BC point G. Construct perpendiculars to the sides at these 
points. The perpendiculars necessarily meet between the sides AB and BC—call the 
point of intersection H. H has been constructed to lie between AB and BC. Construct 
ray BH. BH bisects the angle at vertex B, as can be shown by congruent right triangles 
BDH and BGH, as before. 
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For the third step, mark the intersection of the two angle-bisector rays AF and BH as 
point I, the incenter of triangle ABC. Construct segment CI. You can see that CI is 
the angle bisector of the angle at the third vertex, C in the Figure as follows. Construct 
perpendiculars IJ, IK, IL from the incenter to the three sides. We know that I is on 
the bisector of angles A and B, so IJ=IK and IJ=IL. Therefore, IK=IL, which means 
that I is also on the bisector of angle C. This implies that triangles CKI and CLI are 
congruent, so that their angles at vertex C are equal and CI bisects angle ACB. You 
have now shown that point I is common to the three angle bisectors of an arbitrary 
triangle ABC. In other words, the three angle bisectors meet at one point. The fact 
that the bisectors of the three angles of a triangle are all concurrent is a direct 
consequence of the dependencies you imposed when constructing the bisectors. 

 

 
The incenter, I, of triangle ABC, with equal perpendiculars IJ, IK, and IL, which are radii of 
the inscribed circle. 

Now construct a circle centered on the incenter, with radii IJ, IK, and IL. You have 
already shown that the lengths of IJ, IK and IL are all equal and you constructed them 
to be perpendicular to the triangle sides. The circle is inscribed in the triangle because 
it is tangent to each of the sides. (A circle is tangent to a line if its radius to the 
intersection point is perpendicular to the line.)  

Drag the vertex points of the triangle to show that all the discussed relationships are 
retained dynamically.  

Review the description of the construction. Can you see why all of the parts of the 
conjecture have been built into the dependencies of the figure? None of the parts 
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seem surprising now. They were all built into the figure by the various detailed steps 
in the construction of the incenter. 

When you used the custom incenter tool or even the GeoGebra angle-bisector tool, 
you could not notice that you were thereby imposing the constraint that DF=EF, etc. 
It was only by going step-by-step that you could see all the dependencies that were 
being designed into the figure by construction. The packaging of the detailed 
construction process in special tools obscured the imposition of dependencies. This 
is the useful process of “abstraction” in mathematics: While it allows you to build 
quickly upon past accomplishments, it has the unfortunate unintended consequence 
of hiding what is taking place in terms of imposing dependencies.  

In the Figure where only the elementary “straightedge and compass” tools of the 
point, line and circle have been used the perpendiculars have been constructed 
without even using the perpendicular tool. All of the geometric relationships, 
constraints and dependencies that are at work in the earlier Figures are visible in this 
one. This construction involved the creation of 63 objects (points, lines and circles). 
It is becoming visually confusing. That is why it is often useful to package all of this 
in a special tool, which hides the underlying complexity. It is wonderful to use these 
powerful tools, as long as you understand what dependencies are still active behind 
the visible drawing.  
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Given a triangle ABC, its incenter has been constructed with only elementary point, line and 
circle tools. 

Your own Custom Geometry 
In Challenge 46, you saw how to define your own tools in GeoGebra. You could 
define a whole set of tools that would form your own version of geometry. 

 

For instance, if you just use GeoGebra’s tools for point, line and circle, you could 
define your own custom tools, such as: 

Given three points A, B and C, construct a triangle ABC.  

• Given two points A and B, construct an equilateral triangle on base AB. 
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• Given a line through A and B, construct a perpendicular bisector of AB. 

What is the smallest set of GeoGebra tools you would need to make a set of your 
own custom tools sufficient for constructing all the Challenges in the Game? 

 

Can you invent an innovative form of mathematics using a set of custom and standard 
tools? For instance, can you define custom tools to construct people, cars, streets and 
houses? Then define ways for them to move and interact. A system of mathematics 
requires a set of building blocks (like integers, points, etc.) and a set of procedures for 
combining them (like multiplication or construction or translation). 

Transforming a Factory 
In this topic, you will conduct mathematical studies to help design a widget factory. 
The movement of polygon-shaped widgets, which the factory processes, can be 
modeled in terms of rigid transformations of polygons. You will explore physical 
models and GeoGebra simulations of different kinds of transformations of widgets. 
You will also compose multiple simple transformations to create transformations that 
are more complex, but might be more efficient. You will apply what you learned to 
the purchase of widget-moving machines in a factory. 

Designing a Factory 
Suppose you are the mathematician on a team of people designing a new factory to 
process widgets. In the factory, special machines will be used to move heavy widgets 
from location to location and to align them properly. There are different machines 
available for moving the widgets. One machine can flip a widget over; one can slide a 
widget in a straight line, one can rotate a widget. As the mathematician on the team, 
you are supposed to figure out the most efficient way to move the widgets from 
location to location and to align them properly. You are also supposed to figure out 
the least expensive set of machines to do the moving.  

The factory will be built on one floor and the widgets that have to be moved are 
shaped like flat polygons, which can be laid on their top or bottom. Therefore, you 
can model the movement of widgets as rigid transformations of polygons on a two-
dimensional surface. See what you can learn about such transformations. 

Experiment with Physical Transformations 
To get a feel for this task, take a piece of cardboard and cut out an irregular polygon. 
This polygon represents a widget being processed at the factory. Imagine it is moved 
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through the factory by a series of machines that flip it, slide it and rotate it to move it 
from one position to another on the factory floor. 

Place the polygon on a piece of graph paper and trace its outline. Mark that as the 
“start state” of the polygon. Move the cardboard polygon around. Flip it over a 
number of times. What do you notice? Rotate it around its center or around another 
point. Slide it along the graph paper. Finally, trace its outline again and mark that as 
the “end state” of the transformation. 

Place the polygon at its start state position. What is the simplest way to move it into 
its finish state position? What do you notice about different ways of doing this? 

Now cut an equilateral triangle out of the cardboard and do the same thing. Is it easier 
to transform the equilateral triangle from its start state to its finish state than it was 
for the irregular polygon? What do you notice about flipping the triangle? What do 
you notice about rotating the triangle? What do you notice about sliding the triangle? 

What do you are wonder about transformations of polygons? 

Transformational Geometry 
In a previous activity with triangles, you saw that there were several kinds of rigid 
transformations of triangles that preserved the measures of the sides and the angles 
of the triangles. You also learned about GeoGebra tools that could transform objects 
in those ways, such as: 

• Reflect Object about Line 
• Rotate Object around Point by Angle 
• Translate Object by Vector 

These tools can transform any polygon in these ways and preserve the measures of 
their sides and angles. In other words, these geometric transformations can model the 
movement of widgets around the factory. 

Composing Multiple Transformations 
In addition to these three kinds of simple transformations, you can “compose” two 
or more of these to create a more complicated movement. For instance, a “glide 
reflection” could be defined as reflecting an object about a line and then translating 
the reflected object by a vector. Composing three transformations means taking an 
object in its start state, transforming it by the first transformation into a second state, 
then transforming it with the second transformation from its second state into a third 
state, and finally transforming it with the third transformation from its third state into 
its end state. You can conceive of this as a single complex transformation from the 
object’s start state to its end state.  

The study of these transformations is called “transformational geometry.” There are 
some important theorems in transformational geometry. Maybe you can discover 
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some of them and even find some of your own. These theorems can tell you what is 
possible or optimal in the widget factory’s operation. 

An Example of Transformations in GeoGebra 
 

 
 

In this figure, an irregular polygon ABCDEFGH has gone through 3 transformations: 
a reflection (about line IJ), a rotation (about point K), and a translation (by vector 
LM). A copy of the polygon has gone through just 1 transformation (a reflection 
about line I1J1) and ended in the same relative position and orientation. There are 
many sequences of different transformations to transform a polygon from a particular 
starting state (position and orientation) to an end state (position and orientation). 
Some possible alternative sequences are simpler than others. 

Discuss with your group how you want to proceed with each of the following 
explorations. Do each one together with your group, sharing GeoGebra 
constructions. Save a construction view for each exploration to include in your 
summary. Discuss what you are doing, what you notice, what you wonder, how you 
are constructing and transforming polygons, and what conjectures you are 
considering. 

Exploration 1 
Consider the transformations in the previous figure. Drag the line of reflection (line 
IJ), the point of rotation (point K), the translation vector (vector LM) and the 
alternative line of reflection (line NO). How does this affect your ability to substitute 
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the one reflection for the sequence on three transformations? What ideas does this 
give you for the lay-out of work-flow in a factory? 

Exploration 2 
Consider just simple rotations of an irregular polygon. Suppose you perform a 
sequence of five or six rotations of the polygon widget around different points. Would 
it be possible to get from the start state to the end state in a fewer number of rotations? 
In other words, can the factory be made more efficient? 

Consider the same question for translations of widgets. 

Consider the same question for reflections of widgets. 

Exploration 3 
Perhaps instead of having a machine in the factory to flip widgets and a different 
machine to move the widgets, there should be a machine that does both at the same 
time. Consider a composite transformation, like a glide reflection composed of a 
reflection followed by a translation. Suppose you perform a sequence of five or six 
glide reflections on an irregular polygon. Does it matter what order you perform the 
glide reflections? Would it be possible to get from the start state to the end state in a 
fewer number of glide reflections? 

Does it matter if a glide reflection does the translation before or after the reflection? 

Consider the same questions for glide rotations. 

Exploration 4 
Factory managers always want to accomplish tasks as efficiently as possible. What is 
the minimum number of simple transformation actions needed to get from any start 
state of the irregular polygon in the figure to any end state? For instance, can you 
accomplish any transformation with three (or fewer) simple actions: one reflection, 
one rotation and one translation (as in the left side of the preceding figure)? Is it 
always possible to achieve the transformation with fewer than three simple actions (as 
in the right side of the figure)? 

Exploration 5 
Factory managers always want to save costs. If they can just buy one kind of machine 
instead of three kinds, that could save money. Is it always possible to transform a 
given polygon from a given start state to a specified end state with just one kind of 
simple transformation – e.g., just reflections, just rotations or just translations? How 
about with a certain composition of two simple kinds, such as a rotation composed 
with a translation or a reflection composed with a rotation? 

Exploration 6 
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Help the factory planners to find the most direct way to transform their widgets. 
Connect the corresponding vertices of the start state and the end state of a 
transformed polygon. Find the midpoints of the connecting segments. Do the 
midpoints line up in a straight line? Under what conditions (what kinds of simple 
transformations) do the midpoints line up in a straight line? Can you prove why the 
midpoints line up for some of these conditions? 

If you are given the start state and the end state of a transformed polygon, can you 
calculate a transformation (or a set of transforms) that will achieve this 
transformation? This is called “reverse engineering” the transformation. Hint: 
constructing the perpendicular bisectors of the connecting segments between 
corresponding vertices may help in some conditions (with some kinds of simple 
transformations). 

Exploration 7 
Different factories process differently shaped widgets. How would the findings or 
conjectures from Explorations 1 to 5 be different for a widget which is an equilateral 
triangle than they were for an irregular polygon? How about for a square or circle? 
How about for a hexagon? How about for other regular polygons? 

Exploration 8 
So far, you have only explored rigid transformations – which keep the corresponding 
angles and sides congruent from the start state to the end state. What if you now add 
dilation transformations, which keep corresponding angles congruent but change 
corresponding sides proportionately? Use the Dilate-Object-from-Point-by-Factor 
tool and compose it with other transformations. How does this affect your findings 
or conjectures from Explorations 1 to 5? Does it affect your factory design if the 
widgets produced in the factory can be uniformly stretched or shrunk?  

Factory Design 
Consider the factory equipment now. Suppose the factory needs machines for three 
different complicated transformations and the machines have the following costs: a 
reflector machine $20,000; a rotator machine $10,000; a translator machine $5,000. 
How many of each machine would you recommend buying for the factory?  

What if instead they each cost $10,000? 

Summarize 
Summarize your trials with the cardboard polygons and your work on each of the 
explorations in a report on your findings. What did you notice that was interesting or 
surprising? State your conjectures or theorems. Can you make some 
recommendations for the design of the factory? If you did not reach a conclusion, 
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what do you think you would have to do to reach one? Do you think you could 
develop a formal proof for any of your conjectures in these explorations? 

Navigating Taxicab Geometry 
In this topic, you will explore an invented transformational geometry that has 
probably never been analyzed before (except by other teams who did this topic). 
Taxicab geometry is considered a “non-Euclidean” form of geometry, because in 
taxicab geometry the shortest distance between two points is not necessarily a straight 
line. Although it was originally considered by the mathematician Minkowski (who 
helped Einstein figure out the non-Euclidean geometry of the universe), taxicab 
geometry can be fun for amateurs to explore. Krause (1986) wrote a nice introductory 
book on it that uses an inquiry approach, mainly posing thought-provoking problems 
for the reader. Gardner devoted his column on mathematical games in Scientific 
American to clever extensions of it in November 1980. 

An Invented Taxicab Geometry 
There is an intriguing form of geometry that is called “taxicab geometry” because all 
lines, objects and movements are confined to a grid. It is like a grid of streets in a city 
where all the streets either run north and south or they run east and west. For a taxicab 
to go from one point to another in the city, the shortest route involves movements 
along the grid. Taxicab geometry provides a model of urban life and navigation. 

In taxicab geometry as we will define it for this topic, all points are at grid 
intersections, all segments are confined to the grid lines and their lengths are confined 
to integer multiples of the grid spacing. The only angles that exist are multiples of 90° 
— like 0°, 90°, 180°, 270° and 360°. Polygons consist of segments connected at right 
angles to each other.  

How would you define the rigid transformations of a polygon in taxicab geometry? 
Discuss this with your team and decide on definitions of rotation, translation and 
reflection for this geometry. (See 0 for an example.) 

Use GeoGebra with the grid showing. Use the grid icon on the lower toolbar to 
display the grid; the pull-down menu from the little triangle on the right lets you 
activate “Snap to Grid” or “Fixed to Grid. The menu “Options” | “Advance” | 
“Graphics” | “Grid” lets you modify the grid spacing. Only place points on the grid 
intersections.  

Construct several taxicab polygons. Can you use GeoGebra’s transformation tools 
(rotation, translation and reflection)? Or do you need to define custom transformation 
tools for taxicab geometry? Or do you have to manually construct the results of 
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taxicab transformations? Rotate (by 90° or 180°), translate (along grid lines to new 
grid intersections) and reflect (across segments on grid lines) your polygons. 

Explore Taxicab Transformational Geometry 
Now consider the question that you explored for classical transformational geometry 
in Challenges 30-34. Can all complex transformations be accomplished by just one 
kind of transformation, such as reflection on the grid? What is the minimum number 
of simple transformations required to accomplish any change that can be 
accomplished by a series of legal taxicab transformations? 

In Euclidean geometry, if a right triangle has sides of length 3 and 4, the hypotenuse 
is 5, forming a right triangle with integer lengths. In taxicab geometry, a right triangle 
with legs of 3 and 4 seems to have a hypotenuse of 7, which can be drawn along 
several different paths. In the grid shown below, a 3-4-7 right triangle ABC (green) 
has been reflected about segment IJ (blue), then translated by vector KL (blue), and 
then rotated 180° clockwise about point C'' (brown). Equivalently, ABC (green) has 
been reflected about segment BC (red), then reflected about the segment going down 
from C'1 (red), and then reflected about segment A'''M'''  (brown). Thus, in this case, 
the composition of a reflection, a translation and a rotation can be replicated by the 
composition of just reflections, three of them. 
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Explore Kinds of Polygons and their Symmetries 
What distinct kinds of “polygons” are possible in taxicab geometry? Can you work 
out the hierarchy of different kinds of “taxicab polygons” with each number of sides? 
E.g., are there right or equilateral taxicab triangles? Are there square or parallelogram 
taxicab quadrilaterals?  

Discuss and Summarize 
What have you or your pod noticed about taxicab transformational geometry? What 
have you wondered about and investigated? Do you have conjectures? Did you prove 
any theorems in this new geometry? What questions do you still have?  

Be sure to write down your findings, as well as wonderings that you would like to 
investigate in the future. 

Congratulations! 
You have now completed the topics in this book. You are ready to explore dynamic 
geometry and GeoGebra on your own or to propose further investigations for your 
pod. You can also create GeoGebra resources with your own topics and invite people 
to work together on them. 
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following is an academic article that discusses how this game can be a model of 
curriculum for “blended learning,” which combines teacher-led classroom instruction 
and student-centered collaborative learning. It was published as: Stahl, G. (2021). 
Redesigning mathematical curriculum for blended learning. Education Sciences. 11(165), 
pages 1-12. Web: https://www.mdpi.com/2227-7102/11/4/165. 
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Redesigning Mathematical 
Curriculum for Blended Learning 

Abstract: The Coronavirus pandemic has thrown public schooling into crisis, trying 
to juggle shifting instructional modes: classrooms, online, home-schooling, student 
pods, hybrid and blends of these. This poses an urgent need to redesign curriculum 
using available technology to implement approaches that incorporate the findings of 
the learning sciences, including the emphasis on collaborative learning, computer 
mediation, student discourse and embodied feedback. This paper proposes a model 
of such learning, illustrated using existing dynamic-geometry technology to translate 
Euclidean geometry study into collaborative learning by student pods. The technology 
allows teachers and students to interact with the same material in multiple modes, so 
that blended approaches can be flexibly adapted to students with diverse preferred 
learning approaches or needs and structured into parallel or successive phases of 
blended learning. The technology can be used by online students, co-located small 
groups and school classrooms, with teachers and students having shared access to 
materials and to student work across interaction modes. 

Keywords: dynamic geometry; group practices; CSCL, group cognition, learning 
pods. 

Introduction: Student Pods during the Pandemic 
Alternatives to the traditional teacher-centric physical classroom suddenly became 
necessary during the coronavirus pandemic to cover a variety of shifting learning 
options at all age levels. Although the creation of student “pods” (small groups of 
students who study together) was popularized as a way of restricting the spread of 
virus, it was rarely transferred to the organization of online learning as collaborative 
learning. 

Research in the learning sciences has long explored pedagogies and technologies for 
student-centered and collaborative learning (Sawyer, 2021). However, the prevailing 
practice of schooling has changed little (Sinclair, 2008); students, parents, teachers, 
school districts and countries were poorly prepared for the challenges of the 
pandemic. Case studies from countries around the world documented the common 
perceptions by students, teachers and administrators of inadequate infrastructure and 
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pedagogical preparation for online learning (Noor, Isa & Mazhar, 2020; Peimani & 
Kamalipour, 2021). 

An abrupt rush to online modes found that the digital divide that leaders had 
promised to address for decades still left disadvantaged populations out (Blume, 2020; 
Preez & Grange, 2020). Income inequality by class and nation correlates strongly with 
lack of computer and Internet access. In addition to confronting these hardware issues 
and low levels of computer training, teachers everywhere had access to few 
applications designed to support student learning in specific disciplines. They had to 
rely on commercial business software like Zoom and management systems like 
Blackboard, which incorporated none of the lessons of learning-sciences research. 

While school districts planned for “reopening,” administrators prepared scenarios for 
combining in-class, online, home schooling and small student pods. The plans kept 
shifting and little was done to prepare and support teachers to teach in these various 
combinations of modalities. Moreover, teachers were rarely guided in redesigning 
their curriculum for online situations, in which they were often neither trained nor 
experienced. 

Pundits and early surveys were quick to call the attempt to teach online a failure and 
declare that it simply highlighted how important social interaction was to students. 
They argued that online media severely reduced student motivation by removing 
inter-personal interaction (Niemi & Kousa, 2020; Tartavulea et al., 2020). 

However, the field of computer-supported collaborative learning (CSCL) has always 
emphasized the centrality of social interaction to learning, demonstrating that sociality 
could be supported online as well as face-to-face (Cress, Rosé, Wise & Oshima, 2021; 
Stahl, Koschmann & Suthers, 2021). Micro-analyses of knowledge building in CSCL 
contexts detail the centrality of social interaction to effective online collaborative 
learning and even the students’ enjoyment of the online social contact (Stahl, 2021). 
The source of asocial feelings is the restriction of online education to simply 
reproducing teacher lectures and repetitive individual drill. It is necessary to explicitly 
support social contact and interaction among students to replace the subtle student-
to-student contact of co-presence. This can be done through collaborative learning, 
which simultaneously maintains a focus of the interaction on the subject matter. 

The pandemic forced teachers to suddenly change their teaching methods and 
classroom practices, as reported by (Johnson, Veletsianos & Seaman, 2020). The 
sudden onset of pandemic conditions and school lockdown made it infeasible to 
introduce new technologies, let alone scale up research prototypes for widespread 
usage. Nevertheless, the lessons of the pandemic should lead over the longer run to 
more effective online options, as well as preparation in terms of infrastructure, 
support, attitude and skills for innovative online educational approaches and 
applications (Adedoyin & Soykan, 2020). 
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In the face of the pandemic, teachers and school districts were largely on their own 
to adapt commercially established technologies like Zoom and Blackboard to 
changing local circumstances. One innovative example was an attempt to make 
teacher presentations in Blackboard more interactive by instituting a hybrid audience 
of some students in class (to provide feedback to the teacher) and others online 
(Busto, Dumbser & Gaburro, 2021). Other researchers stressed the need to go further 
and introduce an intermediate scale between the individual students and the teacher-
led classroom—namely a student-centered small-group or pod learning unit (Orlov 
et al., 2020). The following provides an example of how a careful integration of 
existing technologies (Zoom or Blackboard with GeoGebra) can support pod learning 
and blend the online with in-class as well as the small group with whole classroom. 

This article describes how a research project (Virtual Math Teams, or VMT) translated 
the ancient pedagogy of Euclidean geometry into a model of CSCL, and how that was 
then further redesigned to support blended-learning pedagogy for pandemic 
conditions (with GeoGebra Classes). This can serve as a prototype for the blended 
teaching of other subjects in mathematics and other fields. If such a model can 
succeed during the pandemic, it can herald on-going practical new forms of education 
for the future. The pandemic experience will change schooling to take increased 
advantage of online communication and offers an opportunity for CSCL to guide that 
process in a progressive direction. The approach described here using GeoGebra 
Classes with VMT curriculum can be implemented immediately, during the pandemic, 
and then further developed later for post-pandemic blended collaborative learning. 

Designing for Virtual Math Teams 
The VMT research project was conducted at the Math Forum at Drexel University in 
Philadelphia, USA from 2004 through 2014. The VMT research has been documented 
in five volumes analyzing excerpts of actual student interaction from a variety of 
viewpoints and methodologies (Stahl, 2006; 2009; 2013; 2016; 2021). 

The project was an extended effort to implement and explore a specific vision of 
computer-supported collaborative learning (CSCL), applied to the learning of 
mathematics: 

• First, it generated and collected data on small online groups of public-
school students collaborating on problem solving. 

• Second, it provided computer support, including a shared whiteboard 
and a dynamic-geometry app. 

• Third, it analyzed the group interaction that unfolded in the team 
discourse. 
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• Fourth, it elaborated aspects of a theory of “group cognition” (Stahl, 
2006). Several papers published during this period and contributing to 
the broad vision of CSCL have now been reprinted and reflected upon 
in Theoretical Investigations: Philosophic Foundations of Group Cognition (Stahl, 
2021). Several chapters in this volume analyze aspects of group 
cognition based on excerpts of student discourses during VMT sessions. 

The VMT project cycled through many iterations of design-based research (design, 
trial, analysis, redesign), developing an online collaboration environment for small 
groups of students to learn mathematics together. The eleven chapters of (Stahl, 2013) 
describe the project from different perspectives: the CSCL vision; the history, 
philosophy, nature and mathematics of geometry; the theory of collaboration; the 
approach to pedagogy, technology and analysis; the curriculum developed; and the 
design-based character of the research project. The theory of group cognition 
provides a framework for pod-based education by describing how knowledge building 
can take place through small-group interaction—with implications for 
conceptualizing collaborative learning, designing for it, analyzing group-learning 
processes/practices and assessing its success. The theory explores the inter-weaving 
of individual, group and classroom learning. 

The VMT software eventually incorporated GeoGebra, 1  an app for dynamic 
geometry, which is freely available and globally popular (available in over a hundred 
languages). Dynamic geometry is a computer-based version of Euclidean geometry 
that allows one to construct figures with relationships among the parts and then 
allows the constructed points to be dragged around to test the dependencies—
providing immediate visual feedback (Hölzl, 1996; Jones, 1996; Laborde, 2000). 

As part of the VMT Project, curricular units were designed and tried out in online 
after-school settings (primarily in the Eastern USA), with teacher training on how to 
guide the student groups and how to integrate and support the online collaborative 
learning with teacher presentations, readings, homework and class discussion (Grisi-
Dicker, Powell, Silverman & Fetter, 2012). The geometry activities provided hands-
on experience exploring the basics of dynamic geometry in small-group collaboration. 
Student peer discussion was encouraged that would promote mathematical discourse 
and reflection (Sfard, 2008). In this way, the research project translated Euclid’s 
curriculum into the computer age. Euclid’s Elements (Euclid, 300 BCE), which had 
inspired thinkers for centuries, was reworked in terms of dynamic geometry and a 
learning-sciences perspective (Sinclair, 2008). 

 
1 https://www.geogebra.org  
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Redesigning for Pandemic Pods with GeoGebra 
Classes 
The VMT platform was no longer available when the pandemic appeared and made 
the need for supporting online learning particularly urgent. While teachers and 
students can download GeoGebra without VMT, that would not support full 
collaboration, where several students can work together on a shared geometric figure. 
Fortunately, GeoGebra recently released a “Class” function, in which a teacher can 
invite several students (a pod) to work on their own versions of the same construction, 
and the teacher can view each student’s construction work and discussion in a Class 
dashboard (Figures 1 and 2). The dashboard provides a form of “learning analytics” 
(Cress et al., 2021) support for the teacher, which can also be adapted to facilitate 
student collaboration. 

 

Figure 1. The GeoGebra Class dashboard displays the current state of each student’s work 
on a selected task. In this example, the students are learning Euclid’s construction of an 
equilateral triangle. 
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Figure 2. The GeoGebra Class dashboard also displays each student’s response to selected 
questions. In this example the students are discussing rotating a 2-D curve into the 3rd 
dimension. 

To take advantage of GeoGebra Classes, VMT’s dynamic-geometry curriculum has 
now been adapted to small pods or even home-schooled individual students using the 
Classes functionality. The new curriculum is called Dynamic Geometry Game for Pods 
(Stahl, 2020). Using a set of 50 GeoGebra activities that cover much of basic high-
school or college geometry, the instructions and the reflection questions were 
reworked for the new scenario (Figures 3 and 4). The sequencing of tasks was 
maintained from VMT, which roughly followed Euclid’s (300 BCE) classic 
presentation as well as contemporary U.S. Common Core guidelines for geometry 
courses (National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010).  
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Figure 3. One of 50 tasks for student pods: Euclid’s construction of an equilateral triangle. 

 

Figure 4. A set of reflection questions for members of pods to discuss related to the task in 
Figure 3. 

The revised curriculum is available on the GeoGebra repository site as an interactive 
GeoGebra book.2 Additionally, a free e-book is available so people can conveniently 

 
2 https://www.geogebra.org/m/vhuepxvq#material/swj6vqbp. 
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review the curriculum offline (Stahl, 2020). The book’s introductions guide classroom 
teachers, home-schooling parents, pod tutors or self-guided students to use the 
curriculum. The format is that of a game with successively challenging levels, which 
must be conquered consecutively. It is structured as a sequence of five parts, each 
including about 10 of the hour-long curricular activities, grouped by geometry level 
and degree of expertise required. The game levels are: (1) beginner, (2) construction, 
(3) triangles, (4) circles, (5) dependency, (6) compass, (7) congruence, (8) inscribed 
polygons, (9) transformation, (10) quadrilaterals, (11) advanced geometer, (12) 
problem solver and (13) expert.  

The ideal usage would be by pods of students working online and communicating 
through the dashboard. A pod coordinator or teacher can provide all participants with 
access to the real-time dashboard, so that everyone can observe and discuss what 
everyone else is doing in GeoGebra and typing in the Class interface. Furthermore, 
GeoGebra can be shared in Zoom, to provide spoken interaction and recording of 
sessions for student reflection, teacher supervision or researcher analysis. 

Note that the Class functionality is not fully collaborative, even when all students have 
access to the dashboard. Each student works in their own construction area (Figure 
1), unlike the shared workspace of the VMT software (Figure 3). Also, each student 
answers the reflection questions in their own window (Figure 2), rather than in a chat 
window as in VMT. However, at least the students can see each other’s work and 
learn from it. Also, if GeoGebra is embedded in Zoom, then the students can discuss 
their approaches together. The limited support for collaboration is a trade-off of using 
established software for innovative pedagogy. 

The goal is that math teachers and others can adapt the use of this curriculum and 
technology to diverse and rapidly changing teaching conditions and learning 
modalities. If used with full online access—including the Class dashboard shared by 
everyone, possibly embedded in Zoom—the collaborative learning experience can 
approach that envisioned in the VMT research. However, it can also be used in other 
ways and across various presentation modalities of blended approaches. Student work 
carried out individually can be shared within a Class pod and then presented in a 
whole classroom setting, whether virtual or face-to-face. 

The usage of GeoGebra in a collaborative online session can provide all students with 
hands-on experience in geometry construction and investigation (manipulation and 
reflection). A major advantage of collaborative learning is that students can help each 
other, pooling their partially developed skills and understanding. However, it is also 
important for teachers to provide introductions to new ideas and to review in the 
classroom context the work that students are doing in pods or individually. 
Furthermore, individual students must make sense of the material for themselves; 
reading and working individually on problems is important to support collaborative 
learning. That is why teachers should orchestrate blended learning, incorporating 
individual, small group and classroom learning in a coordinated, mutually supportive 
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way. Of course, students learn best in diverse ways, so it is productive to offer them 
alternative educational modalities. Teachers can adapt and mix the modalities in 
response to local circumstances and learning differences among their students. 

Findings from VMT Trials 
The VMT Project was conceived and executed as extended design-based research 
(DBR), as detailed in (Stahl, 2013). This involved innovations in technology, 
pedagogy, assessment and theory. Each aspect of the VMT Project has been reviewed 
in multiple formats and contexts by international researchers from relevant 
disciplines. 

Findings from the project have been discussed in about 250 publications, including 
peer-reviewed workshops, conference papers, journal articles, dissertations and 
books. The project evolved over a decade, prototyping and testing technologies and 
curricula that underwent multiple iterative revisions each year. The current curriculum 
for blended learning, Dynamic Geometry Game for Pods, is the latest iteration, moving 
from the VMT software platform to the GeoGebra Class function to support blended 
learning including collaborative learning in online student pods. 

Although a variety of analysis approaches were applied to identify successes and 
problems during VMT trials, most of the published analyses used a form of 
conversation analysis adopted from informal conversation to the interaction of online 
school mathematics. While most of the analyses focused on brief interactions among 
small groups of students, some included longer sequences, sometimes spanning 
multiple sessions. For instance, the entire interaction of a group of three middle-
school girls—the “Cereal Team”—was followed longitudinally across eight hour-long 
online sessions and was subjected to detailed micro-analysis of all the discourse and 
geometry construction (see Stahl, 2013, Chapter 7; 2016). 

As suggested by the title of (Stahl, 2013), Translating Euclid: Designing a Human-Centered 
Mathematics, the pedagogy was converted away from expecting students to accept and 
memorize concepts, theorems and techniques based on authority. Instead, the project 
promoted a student-centered and inquiry-based approach of exploration, feedback 
and discourse based on situated and embodied interaction with computer-based 
artifacts and guided discussion practicing the use of mathematical terminology. 

Although the VMT Project was originally intended to investigate and document 
phenomena of group cognition (Stahl, 2006), in the end it proposed a methodological 
focus on group practices (Stahl, 2016). The sequencing of challenges in the Dynamic 
Geometry Game for Pods is carefully designed to guide student groups and individuals to 
adopt group practices and individual skills needed to progress through the process of 
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collaboratively learning dynamic geometry. For instance, procedures for placing lines, 
dragging points, constructing circles and checking connections among objects are 
practiced before more complex constructions are proposed, which rely on these skills. 
The VMT research indicates that such an approach can be effective without being 
overly directive if a group of students can explore and discuss each technique 
collaboratively. The Dynamic Geometry Game for Pods is based on this body of findings, 
as well as on the extensive learning-science literature that underlies the VMT project’s 
theory of group cognition, reviewed in (Stahl, 2021). 

Supporting Group Practices in Blended Learning 
Teachers, parents and pod organizers can now use the GeoGebra book with its 50 
challenges for courses in high-school geometry. Educators in other fields could follow 
this example and develop analogous curriculum and technology usage. Then the 
results of such educational interventions could be collected, shared and analyzed. 
Analysis techniques honed during the VMT Project (Medina & Stahl, 2021) could be 
used along with other methods to investigate collaboration patterns in interaction 
discourse, the adoption of targeted group practices and advancement of learning 
goals. 

This approach contrasts with the view of learning as primarily a psychological process 
of changing an individual’s mental contents or cerebral representations (Gardner, 
1985; Thorndike, 1914). Rather, individual learning is seen as largely a result of group 
and social processes or practices in which multiple people, artifacts, technologies and 
discourses interact to evolve cognitive products at the group level, such as geometric 
constructions, informal proofs, group reports and textual responses to questions 
(Stahl & Hakkarainen, 2021). Such group products require the establishment and 
maintenance of mutual understandings, intersubjectivity, distributed cognition, 
communal conceptualizations, common interpretations of problems, collaborative 
problem solving and shared knowledge. While individuals contribute to these group 
phenomena, the collective products have a life of their own (Latour, 1996; 2008; Lave 
& Wenger, 1991; Tomasello, 2014; Vygotsky, 1930; 1934/1986).  

One way that group cognition can result in individual learning is through the adoption 
of group practices, which then provide models for individual behavior (Stahl, 2021, 
Chapter 16). For instance, a pod of students working on a geometry problem can 
encounter a concept, theorem or technique that may originate with a pod member, 
from the problem description or from the history of geometry. The pod discussion 
may then explicitly discuss what was encountered, come to a shared understanding of 
how it applies to the pod’s current situation and even overtly agree to use it. In 
subsequent interactions, the pod simply applies the new practice without discussing 
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it again. It becomes a tacit group practice, recognized by everyone in the pod. Pod 
members may also retain this practice as their own individual mathematical skill when 
they work outside the pod. 

While the theory of group cognition and group practice has been discussed at length 
in the reports of the VMT Project, it will be interesting to see how these theories are 
manifested in new situations in which the Dynamic Geometry Game for Pods or analogous 
curricula are enacted. In addition to these quite broad theories, the VMT Project 
developed characteristics that may be more specific to digital geometry. It will be 
important to investigate the applicability of these features in new contexts and 
disciplines. 

A central focus of the Dynamic Geometry Game for Pods is on the practices involving 
dependency as central to dynamic-geometric constructions. For instance, in constructing 
an equilateral triangle with radii of equal circles, it is essential that the lengths of the 
three sides are dependent upon the equal radii, even when a triangle vertex or a circle 
center is dragged to a new location. Indeed, the proof that the triangle is equilateral 
hinges on this dependency—and has for thousands of years since Euclid (300 BCE). 
Viewing constructions in terms of practices that establish and preserve dependencies 
(rather than in terms of visual appearance or numeric measurements) is quite difficult 
for students to learn. One can observe such an insight as it emerges in the discourse 
of a pod, assuming that the curriculum has been effectively designed to promote such 
a group practice.  

One aspect of curriculum design to support the adoption of specific group practices 
in dynamic geometry is to sequence tasks and associated practices carefully. This is 
clear in Euclid’s carefully ordered presentation and in the hierarchies of theorems in 
every area of mathematics.  

However, in collaborative learning of geometry, groups must adopt more practices 
than just the purely mathematical ones. Specifically, the micro-analysis of the eight 
sessions of the Cereal Team identified about sixty group practices that the group 
explicitly, observably enacted. These practices successively contributed to various 
core aspects of the group’s abilities: to collaborate online; to drag, construct, and 
transform dynamic-geometry figures; to use GeoGebra tools; to identify and 
construct geometric dependencies; and to engage in mathematical discourse about 
their accomplishments. 

Table 1 lists practices explicitly discussed by the Cereal Group and identified in the 
analysis of their discourse (Stahl, 2016). Each of these practices is illustrated in the 
commentary on the detailed transcript of the student group’s interaction. One can see 
the group negotiating, adopting and reusing each group practice in the context of their 
mathematical problem solving and online collaborative learning. 
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Table 1. Identified practices adopted by the Cereal Group. 

Group collaboration practices: 

• Discursive turn taking (responding to each other and eliciting 
responses). 

• Coordinating activity (deciding who should take each step). 
• Constituting a collectivity (e.g., using “we” rather than “I” as agent).  
• Sequentiality (establishing meaning by temporal context). 
• Co-presence (being situated together in a shared world of concerns). 
• Joint attention (focus on the same, shared images, words and actions). 
• Opening and closing topics (changing discourse topics together). 
• Interpersonal temporality (recognizing the same sequence of topics, 

etc.). 
• Shared understanding (common ground). 
• Repair of understanding problems (explicitly fixing misunderstandings). 
• Indexicality (referencing the same things with their discourse). 
• Use of new terminology (adopting new shared words). 
• Group agency (deciding what to do as a group). 
• Sociality (maintaining friendly relations). 
• Intersubjectivity (sharing perspectives). 

Group dragging practices: 

• Do not drag lines to visually coincide with existing points, but use the 
points to construct lines between or through them. 

• Observe visible feedback from the software to guide dragging and 
construction. 

• Drag points to test if geometric relationships are maintained. 
• Drag geometric objects to observe invariances. 
• Drag geometric objects to vary the figures and see if relationships are 

always maintained. 
• Some points cannot be dragged or only dragged to a limited extent; they 

are constrained. 

Group construction practices: 

• Reproduce a figure by following instruction steps. 
• Draw a figure by dragging objects to appear right. 
• Draw a figure by dragging objects and then measure to check. 
• Draw a figure by dragging objects to align with a standard. 
• Construct equal lengths using radii of circles. 
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• Use previous construction practices to solve new problems. 
• Construct an object using existing points to define the object by those 

points. 
• Discuss geometric relationships as results of the construction process. 
• Check a construction by dragging its points to test if relationships 

remain invariant. 

Group tool-usage practices: 

• Use two points to define a line or segment. 
• Use special GeoGebra tools to construct perpendicular lines. 
• Use custom tools to reproduce constructed figures. 
• Use the drag test to check constructions for invariants resulting from 

custom tools. 

Group dependency-related practices: 

• Drag the vertices of a figure to explore its invariants and their 
dependencies.  

• Construct an equilateral triangle with two sides having lengths 
dependent on the length of the base, by using circles to define the 
dependency. 

• Circles that define dependencies can be hidden from view, but not 
deleted, and still maintain the dependencies. 

• Construct a point confined to a segment by creating a point on the 
segment. 

• Construct dependencies by identifying relationships among objects, 
such as segments that must be the same length. 

• Construct an inscribed triangle using the compass tool to make 
distances to the three vertices dependent on each other. 

• Use the drag test to check constructions for invariants. 
• Discuss relationships among a figure’s objects to identify the need for 

construction of dependencies. 
• Points in GeoGebra are colored differently if they are free, restricted or 

dependent. 
• Indications of dependency imply the existence of constructions (such as 

regular circles or compass circles) that maintain the dependencies, even 
if the construction objects are hidden. 

• Construct a square with two perpendiculars to the base with lengths 
dependent on the length of the base. 

• Construct an inscribed square using the compass tool to make distances 
on the four sides dependent on each other. 
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• Use the drag test routinely to check constructions for invariants. 

Group practices using chat and GeoGebra actions: 

• Identify a specific figure for analysis. 
• Reference a geometric object by the letters labeling its vertices or 

defining points. 
• Vary a figure to expand the generality of observations to a range of 

variations 
• Drag vertices to explore what relationships are invariant when objects 

are moved, rotated, extended. 
• Drag vertices to explore what objects are dependent upon the positions 

of other objects. 
• Notice interesting behaviors of mathematical objects 
• Use precise mathematical terminology to describe objects and their 

behaviors. 
• Discuss observations, conjectures and proposals to clarify and examine 

them. 
• Discuss the design of dependencies needed to construct figures with 

specific invariants. 
• Use discourse to focus joint attention and to point to visual details. 
• Bridge to past related experiences and situate them in the present 

context. 
• Wonder, conjecture, propose. Use these to guide exploration. 
• Display geometric relationships by dragging to reveal and communicate 

complex behaviors. 
• Design a sequence of construction steps that would result in desired 

dependencies. 
• Drag to test conjectures. 
• Construct a designed figure to test the design of dependencies. 

 

The design of curriculum for collaborative or blended learning can be motivated by 
the goal of promoting the adoption of specific group practices. The curriculum can, 
for instance, scaffold collaboration practices like turn taking to get all students in a 
group involved. Then it can support discourse practices to help groups make their 
meanings explicit and shared. 

Some of the listed group practices are specific to the collaborative learning of dynamic 
geometry with GeoGebra. Many are generally supportive of productive collaborative 
interaction and discourse. Each subject area will have its own central practices to be 
supported and mastered, as well as the more universal ones. It is instructive to see the 
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special demands of dynamic geometry. In addition to the focus on construction of 
dependencies and the associated discourse of how different elements of a figure are 
dependent upon each other, the use of GeoGebra introduces further specific 
challenges. For instance, it was necessary to design the VMT technology to allow all 
group members to observe each other’s construction sequences in detail as they 
unfolded in real time in the app, because the animation of those processes could be 
quite informative (Çakir, Zemel & Stahl, 2009). In addition, the immediate feedback 
afforded by GeoGebra—for instance when someone dragged a point and the whole 
construction changed, revealing what was and what was not dependent on that 
point—was crucial for group behavior, discourse and learning. 

Broadening the Model for Blended Learning 
The proposed use of GeoGebra Classes illustrates the adaption of existing technology 
to an educational innovation explored in research using a prototype that is not 
available for widespread use during the pandemic. While the GeoGebra Classes 
functionality does not fully support small groups to share a workspace for exploring 
geometric construction, it does provide an available platform for student pods 
working within a teacher-led classroom. Students in a pod can see each other’s work 
in real time and can reflect upon it by answering questions that are integrated into the 
curriculum. The teacher can also follow all the student work and discourse and display 
this within a classroom context. Thus, blended learning is supported with online 
GeoGebra, individual construction and reflection, small-group interaction and 
classroom presentation and discussion. The latest version of the online VMT 
curriculum is fully incorporated in a motivational game-challenge format. Optionally, 
the GeoGebra Class can be embedded in Zoom or Blackboard to support additional 
online and blended functionality. 

The research that lies behind the VMT curriculum resulted in enumeration of group 
practices that are important to support for collaborative learning in its subject domain 
of dynamic geometry. Research reports developed the theory of group cognition, 
which describes how small groups can build knowledge collaboratively, in 
orchestration with individual learning and classroom instruction. They analyzed in 
considerable detail the nature of online mathematical discourse and problem solving, 
including how to support and analyze it. 

These features of the VMT experience will need to be reconsidered in the design and 
analysis of support for blended learning in other subject areas, particularly to the 
extent that curriculum and technology diverge from dynamic geometry and 
GeoGebra. Just as the VMT project focused its curriculum on geometric 
dependencies as central to mastering dynamic geometry, efforts in other disciplines 
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may target concepts that underlie their subjects, much as Roschelle’s (1996) early 
CSCL physics support app targeted the understanding of acceleration as core to 
learning Newtonian mechanics or an algebra curriculum might revolve around the 
preservation of equalities. 

Dynamic geometry is just one area of mathematics covered by GeoGebra. The 
software supports all of school mathematics from kindergarten through junior 
college. It is available in over a hundred world languages. Thus, a teacher, parent or 
student who masters dynamic geometry through the curriculum discussed here can 
go on to explore other areas of mathematics with this kind of computer support. 
Learning scientists can develop curriculum units for all ages in all countries following 
the model illustrated here by the Dynamic Geometry Game for Pods.  

This is not to say that all instruction should be provided in a CSCL format. 
Collaboration can be particularly productive for exploring problems that are 
somewhat beyond the reach of individual students. Also, small-group collaborative 
learning is most effective in sessions that are orchestrated into sequences of individual, 
group and classroom activities that support each other (Dillenbourg, Nussbaum, 
Dimitriadis & Roschelle, 2013; Stein, Engle, Smith & Hughes, 2008). Blended learning 
approaches can supplement collaborative learning with complementary instructional 
modes. For example, a teacher presentation and student readings can precede online 
peer interaction, which is followed up by classroom discussion and reporting. While 
teachers struggle to find effective approaches in flipped, hybrid and online classes, 
there is now a clear opportunity for moving CSCL ideas into widespread practice. 
Exploration of pod-based learning during the pandemic could lead to important 
innovations in post-pandemic blended, collaborative and online learning. 

It is difficult to convert courses from in-class to online. Typically, much of the effort 
goes into designing the curriculum and student tasks in advance and instituting new 
procedures and expectations for the students. A culture of collaboration must be 
established in the classroom over time. For instance, grading should be redefined in 
terms of group participation and team accomplishments. It takes several iterations to 
work things out; in each course, it requires teacher patience while students adjust. 
Students must be guided to communicate with their collaborators and to let go of 
competitive instincts.  

The model proposed here is not a panacea for the current crisis of schooling, but 
rather an indication of a potential direction forward, for the remainder of the 
pandemic and beyond. We need to overcome the digital divide, promote collaborative 
learning, develop educational technology for exploring many domains, train teachers 
in online teaching, redesign curriculum to make it flexible for shifting modes of 
schooling. If we do not do this, then the learning sciences will have missed an 
opportunity to promote new forms of collaborative, inquiry-based and computer-
supported learning. Only by meeting this challenge can we avoid the looming 
destruction of public education and the resultant serious worsening of social inequity. 
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Mathematical Group Cognition in 
the Anthropocene 

Abstract 
Euclid presented his classic approach to geometry as a succession of 
propositions. Here, an approach to geometry education today is offered through 
a sequence of quite different propositions. They suggest focal points of a 
philosophy of computer-supported collaborative learning that emerged from 
research on teaching and learning dynamic geometry. In particular, this chapter 
proposes that dynamic geometry can provide a model of dependencies in 
interconnected systems, preparing students to understand mathematical 
structure of interactions among human and natural systems in the new age of 
the Anthropocene.  
By providing an illustrative case of educating for the Anthropocene, this chapter 
suggests that dynamic geometry as taught in the reviewed research project can provide 
student thinking with a model of dependencies in interconnected systems. Review of 
this research into the development of mathematical cognition by student groups 
learning dynamic geometry in online teams elaborates a theory of learning and 
thinking as “group cognition.” This conception of group cognition seems appropriate 
for designing the teaching and learning of mathematics in the Anthropocene. 

Keywords 
Group cognition; virtual math teams; dynamic geometry; dependencies; climate 
change; Anthropocene epoch; computer-supported collaborative learning. 

Proposition α: The Anthropocene 
Living in the Anthropocene requires new ways of understanding interactions 
among countless actors: including human, animal, mineral, technological, 
computational and Earth-system agents. 
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According to many scientists, the world changed significantly with the advent of the 
Anthropocene epoch about 70 years ago. The atomic bomb, the population 
explosion, exponential growth of fossil-fuel usage and CO2 emissions, 
urban/suburban sprawl and many other socio-economic transformations led to a 
rapidly increasing influence of human behavior on worldwide natural systems. Our 
public knowledge systems now have to catch up with these changes so we can 
comprehend and moderate the new and potentially dangerous processes. The 
educational system must develop revised approaches to understanding and teaching 
about this new world. This will require new conceptualizations of knowledge and new 
approaches to education. 

Referring to the present geological epoch as the “Anthropocene” denotes the essential 
influence of human (anthropological) behavior, industry and consumption upon 
major systems of the biosphere, including the land, oceans, vegetation, animals, sea 
life, insects, viruses and climate (Crutzen & Stoermer, 2000; Steffen et al., 2015; 
Wallace-Wells, 2020). The current coupling and interpenetration of cultural and 
natural evolution (Donald, 1991; Donges et al., 2017) requires more than simple 
mechanistic laws and equations of Galileo and Newton to comprehend, anticipate 
and influence; it involves thinking in terms of probabilistic formulations of subtle 
interdependencies (Thomas, Williams & Zalasiewicz, 2020; Wiener, 1950). Teaching 
and learning mathematics in our age should provide cognitive tools and perspectives 
for humanity to survive in this complex setting of climate change and potential 
extinction (Coles, 2017; Gomby, 2022). 

In response to a major shift in reality, we need to reconceptualize scientific analysis, 
including its mathematical and cognitive underpinnings (Griscom et al., 2017; Steffen 
& Morgan, 2021). Just as physics has had to consider stochastic and non-linear 
processes, relativistic and quantum calculations, feedback and observer influences, 
field and gauge theories or conceptualizations like entropy, strings, entanglement, 
dark energy and alternative universes, our understanding of the everyday world 
(environment, biosphere, Gaia) needs to see how things are tied together in surprising 
ways with exponential growth, feedback loops and tipping points (Kemp et al., 2022; 
Steffen, 2018). New approaches to teaching and learning mathematics are required 
here as much as in particle physics (Boylan & Coles, 2017; Mikulan & Sinclair, 2017). 
This chapter reports on a research project to develop a computer-supported 
collaborative-learning approach to teaching dynamic geometry as a way of 
conceptualizing dependencies among objects as a foundation for comprehending 
interconnections. 
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Proposition β: Dynamic Geometry 
Teaching and learning relevant mathematical thinking may be promoted by 
student exploration of dynamic geometry. This interactive application allows 
students to investigate the structure and interrelationships of well-defined 
geometric elements and complexes. This can provide a basis for understanding 
the complexities of the intertwined Anthropocene world. 

Dynamic geometry is a computer-based form of mathematics grounded on Euclidean 
geometry and implemented in popular applications such as GeoGebra and 
Geometer’s Sketchbook (Sinclair, 2008). In Figure 1, an equilateral triangle is 
constructed in dynamic geometry with side lengths dependent upon circles with equal 
radii, as specified in Euclid’s first proposition. Then an interior equilateral triangle is 
constructed with vertices equal distances from the vertices of the exterior triangle. 
Dragging around points of each triangle suggests that the two triangles both remain 
equilateral regardless of the positions of the specified points. 

Proposition γ: Dragging Shapes 
Dynamic geometry visualizes the generalization implicit in Euclidean geometry 
and the dependencies that underlie it by allowing points, lines and figures to be 
interactively dragged to alternative possible locations. Dependencies that persist 
despite such dragging reveal underlying causal relationships. They suggest 
which relationships still hold when locations are generalized from illustrated 
positions of points to other possible positions. 

 
Figure 1. Inscribed equilateral triangles constructed in GeoGebra and 
dragged to different positions. 
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While the Greek proofs stress deduction, they implicitly assume the generality of their 
constructions. Digital geometry, by contrast, allows points to be moved around, 
rearranging related elements in order to maintain dependencies defined by the 
construction process. This allows a viewer to observe some of the generality of the 
construction, including effects (constraints) of the dependencies. The relevant 
dependencies are established by Euclidean constructions when carried out in dynamic 
geometry. 

The implication of Euclid’s (300 BCE) text in Figure 2 is that this construction works 
for any finite straight line and that the construction using the specific line AB in the 
accompanying diagram is an example of how to do the construction for any similar 
lines located elsewhere. If this construction is carried out in dynamic geometry as in 
Figure 1, then one can drag point A, point B and/or line AB to arbitrary other 
positions and the constructed triangle ABC will still be equilateral. Such dragging, 
which is typical of dynamic geometry, displays visually that the construction is valid 
for many lines AB – all those tested with different locations for end points A and B. 
It also displays the dependencies imposed by the construction that constrain the 
triangle to be equilateral: namely the two circles of radius AB, which ensure that the 
lengths of sides BC and AC are each equal to the length of line segment AB, and 
therefore the triangle’s three sides are all equal to each other. 

The same applies to Euclid’s propositions which are proofs rather than constructions. 
They are presented as examples of how to conduct proofs for specific diagrams at 
specific locations, but are intended to be generalized to any diagrams with the same 
features (Netz, 1999). It is because Euclid’s constructions and proofs are designed to 
be generalizable to points, triangles, etc. located anywhere, that his static diagrams 
translate directly to dynamic-geometry constructions. They are tacitly built around the 
application of dependencies, such as the length of a line segment being dependent 
upon a circle of certain radius. These dependencies underlie the proofs, for which 
diagrams are constructed following Euclid’s propositions. An understanding of 
dynamic geometry in terms of the design of dependencies provides insight into the 
design of geometric figures – insight that is not always fostered by a traditional 
presentation of deductive proof. 

On a given finite straight line to construct an equilateral triangle. 
Let AB be the given finite straight line.  
…. 
Therefore, the triangle ABC is equilateral; and it has been constructed on the 
given finite straight line AB.  
Being what it was required to do. 

 

Figure 2. Introduction and conclusion from Euclid’s first proposition. 
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Proposition δ: Constructing Figures 
Construction of dynamic-geometry figures by students can offer them insightful 
understanding of the elements of associated proof structures. Active 
construction provides immediate feedback on consequences of design decisions. 
By actively building up figures, students become aware of the sequentiality and 
interdependency of constructions related to propositions.  
Becoming a skilled constructor of dynamic-geometry figures involves paying close 
attention to actions that establish dependencies among objects, such as dragging 
points to make sure that the software has defined those points at intended line 
intersections. A student’s growing explicit concern for establishing and checking 
effective dependency relationships gradually becomes habitual, a matter of assumed 
behavior that is henceforth carried out tacitly. 

Viewing, understanding and manipulating constructions in terms of their 
interdependencies provides students with insight into why associated proofs work the 
way they do (deVilliers, 2004). It is because triangle ABC’s sides were constructed by 
radii equal in length to segment AB that the three sides are always necessarily of equal 
length. The construction of the internal triangle DEF in Figure 1 is more complicated 
and the proof of the equality of its sides is correspondingly longer, but similarly related 
to constructed dependencies. 

Proposition ε: Dependencies among Objects 
Geometry can be viewed as the systematic study of dependencies that are 
designed into or discovered within complexes of simple objects like points, lines, 
angles, circles, polygons. The dependencies inherent in dynamic-geometry 
constructions correspond to characteristics and relationships of figures 
referenced in their corresponding proofs. The establishment and preservation of 
dependencies is fundamental to the logic of Euclid’s propositions and to the 
mechanisms of dynamic geometry’s software. 
Euclid’s propositions talk about points and lines being placed in the plane, but do not 
explicitly discuss the dependencies that are implicitly designed into the constructions. 
The dynamic-geometry software, on the other hand, must keep systematic track of 
these dependencies behind the scenes. When a point is moved, the software checks 
for any dependencies involving that point, and moves other points in ways that 
maintain the dependencies. The dynamic-geometry display thereby provides a model 
of a geometric structure that obeys sets of dependencies among its elements. 
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Students exploring dynamic geometry can learn to think about systems of 
interdependent elements, some of which are completely dependent upon the 
positions of others, some are constrained (e.g., to move only in a fixed circle around 
another point) and some are simply free to move anywhere (Hölzl, Healy, Hoyles & 
Noss, 1994; Jones, 1996). This kind of systems thinking can later be applied to 
evolutionary models of nature, such as a model of animal populations dependent 
upon climate, vegetation and interactions among species.  

Proposition ζ: Texts Referencing Visualizations 
Since the Greek geometers, constructions and their proofs have been 
communicated among mathematicians and math students through carefully 
structured texts that reference associated diagrams. Understanding geometry 
involves reading/writing the specialized language and being aware of previous 
propositions. Mathematical cognition takes place in such inscriptions: 
sequential descriptive statements, illustrative figures and specialized symbol 
systems. 
Geometric cognition is embodied in inscriptions – texts coordinated with labelled 
constructions (such as Figures 1 and 2 above). These are knowledge-building artifacts 
in the visible material world. Their meaning is shared and based on intersubjective 
language and cultural traditions. The meaning must be understood and interpreted by 
trained and capable individuals. Students have to learn how to make careful 
constructions, but also how to discuss these constructions and their designed 
dependencies with other people in the precise language of mathematics. These are 
skills requiring deep understanding and personal engagement, not just rote 
memorization of terminology and facts. 

There is a subtle combination of individual, small-group and community cognition at 
work in the teaching and learning of mathematics. The knowledge of how to construct 
an equilateral triangle is expressed in an inscription of Euclid’s first proposition. This 
inscription may be included in a geometry textbook or in a dynamic-geometry 
exercise. Its meaning is defined by the shared understanding of the mathematical 
community, including textbook authors, schoolteachers and – to a lesser extent – 
beginning geometry students. 

 If a small group of students explores one of Euclid’s propositions, the group 
cognition consists of the shared meaning in the group discourse – issuing from the 
multiple perspectives and individual linguistic abilities to understand and contribute 
to the group interaction. The group processes of collaborative learning involve 
individual capacities to participate effectively. However, while individual cognition is 
required for group cognition, the group level cannot be reduced to a sum of individual 
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contributions. The collaborative level includes references, anticipations, goals, 
agreements, decisions and history of the group as such. Individuals in the group are 
typically not consciously aware of most of these factors and would not be subject to 
them if not participating in the group interaction. 

Proposition η: Mediated Cognition 
In general, high-level cognitive functions of individual human minds are 
developed first through small-group interactions and may be subsequently 
further developed as individual skills. Intellectual skills are mediated by 
language and tools. Mathematical cognition is mediated by the terminology, 
practices, symbols and inscriptions adopted by the worldwide, historical 
community of practitioners. 
The common focus on individual cognition in philosophy, psychology and 
educational theory is based on introspection by adults and observation of skilled 
practitioners. As adults, we picture ourselves learning through solitary reading or silent 
reflection. However, if we observe infants and toddlers learning the basic skills for 
living in the physical and social world, we can see the central role of interaction with 
other people, such as parents and siblings. Vygotsky (1930, p.57) concluded that 
cultural development – including formation of concepts – occurs first on a social 
level. For instance, children in his studies “could do only under guidance, in 
collaboration and in groups at the age of three-to-five years what they could do 
independently when they reached the age of five-to-seven years.” 

Vygotsky’s analysis of the development of the pointing gesture (p.56) provides a clear 
example of group cognition. The mother does not teach her infant how to point to 
what he wants; the meaningful gesture is not “enculturated” from existing culture. 
Rather, it is co-constructed by the participants situated in the setting as an 
intersubjective meaning-making interaction. The gesture develops as tacitly 
understood within the intimate mother/infant group and gradually becomes 
sedimented into a symbolizing artifact through repetitive habituation. The meaning 
of the pointing finger as a reference to some desired object is mediated by the whole 
situated interaction involving mutual recognition of agency, observed glances, bodily 
orientations and physical relations among the actors and  intended objects. There is 
more going on here at the group level of analysis than the coordination of individual 
mental representations. Deixis, pointing or reference is a fundamental cognitive 
function. Here, we see how it develops as primarily a phenomenon of group 
interaction, rather than just individual mental mechanisms. 

More generally, Vygotsky concluded that cognition is mediated by language and 
artifacts. He developed the foundations of a theory of “mediated cognition.” 
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Cognition is not a matter of isolated mental functions that individuals develop 
internally, but a consequence of interaction with the social and physical world, 
including other people, physical artifacts and spoken language. To study such learning, 
one must observe early learning in real-world social settings and observe the 
embodied, intersubjective origin of cognition and learning. To stress the social basis 
of learning and cognition, we use the term “group cognition” as an alternative to the 
traditional focus on individual cognition. 

Proposition θ: Networks of Interdependent Agents 
In human cultures — especially advanced technological ones — cognition is 
mediated by writings, symbol systems, drawings, maps, external memories, 
computational devices, automated processes, feedback signals, and so on. 
Cognitive accomplishments come about due to innumerable influences, 
determinants, factors and considerations. The causation is not mechanical, but 
dependent upon the nature of the agents and their relationships. Social 
interactions are matters of understanding, interpretation and ambiguity. 
Predictions can at best be probabilistic, taking into account tendencies and 
trends. Understanding human/nature interactions in the Anthropocene world 
requires similar analysis. Like a butterfly fluttering in the breeze, an emitted CO2 
molecule reflecting a sunray does not cause a storm, but may imperceptibly 
contribute to its likelihood or magnitude. 
Causation can no longer be considered a simple effect of individual thoughts 
determining action. First, cognition increasingly takes place within tools, such as 
sheets of paper, charts, calculators, computer models, spreadsheet analyses. Ideas are 
posed, worked out, communicated and preserved in these media in ways they could 
not be in pure thought (Donald, 2001). They are also discussed, shared, critiqued, 
developed and negotiated in small groups. Although people today can internalize 
some of these aids and alternative perspectives to take them into account to some 
degree in their own mind, the embodied and interrelated character of situated group 
cognition remains dominant. 

Second, the consequences of individual human intentions and actions are not simple 
direct results of individual cognition. Latour (2014, p.7) points out that the central 
military outcome in Tolstoy’s presentation of War and Peace was not simply due to the 
commander’s agency, but was influenced by innumerable peripheral actors. The 
details of a messenger’s wanderings while delivering military orders, a cannonball’s 
bouncing through the enemy’s front line, a horse rearing in the calvary line are 
examples multiplied many times of influencing events. Latour develops a new 
conceptualization of causation involving potentially huge networks of actors, both 
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human and non-human. Technological artifacts, for instance, can embody inferred 
human intentionality, such as a spring door closer trying to keep a door shut (Latour, 
1988). 

Third, especially in the Anthropocene, human actions involve and affect natural 
phenomena. The causal relationships involved are complex and only partially 
understood. They may involve huge numbers of objects and intricate patterns of 
interaction, which are not precisely predictable. It is often not possible for people to 
know the ultimate consequences of their actions based on simple causal relationships; 
broader dependencies may have to be taken into account. 

Dynamic geometry provides a workshop for exploring systems of interdependent 
objects, where the dependencies can be designed into constructions of multiple 
objects by students and then consequences of the dependencies can be observed 
through manipulation of the objects. This can offer a playground for groups of 
students to learn about the kinds of mathematical relationships that are important for 
understanding the contemporary world. Such cognitive models are needed in a world 
in which simplistic common sense is inadequate to understand our dynamic world 
systems. 

Proposition ι: Collaborative Learning 
The meaning of geometry propositions is a matter of shared understanding 
within the communities and traditions of mathematicians, articulated and 
preserved in their documents. Learning geometry involves acquiring the 
practices of discussing geometry with others, following their constructions and 
agreeing upon each step in deductions. Mathematics education should 
incorporate small-group collaborative learning, exploration, discussion and 
reflection, organized around the cultural artifacts of the domain.  
The design of computer software to support online collaborative learning is explored 
through a number of systems and experiments in Group Cognition (Stahl, 2006). One 
major concern is that the notion of “meaning making” or the “negotiation of 
meaning” needs to be better understood. Most earlier analyses of this notion were 
based on theories of individual cognition, perhaps coordinated by efforts of 
“common grounding” (Clark & Brennan, 1991). In this volume, alternative analyses 
are provided of small groups adopting shared meanings of charts or mathematical 
problems through discourse, explicit agreement and subsequent tacit usage. The 
groups are shown to construct shared knowledge through interaction, much as the 
mother and infant built their shared meaning of the pointing gesture. 
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The book’s demonstration of a need for more detailed analysis of collaborative 
learning led to a decade-long research effort: the Virtual Math Teams Project (VMT). 
This project involved designing and iteratively improving an online environment for 
small groups of students to explore and discuss mathematics together. Functionality 
was provided for both textual dialog (chat) and diagrams (whiteboard). Teams of 
students were recruited through teachers and were provided with challenging 
mathematical problems, mainly from middle-school combinatorics and geometry 
curriculum. 

Like the infant’s pointing gesture, meanings, artifacts, actions and knowledge can be 
created as the group cognition of online small groups in the VMT setting. The 
project’s collaboration software, dynamic-geometry app and sequenced curriculum 
provides a setting in which the interaction of the group can evolve mathematical 
practices. Just as the mother and infant subsequently take frequent advantage of the 
intersubjectively understood pointing gesture, the students can apply their shared 
geometry habits together and eventually even use them in individual cognition. 
Geometric knowledge developed in the small group is aligned with the standards of 
the larger mathematical community through the automated constraints and feedback 
of the dynamic-geometry app, questioning by other students, the embedded 
curriculum and teacher guidance in the encompassing classroom. 

Proposition κ: Computer-Supported Teaching 
Hosting education on networked computer devices not only allows the use of 
dynamic geometry apps, but can also support collaborative learning beyond 
face-to-face settings. This can permit many forms of automated support, such as 
access to online information sources and archiving of activities. Computer 
support must be designed to enhance individual and group cognition by people, 
rather than reducing their intellectual roles. 
Unfortunately, most commercial collaboration software and social media are only 
designed to support the expression of individual thinking and hierarchical 
management. They reinforce individual opinion rather than stimulating collaborative 
thinking. The VMT Project experimented with systems of flexible computational 
support for collaborative interaction, negotiation of meaning, intersubjective 
consensus building. Studying Virtual Math Teams (Stahl, 2009) includes reports of this 
research by about 40 academics from several countries. It motivates the project, 
analyzes the data of student interactions and draws implications for the science of 
Computer-Supported Collaborative Learning (CSCL).  

An important aspect of this research is that learning is analyzed at the group level of 
analysis. It is studied as group cognition. There are no surveys or questions concerning 
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individuals’ ideas, reflections, representations or memories. Rather, the data for 
analysis of learning and knowledge building consists of automated transcripts of the 
small-group interactions. The VMT system is instrumented to capture all the 
discourse and construction that took place. The collection of reports includes 
examples of many approaches that were developed for analyzing this group-level data. 
The data of group cognition includes discourse sequences consisting of proposals, 
responses, questions, answers, interpretations, acceptances and other chat postings or 
interjections that work together to anticipate, expand upon, accept or reject each 
other.  

The effort reported here began to define a science of group cognition and to identify 
the characteristics and mechanisms of small-group-level cognitive phenomena which 
can, for instance, contribute to the teaching and learning of mathematics. The 
computer technology involved in the project not only supports interaction and 
exploration by student groups, but also facilitates experimentation and analysis by 
researchers. 

Proposition λ: Sedimentation of Geometric 
Concepts 
The historical effectiveness of mathematical cognition requires a subtle 
interweaving of processes at the individual, small-group and community levels 
of analysis. Even a phenomenological analysis of mathematical cognition in 
terms of individual subjectivity stresses the centrality of intersubjective concepts 
and associated shared inscriptions. Conversely, the functioning of cultural 
traditions like Euclidean geometry requires reactivation of insight by 
individuals.  
In considering the “crisis of the European sciences,” Husserl (1936/1989) felt 
impelled to investigate “the origin of geometry.” As a phenomenologist, Husserl 
started from introspection on the experience of understanding a geometric proof and 
asked how an object of individual cognition like a geometric concept could become 
an ideal object with universally recognized meaning. He described a multi-step 
process of group cognition in which people collaborated using geometric inscriptions 
(p.164). The insights into the necessity of proofs were “reactivated” by the individual 
participants as they shared the intersubjective meanings “sedimented” in their 
adopted mathematical language. 

The VMT Project represented a systematic attempt to “translate” Euclidean geometry 
into a form appropriate for the Anthropocene by reactivating its meanings in settings 
of collaborative learning and by emphasizing the functioning of dependencies. A 
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description of this research in Translating Euclid (Stahl, 2013) includes chapters 
detailing multiple aspects of this effort, including: the project vision, history of 
geometry, guiding philosophy, covered mathematics, developed technology, approach 
to collaboration, educational research, social theory, curricular pedagogy, analysis of 
practice and design-based-research methodology. 

At this point, the VMT Project developed a unique multiuser version of GeoGebra 
and integrated it into the online collaboration environment. It also iteratively tested 
curricula scaffolding student groups to explore the basic concepts, propositions and 
dependencies of Euclidean geometry. Researchers analyzed the group cognition in 
which meanings were negotiated, sedimented and tacitly reactivated in their group 
language and understanding. 

Although the VMT software is designed for use by small groups of students 
collaborating online in real time, the research project stresses the importance of 
integrating support for the individual students as well as for classroom efforts in 
addition to the collaborative learning. Group cognition necessarily includes 
interpretation and contributions from individual cognitive perspectives. It also 
benefits from a supportive classroom context. The theory of group cognition 
emphasizes this integration. It recommends that small-group collaborative learning 
be adopted in coordination with phases of individual and classroom learning. This 
provides multiple opportunities, formats and processes for the sedimentation of key 
concepts, the reactivation of mathematical insight and the sharing of knowledge and 
procedures. 

Proposition μ: Group Practices 
Because learning involves a mix of tacit understanding and explicit 
interpretation, it is perhaps best to conceive it in terms of practices rather than 
mental representations. In particular, collaborative learning can be analyzed as 
the adoption of group practices by the small group. These practices may be 
derived from pre-existing society-wide cultural practices, and they may be 
subsequently personalized as individual practices, but they must be adopted by 
the small group and integrated into its activity and discourse. 
Constructing Dynamic Triangles Together (Stahl, 2016) analyzes every chat posting by a 
particular small group of students who engaged in eight hour-long online sessions in 
the VMT Project using the collaborative version of dynamic geometry. Through the 
close analysis of their chat discourse and geometric manipulations, it becomes clear 
that they were collaboratively negotiating shared meanings and adopting these as 
group practices. About 60 distinct practices are highlighted in the analysis. Each of 
these is explicitly discussed in the group discourse and analyzed in the book. The 
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variety of practices reviewed covers needs of collaborative learning, dynamic 
geometry, computer support, design of dependencies and online interaction, 
including: 

• Group collaboration practices 
• Group dragging practices 
• Group construction practices 
• Group tool-usage practices 
• Group dependency-related practices 
• Group practices using chat and GeoGebra actions 

For each practice, the group went through a process of confronting a problem, 
discussing action options, agreeing on a path for going forward and then proceeding 
with putting the practice into action. While this initial response to a problem required 
explicit discussion and group agreement, subsequently the group could tacitly proceed 
with the adopted solution without any discussion. The practice was thereby adopted 
by the group and integrated into its behavior. The practice could have been derived 
from the larger social context, such as a teacher recommendation based on 
mathematical tradition or it could have been a suggestion from an individual student, 
but it had to go through the negotiation process by the group in order to become part 
of the group’s effective behavior or group cognition. 

While the cognitive behavior observed in the VMT Project was a mix of individual, 
small-group and classroom interactions, it is possible to distinguish phenomena at 
each of these levels of analysis, such as individual habits, group practices and 
classroom traditions. While it may be possible to define various other levels of 
analysis, these three are typical of school settings, in which individual students are 
graded, small groups of students may interact, and teachers orchestrate classroom 
activities. 

Proposition ν: Group Cognition 
Human cognition is not a simple process of rational deduction that operates like 
the well-defined sequential operation of a computer program executing within a 
person’s head. Rather, it often takes place in group discourse – individual 
abilities contribute to shared cognitions from multiple perspectives and 
backgrounds, within complex shared situations. Especially in instances where 
fundamental learning takes place, there is a mix of individual, small-group and 
community processes, mediated by a complex historical world of influencing 
factors and mediating artifacts. Articulated statements aim for future responses 
by building on the past context in the present situation. The analysis of group 
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cognition in geometry education attempts to reconceptualize the nature of 
mathematics in minds. 
Cognition takes place expressed in explicit dialog, hidden within tacit practices and 
preserved in persistent inscriptions. Knowledge building is mediated by and stored in 
physical knowledge artifacts. These can be internalized or personalized in mental 
abilities and representations through memory and imagination, but they are not 
originally purely mental phenomena. Euclid’s propositions exist in contemporary 
texts. Their meaning is not dependent upon the minds of Thales or Euclid, but upon 
the current texts and accompanying figures, as well as upon the meanings and 
practices of the mathematical community today. 

When a group of students collaborates on a dynamic-geometry problem in a system 
like VMT, their group cognition resides primarily in the shared software interface, 
which displays their group work, including both chat discourse and constructed 
figures. From observation of these traces of shared work and interaction, researchers, 
teachers and the participants themselves can infer negotiation of meaning and 
mathematical reasoning without having to appeal to assumptions about individual 
mental events behind the scenes. Group cognition can be persistent and observable 
within physical knowledge artifacts such as textual inscriptions and computer 
transcripts. The learning of mathematics can be studied by analysis of the 
development of mathematical group cognition, such as occurred by teams of students 
using VMT.  

Group cognition is a conceptualization  appropriate to the Anthropocene. Sciences 
and theories of the Anthropocene no longer support notions of independent 
organisms in environments, such as methodological individualism or even man-in-
nature. They conceptualize agents as defined by intricate links, interactions and 
interdependencies. They focus on “complex nonlinear couplings between processes 
that compose and sustain entwined but nonadditive subsystems as a partially cohering 
systemic whole… self-forming, boundary maintaining, contingent, dynamic, and 
stable under some conditions but not others… not reducible to the sum of its parts, 
but achieves finite systemic coherence in the face of perturbations within parameters 
that are themselves responsive to dynamic systemic processes” (Haraway, 2016, p.36). 

Analyses of group cognition do not consider the isolated thinker, but look at 
interactions among multiple agents embedded in rich worlds, especially technological 
systems. They unfold over time and are subject to the ambiguities of interpreting 
meanings in shifting historical contexts. The analysis of group cognition is a 
multidisciplinary undertaking; it often involves forms of conversation analysis, 
statistical analysis, educational psychology, semantics, video analysis, communication 
theory, software design, etc.  

Theoretical Investigations (Stahl, 2021b) brings together two dozen papers on various 
aspects of philosophic foundations of computer-supported collaborative learning 
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(CSCL). Starting with a meso-level analysis of software design that looks beyond a 
single app to its whole technological, digital infrastructure, the book goes on to 
consider technology in terms of its interaction with and adoption by students. This 
begins to shift CSCL to the kind of science appropriate to the Anthropocene, where 
minds and technologies increasingly work together. Other papers reprinted from the 
CSCL journal consider semantic, visual, sequential, temporal and interactional 
aspects. A pair of studies reflects on transforming whole educational systems in Hong 
Kong and Singapore to feature collaborative learning.  

The second half of the book presents micro-analyses of interaction data from small 
groups learning mathematics. It includes a wealth of examples of specific aspects of 
how group cognition unfolds. This includes detailed illustrations of groups 
constituting themselves as involved in intersubjective understanding, negotiating 
meaning, solving problems, adopting practices, building knowledge, crafting 
knowledge objects, refining terminology and learning mathematics. Case studies of 
problem solving show how teams conduct reconceptualization, visualization, 
deduction, etc. similar to that commonly performed by individuals, but now 
accomplished by groups. The analyses reflect the situated nature of such group 
cognition within shared worlds of embodied and virtual existence – structured and 
defined by the ongoing interaction. Both successes and limitations of group learning 
are showcased and evaluated. 

The book includes investigations of VMT data that explicate core concepts of group 
cognition, such as: intersubjectivity, knowledge building, shared meaning making, 
negotiation of meaning, adoption of group practices, cognitive evolution, knowledge 
objects, referential resources, instrumental genesis and the co-experienced world. It 
looks at how words and digital utterances in excerpts from VMT data weave together 
references to terms, objects and events in the past, present and future to create 
intersubjective meaning and shared knowledge. Elements of the theory of group 
cognition emerge from these empirical analyses. Considered as a whole, the volume 
of investigations points toward a multi-disciplinary science that considers educational 
issues within a complex environment of interdependencies. 

Proposition ξ: Virtual Math Teams 
The Virtual Math Teams project provides an educational model for fostering 
group cognition of digital geometry in the Anthropocene. It developed and tested 
a dynamic-geometry curriculum for collaborative learning by small groups of 
teenage students, emphasizing the role of dependencies. This can be used as one 
educational component of mathematical teaching and learning, to be adapted to 
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diverse educational settings and integrated with individual and community 
learning.  
The VMT Project pursued a vision of students around the world learning mathematics 
collaboratively by communicating and exploring problems online within virtual math 
teams. However, it was a research effort, not scaled up for widespread classroom 
usage. The Covid Pandemic inspired hurried efforts around the world to provide 
educational resources for online pods (virtual small groups) of students in place of 
shuttered classrooms. Unfortunately, these transformations rarely took advantage of 
recent research in the learning sciences or in computer-supported collaborative 
learning, instead simply using business software (like Zoom) and retaining teacher-
centric pedagogy carried over from the physical classroom.  

To suggest how to fill the glaring educational gap, the latest version of the curriculum 
for the VMT Project was made publicly available on the GeoGebra website and as a 
free e-book: Dynamic Geometry Game for Pods (Stahl, 2020). It includes a sequence of 50 
challenges at increasing levels of expertise. The challenges are designed to stimulate 
the adoption of many of the group practices required by online collaborative learning 
of dynamic geometry and for the development of mathematical cognition generally. 
Each level is demanding enough to benefit from collaboration, as most students 
would likely get stuck without partners to figure out what was required. 

The Game’s curriculum is initially targeted to specific practices needed for successful 
online collaboration and for effective use of dynamic geometry. However, it also 
includes open-ended challenges where the group has to define a problem, negotiate 
their approach as well as evaluate their solution. Some later challenges set up open-
ended themes for inquiry learning (Dewey, 1938/1991; Papert, 1980). Then, 
appendices offer several suggestions of related math domains to explore (sequences 
of transformations; taxicab geometry, etc.).  

For students who do not have access to VMT or working relations with appropriate 
pod-mates, options are outlined for individual study, for home schooling and for 
online pick-up teams. In addition, an associated article delineates a proposal for 
blended learning (Stahl, 2021a). It proposes integrating individual, small-group and 
classroom activities around the game challenges. That paper is included as an 
appendix to the Game e-book. 

The VMT Project developed a model CSCL approach to introducing dynamic 
geometry to groups of students. Extensive trials supported a design-based research 
effort to develop effective technology, curriculum, pedagogy, analysis and theory. The 
extensive reporting referenced above characterizes the development of group 
cognition that took place in many instances. 
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Conclusion 
The Game for Pods and the VMT Project leading up to it may offer a glimpse of 
what could foster the development of group cognition related to dynamic 
geometry, including an understanding of dependencies. This can provide a 
CSCL model for learning and teaching mathematics in the Anthropocene.  
Geometry has been a training ground for comprehending the world since Plato and 
Euclid. The VMT Project explored ways of adapting computer technologies to a 
CSCL approach to teaching geometry. The pedagogical focus was on the development 
of group cognition related to analyzing and designing dependencies. 

Our new epoch presents multiple challenges to mathematics education. As we have 
already seen with the impact of the Pandemic on schooling and the influence of 
climate denial on public acceptance of science, the need for and the urgency of 
appropriate innovations are rising rapidly. The mathematics education research 
community should consider how best to support learning and living in the 
Anthropocene. 
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Notes 

Type your reflections on the game and this book here… 
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This book contains adventures in digital geometry for the minds of students 
in pods and in home-schooling. Learning about geometry has inspired many 
of the most important thinkers for centuries and helped them to make sense 
of the world. This sequence of 50 hands-on challenges will step learners 
through the most exciting experiences of geometry, from basic points, lines 
and circles to construction and proof. The book is structured as a game: a 
series of thought-provoking challenges that provides a stimulating experience 
of collaboration with pod-mates and a fun introduction to geometry. 

 

 

 


