Chapter 26 # **Meaning Making in VMT** Gerry Stahl Gerry@GerryStahl.net **Abstract:** Meaning making is central to the interactions that take place in CSCL settings. The collaborative construction of shared meaning is a complex process that has not previously been analyzed in detail despite the fact that it is often acknowledged as being the distinguishing element in CSCL. Here, a three-minute excerpt from a discussion among three students is considered in some detail. The students are reflecting on their analysis of mathematical patterns in a synchronous online environment with text chat and a shared whiteboard. A complex network of references is identified from the chat postings to each other and to resources in the discourse situation. The group's meaning making in the chat is a function of constructing this shared referential network. The analysis suggests a number of conditions and preconditions of such interaction. These are necessary for achieving the potential of CSCL as the accomplishment of high-order cognitive tasks by small groups of learners. An understanding of the conditions and preconditions of the small-group meaning-making process may aid in the design and analysis of CSCL activities, as well as in the development of a science of group cognition. **Keywords**: Meaning making, group cognition, network of reference, conditions and preconditions, intersubjectivity ### The Centrality of Meaning Making in CSCL The vision of CSCL is that networked computers can bring learners together in new ways and that shared digital environments can foster interactions that produce new understandings for the groups and their participants. Accordingly, the uniqueness of CSCL pedagogical and technological designs consists in their techniques for supporting group interactions that can solve problems, gain insights, build knowledge. To guide design, CSCL theory needs to explicate the processes by which groups accomplish these cognitive tasks and to specify the preconditions for such interactions to take place. In the formative days of the history of CSCL (see Stahl, Koschmann & Suthers, 2006), collaboration was defined as "a process by which individuals negotiate and share meanings relevant to the problem-solving task at hand... a coordinated, synchronous activity that is the result of a continued attempt to construct and maintain a shared conception of a problem" (Roschelle & Teasley, 1995, p. 70). The study of collaboration so defined suggests a shift away from the psychology of the individual to the small group as the unit of analysis. It suggests a process-oriented focus on the socially-constructed properties of small-group interaction: "Empirical studies have more recently started to focus less on establishing *parameters* for effective collaboration and more on trying to understand the *role* that such variables play in mediating interaction" (Dillenbourg et al., 1996, p. 189, emphasis added). These re-definitions of the object of research differentiate *an approach to CSCL interested in group cognition* from the orientations of educational-psychology studies of individual learning in settings of cooperation and/or distance learning. CSCL has been defined explicitly in terms of the analysis of *meaning making*. A keynote at CSCL 2002 proposed: "CSCL is a field of study centrally concerned with meaning and the practices of meaning making in the context of joint activity, and the ways in which these practices are mediated through designed artifacts" (Koschmann, 2002, p. 18). Recently, this approach has been re-conceptualized as studying the "practices of understanding" (Koschmann & Zemel, 2006). At the CSCL 2005 conference, a research agenda for the field was proposed in terms of "intersubjective meaning making" (Suthers, 2006b). This emphasis has a two-fold implication. It suggests that empirical studies investigate the processes of meaning making that take place in the studied settings. In addition, in theoretical terms, it implies that we should be analyzing the nature of shared meaning and the structures of small-group meaning-making processes in general. For all the talk about meaning making, there has been little empirical analysis of how meaning is actually constructed in small-group interactions. It is generally assumed that meaning is created and shared through processes of interaction, communication and coordination. However, the nature of these processes is taken for granted. Even a special journal issue on "Meaning Making" presents alternative analyses of a particular interaction recording and reflects on the methodologies used, but never explicitly discusses what is meant by the term "meaning making" (Koschmann, 1999). Similarly, a recent book devoted to the topic of *Meaning in Mathematics Education* concludes, "various aspects of communication which may affect the construction of meaning are discussed. On the other hand, the problem of the construction of meaning itself is not really tackled" (Kilpatrick et al., 2005, p. 137). For some time, I have been trying to work out structures of collaborative meaning making. At ICLS 2000, I presented a model of collaborative knowledge building (Stahl, 2006a, ch. 9), followed at CSCL 2002 with a theoretical framework for CSCL (Stahl, 2006a, ch. 11). In an extended analysis of building collaborative knowing illustrated with my SimRocket data, I presented elements of a social theory of CSCL centered on meaning making (Stahl, 2006a, ch. 15). I subsequently distinguished between interpretation from individual perspectives and meaning as shared and embodied in artifacts in the world in my CSCL 2003 paper (Stahl, 2006a, ch. 16). At CSCL 2005, I argued that groups can think, that they can have cognitive agency (Stahl, 2006a, ch. 19). My book on Group Cognition develops this notion that small groups of learners—particularly with the support of carefully crafted digital environments—have the potential to achieve cognitive accomplishments, such as mathematical problem solving. Here, the term "group cognition" does not refer to some kind of mental content ("group mind"). It refers to the fact that groups can engage in linguistic (and other interactional) processes, which can produce results that are comparable to results that are commonly called "cognitive" when achieved by an individual, but that in principle cannot be reduced to mental representations of one individual or of a sum of individuals. Thus, the theory of group cognition is similar to theories of distributed cognition, but here the emphasis is more on the interaction between people than on the mediation of individual cognition by artifacts, and the cognitive accomplishments are high-order tasks like creative math problem solving rather than routine symbol manipulations, as even in Hutchins (1996). The VMT Project has been investigating specific structures of meaning-making practices, analyzing online interactions among math students. For instance, we characterized "math-proposal adjacency pairs" (Stahl, 2006c), looked at how a group could solve a math problem that none of its members could solve (Chapter 5), and investigated how students used a referencing tool in our environment (Chapter 17). We try to closely analyze brief interactions in well-documented case studies to determine the social practices or methods that groups use to accomplish their meaning making. Thereby, we seek to determine structures of small-group cognitive processes. We believe that the foundation of CSCL as a unique field of study is the investigation of the meaning-making processes that take place in online collaborative settings. The analysis of intersubjective meaning making or group cognition is not the whole story; one can, of course, also analyze individual learning and other psychological phenomena or larger activity structures and communities-of-practice, but we believe the processes of small-group interaction are of particular centrality to CSCL. ### A Case of Group Cognition Although meaning and related topics like grounding have been debated for millennia, they have usually been discussed using examples that were made up by the authors to seem like natural, commonsensical interactions or using data generated under laboratory conditions. To study interaction "in the wild" or with examples that occurred in real-life situations is a new and important approach that we can borrow from ethnography (Hutchins, 1996) and ethnomethodology (Garfinkel, 1967). However, finding cases of interaction that are relevant to CSCL research interests cannot be left up to chance. CSCL research aims to inform technological and pedagogical design. Therefore, cycles of design-based research are often appropriate. One must put students in situations where they are motivated to pursue certain kinds of tasks in particular kinds of environments. The situations must be instrumented to capture an adequate record of the interactions that take place. In this chapter, we will observe meaning making in a brief excerpt from the VMT Spring Fest 2006. The collaborative context was set by organizing a contest: members of the most collaborative teams would win prizes. Students were recruited globally through teachers who were involved in other Math Forum activities. The team in the excerpt consisted of two students who apparently went to the same school and one from another time zone in the US, as well as a facilitator from the Math Forum, who provided technical assistance—this is all that either the students or the facilitator knew about each other. Pedagogically, the topic for discussion was an open-ended exploration of geometric patterns. An initial pattern of squares formed from sticks was given. The students were to figure out the formulae for the number of squares and the number of sticks at stage N first, and then explore other patterns that they or other teams invented (see Figure 7-1 in Chapter 7). Each team in Spring Fest 2006 met for four
sessions over a two-week period. Each session lasted a little over an hour. At the end of each session, the teams posted their findings on a wiki for the other teams to read. Between sessions, the facilitators posted feedback to the teams on their whiteboards. The feedback generally acknowledged the team's accomplishments and suggested next steps. In the case considered here, the team was particularly encouraged to explain what they had done because it was not clear to the facilitators from the interactions that the team members always understood what the group was doing. Pattern problems are commonly used in teaching the concepts of beginning algebra. The research literature on this shows that explaining solution paths is generally particularly difficult for students (Moss & Beatty, 2006). By pressing the students to explain their work in the wiki posting—and to prepare for this in their chat interaction—we encouraged the creation of data that allows us to see something of how a group of students made sense of their mathematical problem solving and where they had difficulty in conducting group practices leading to personal and mutual understanding. Records of the sessions are available in the form of textual logs and the VMT Replayer. For instance, the chat message selected in Figure 26-1 appears as line 1424 in Log 26-1. Note the graphical reference from this posting to a formula on the whiteboard. The chat and whiteboard record can be replayed at any speed and stepped through. Virtually all aspects of the group interaction including everything that the participants knew about each other's actions were captured and are available for analysis in the Replayer. Log 26-1. | line | participant | chat posting | time | delay | |------|-------------|---|----------|-------| | 1393 | Quicksilver | (a) was define the problem, (b) was the solution which we got | 07.29.46 | | | 1394 | bwang8 | we calculated the # of square if the diamond makes a perfect square | 07.29.48 | 2 | | 1395 | Aznx | We can define the problem. | 07.29.48 | 0 | | 1396 | Aznx | We got the solutions. | 07.29.55 | 7 | | 1397 | Quicksilver | yes | 07.30.12 | 17 | | 1398 | Quicksilver | the added corners | 07.30.16 | 4 | | 1399 | Aznx | But I'm not sure how to explain how we got to the solutions, although it makes prefect sense to me. | 07.30.18 | 2 | | 1400 | Quicksilver | to make a square | 07.30.19 | 1 | | 1401 | Aznx | I'm just not sure how to explain it. | 07.30.24 | 5 | | 1402 | Quicksilver | and we found those were triangular numbers | 07.30.25 | 1 | | 1403 | Aznx | Well, I can explain the second formula. | 07.30.32 | 7 | | 1404 | Quicksilver | lets go step by step | 07.30.35 | 3 | | 1405 | Quicksilver | NO! | 07.30.37 | 2 | | 1406 | Quicksilver | we don't know hte second formula | 07.30.42 | 5 | | 1407 | Aznx | It was done through the method of finsing the pattern of triangular #s. | 07.30.45 | 3 | | 1408 | Aznx | Yes we do. | 07.30.50 | 5 | | 1409 | Quicksilver | ? | 07.30.55 | 5 | | 1410 | Aznx | Suppose their second formula is our third. | 07.30.56 | 1 | | 1411 | Quicksilver | That was taem c's tho | 07.31.06 | 10 | | 1412 | Aznx | No. | 07.31.12 | 6 | | 1413 | Aznx | They didn't do. | 07.31.16 | 4 | | 1414 | Aznx | The nuumber of squares | 07.31.20 | 4 | | 1415 | Quicksilver | ohj! | 07.31.25 | 5 | | 1416 | Aznx | or the find the big square | 07.31.26 | 1 | | 1417 | Quicksilver | that formula | 07.31.27 | 1 | | 1418 | Quicksilver | i thot u meant the other one | 07.31.31 | 4 | | 1419 | Quicksilver | yeah that is ours | 07.31.36 | 5 | | 1420 | bwang8 | point formula out with the tools so we don't get confused | 07.32.37 | 61 | | 1421 | Aznx | So we're technically done with all of it right? | 07.32.49 | 12 | | 1422 | Quicksilver | this is ours | 07.32.51 | 2 | | 1423 | Quicksilver | all rightlets put it on the wiki | 07.32.58 | 7 | | 1424 | Aznx | That is theirs. | 07.33.02 | 4 | | 1425 | Quicksilver | adn lets clearly explain it | 07.33.05 | 3 | Figure 26-1. View of VMT environment during the excerpt. 1426 Aznx ### **Analysis of the Meaning Making** At first glance, the excerpt in Log 26-1 seems hard to follow. In fact, that is why the VMT research group started to look at this segment in its data sessions. The postings themselves express lack of clarity (e.g., line 1410), inability to explain what is going on (line 1401) and confusion about what is being discussed (line 1418). In addition, it is hard to understand how the postings hang together, how the participants are responding to each other and making sense together. It is often informative to focus on such excerpts. When the taken-for-granted flow of conversation breaks down—seemingly for the participants as well as for the researchers—the nature and structure of the interaction is likely to be made explicit and available for analysis. For instance, in my SimRocket excerpt (Stahl, 2006a, ch. 12), the students' shared understanding of the facilitator's reference broke down, and they had to work hard to make the reference successively more explicit until everyone saw it the same way. Similarly, the analysis of deictic referencing in the VMT environment (Stahl, 2006b) looked at how students combined available resources to define a math object that was not at first clear and that required considerable work to establish agreement on what was being referenced. In the excerpt in this paper, the meaning-making process is displayed by the participants as problematic for them—presenting an analytic opportunity for us as researchers to observe characteristics of meaning making rendered visible in their announced breakdown and explicit repair. Breakdown and repair of shared understanding is a common pattern in collaborative small group interactions. In our corpus of about 1,000 student-hours of online collaborative problem solving, it is frequently a driving force (as discussed in Stahl, 2006c). It becomes apparent to the participants that they are not understanding each other or do not know what references are pointing to. The participants gradually make more explicit what they mean or the object of their references, using various available resources in their environment or their communication media. Eventually, each participant acknowledges that they understand the others, at least well enough to continue what they were doing before they paused to repair their mutual confusion. Thus, the nature of collaborative processes works to align individual interpretations to a gradually shared meaning that is itself co-constructed in this process. In this way, "group cognition" is not something that exists somewhere outside of the interaction, but is a gradually emerging accomplishment of the group discourse itself (Stahl, 2006a). It is also important to note that the collaborative meaning-making process that produces the shared group meaning tends to produce in parallel individual interpretations of this meaning. Accordingly, when the individual participants later leave the group, the understandings of the group accomplishment may remain available to the individuals and can be re-introduced by them and resituated in subsequent group interactions (see Chapters 6 and 10 for examples of bridging across sessions). In our present excerpt, the students are responding to the feedback in the large text box in Figure 1. Here the facilitators wrote, "For session four, you could revisit a pattern you were working on before, in order to state more clearly for other groups in the wiki (a) a definition of your problem, (b) a solution and (c) how you solved the problem." We can see that the students are oriented to this feedback because line 1393 translates it from a suggestion by the facilitators to the students ("you") into a summary by the students of what they ("we") should do. The students are hesitant to post a statement of how they solved the problem on the wiki for others—including, of course, for the facilitators who will be judging whether they are one of the most collaborative teams and deserving of a prize. So in line 1394, they begin to go over their solution path together. But lines 1395 and 1396 do not continue this review; they return to line 1393 to agree that they accomplished parts (a) and (b). It is ambiguous what line 1397 is responding to. The line is continued (by the same participant) in line 1398. To understand this new line requires recalling how the students solved the pattern problem in a previous session. Look at the large diagram in Figure 26-1. The white (empty) squares form a diamond pattern of width 5 squares. The red (filled) squares fill in a large square encompassing the diamond, by adding 4 corners each composed of 3 red squares. One can compute the number of squares that it takes to form a diamond pattern by first easily computing the number of squares in the large encompassing square and then subtracting the number of squares in the 4 corners. This was the strategy used by the group in a previous session. If we now look at the sequence of postings by Quicksilver, we see that they make sense as a response to Bwang's posting. Quicksilver is taking up Bwang's description, recalling that the square was formed by adding the "corners" and then further specifying the strategy as treating the number of squares in a corner as being part of a "triangular number" sequence. Meanwhile, Aznx's postings in lines 1395, 1396, 1399 and 1401 seem to form an independent sequence of statements, focusing on the problem of step (c) from the feedback, explaining how the problem was solved. If we follow the sequences of different students, they seem to be working in parallel, with Aznx despairing of explaining the group solution path even while Bwang and Quicksilver are reviewing it. As is well known, chat technology results in confusion because the turn-taking rules of face-to-face conversation do not
apply in chat (Chapter 14). Participants type in parallel and the results of their typing do not necessarily immediately follow the posting that they are responding to. When more than two people are chatting, this can produce confusion for the participants and for researchers (Chapters 14, 20, 21). Moreover, in an attempt to prevent postings from becoming too separated from their logical predecessors, people rush to post, often dividing their messages into several short postings and introducing many shortcuts, abbreviations, typos, mistakes and imprecision. Technological responses to this problem have been explored (e.g., Fuks, Pimentel & Lucena, 2006). Analytically, it is important to begin a study of a chat record by reconstructing the threading and uptake structure of the chat log. Threading specifies what posting follows (responds to or takes up) what and when the structure diverges into parallel or unrelated threads (Chapter 20). The threading or uptake structure indicates which specific elements of a posting, gesture, reference, drawing action, etc. are building upon previous elements (Suthers, 2006a). While Aznx (in lines 1395, 1396, 1399, 1401, 1403) and Quicksilver (in lines 1397, 1398, 1400, 1402) seem to be following their own independent threads, there are also increasing signs of interaction between these threads. While one is complaining that he (or she) does not know how to explain their solution path, the other is demonstrating a way of systematically explaining, or at least enumerating, the path. Aznx' "Well, I can explain the second formula" (line 1403) delimits his previous general statement that he could not explain their solution. Now he is stating that he can explain part of the solution—possibly the part that Quicksilver (line 1402) has just characterized as finding that the pattern of the corners followed the pattern of "triangular numbers" (from Pascal's triangle, which is relevant to many pattern problems). So line 1403 reacts to Quicksilver's 1402 as well as continuing from Aznx' own 1401. Similarly, while Aznx' 1407 sounds like a simple continuation of his seemingly private reflection in 1399, 1401 and 1403, it quotes Quicksilver's parallel line 1402. Line 1407 transforms 1402's "found" into "finsing" ("finding") and its "triangular numbers" into "triangular #s." In chat, postings frequently continue a train of meaning making from the same participant as well as responding to a recent posting by another participant, thereby potentially contributing to *intersubjective* meaning making (or polyphony according to Chapter 24). We will see below an example of face-to-face collaboration where four students pursue their own trains of thought in whispered self-talk that is intentionally loud enough that the four can follow each other's work while doing "their own." This keeps them aligned and allows them to help each other, maintaining a joint problem space and producing a group product. We have already seen that new postings do not only relate to previous postings. They also reference things outside of the immediate chat discourse. For instance, line 1393 made reference to the feedback displayed in the text box in the shared whiteboard. It did this partially by quoting an excerpt from the feedback and partially by transforming it from the facilitator perspective to the participants' perspective. Line 1402 referred to Pascal's triangle by using the phrase "triangular numbers" that the students had used before. Line 1403 refers to "the second formula." The referent for this phrase is not obvious to the engaged participants or to us as retrospective analysts. Quicksilver says "No" in line 1405. This seems to be a response to line 1403 about the second formula, with 1404 being a response to 1401 and to the general problem of preparing an explanation for the wiki. When references become unclear to some members of the discourse, it may be necessary to repair the breakdown in mutual understanding. A lot of important interaction in collaborative activities consists in such repair, clarifying the references by making them more explicit so that each participant comes to understand them well enough to continue the discourse (Koschmann & LeBaron, 2003). Clark's contribution theory of grounding (Clark & Brennan, 1991) describes how this takes place among dyads in face-to-face informal conversation, illustrated with made-up examples. For online small groups using text chat in real examples of knowledge building, such as explaining math problem solving, the repair may be more complicated (Dillenbourg & Traum, 2006). Quicksilver's "No" is followed by, "we don't know the second formula." The phrase, "second formula" in line 1406 here is not referencing the same thing as "second formula" in line 1403, as indicated by the question mark in line 1409. In fact, it takes two and a half minutes and 21 postings (1403 to 1424) to reach the point where the discourse can go on. The confusion gets translated by line 1410 into which formula is this team's and which was Team C's solution that this team found on the public wiki. Aznx tries to clarify (lines 1413-1416) that the formula he is concerned with could not be Team C's because Team C did not calculate the number of squares using the encompassing big square (they only proposed a formula for the number of sticks). Quicksilver describes his confusion, but the conversation does not continue; there is a one-minute silence, which is embarrassingly long in chat. The silence is broken by Bwang's suggestion in line 1420 to use the graphical referencing tool that is part of the VMT environment. As they wrap up the discussion, Quicksilver points to one formula ("ours") in the whiteboard (line 1422) and Aznx to the other ("theirs") (line 1424). This resolution of the confusion through the use of the available technology was thus accomplished by all three of them, using the referencing tool to point to objects in the whiteboard in coordination with labeling them with the terms "ours" and "theirs" in the chat. In parallel with this, the students propose to move on to post on the wiki: Aznx suggests that they may be finished preparing the explanation (line 1421). Quicksilver agrees, "all right, let's put it on the wiki and let's clearly explain it" (lines 1423, 1425). Finally, Aznx concludes the preparations by saying, "Bwang, you do it" (line 1426). ### **Ambiguity of the Interaction** We can follow the discussion taking place in the excerpt now better than at first sight. Not only do we have some sense of its structure and flow, but we see how it is embedded in the situation of the preceding interactions, the tasks that are driving the discourse forward, the items in the whiteboard and other available resources (wiki postings by other teams, math knowledge, etc.). We had to conduct a preliminary analysis of the meaning-making process in terms of the interactional threading, the uptake of one posting by a subsequent one, the continuity of postings by individual participants, the subsidiary discussions to repair confusions, the references to various resources and the repeated citation of terms or phrases. Only then could we look more deeply into the interaction or investigate specific research questions. If we wanted to classify individual chat postings according to some coding scheme (as in Chapters 22 and 23) in order to compare our excerpt to other interaction records, we would have had to do such a preliminary analysis to know what the brief, elliptical chat postings meant. CSCL is a human science and the analysis of its data requires an understanding of the *meaning* that things had for the participants. One cannot code a posting like "No!" as a mathematical proposal, a repair of understanding, an argumentative move or an off-topic comment without having a sense of the meaning of what the participants were doing linguistically and interactionally. Of course, if a chat posting just says, "Hi," then even a simple algorithm can code it as Greeting, Social or Off-Topic with high reliability. However, we have found that the most interesting interactions are challenging for experienced researchers and likely to inspire divergent but productive analyses. So far, our analysis of the excerpt is quite preliminary. There is still a lot of ambiguity about what is going on. Line 1396/1399 remains quite intriguing: "We got the solutions. But I'm not sure how to explain how we got to the solutions, although it makes perfect sense to me." If the solutions make perfect sense to Aznx, why does he feel that he cannot explain how they got the solutions? As noted above, this points to a fundamental problem in mathematics education. Students are trained to compute solutions, but they have difficulty articulating explanations. Some educational theories point to explanation as the core of "deep understanding" (Moss & Beatty, 2006). Proponents of collaborative learning point to the importance of opportunities to explain math thinking to others as being important even for the development of one's own higher-order learning skills (Wegerif, 2006). We may still wonder what the significance is of the fact that Aznx seems ready to post an explanation at line 1421 despite his repeated disclaimer at line 1401. Does line 1421 signal that the ensuing interaction is being taken as an adequate account or is the fact that things made perfect sense to Aznx now taken as adequate although it was not previously? Aznx does say in line 1403 that he can explain "the second formula." Does this entail that all that is needed is such an explanation of the second formula? Note that Aznx's line 1421 says, "So we're technically done with all of it, right?" What does the "So" respond to as an uptake? What has suddenly made the group ready to post an explanation? This line follows the extended effort to overcome the confusion of referencing, and it is hard to trace the "So" back to some clear point that it is building on.
Furthermore, what is the significance of the hedge, "technically"? In fact, it is not even clear what "it" refers to. Is Aznx just saying they are done with the repair, rather than with the whole explanation? Line 1423/1425 with its "all right" response seems to take line 1421 as saying that the group is ready to post their solution. It then proceeds to propose the logical next step, "let's put it on the wiki.... And let's clearly explain it." Aznx no longer resists, yet in line 1426 he proposes that Bwang do the posting. In previous sessions, Aznx has requested that Bwang do the wiki postings, using precisely the same wording. Bwang has done previous wiki postings for the group. In this way, Aznx' statements leave ambiguous whether or not he still expresses doubt about his ability to explain the group's solution path and the extent to which he indicates understanding that path. It not only remains ambiguous how much Aznx can explain, but also what exactly he was referring to as "the second formula." The repair of confusion shifted from distinguishing the second from the third formula to distinguishing Team C's formula from Team B's. Quicksilver and Aznx clearly pointed to two different text boxes in the whiteboard containing formulae as "ours" and "theirs." However, the text box called "ours" contained three formulae: for the big square, for the 4 corners and for the diamond pattern as the difference. Did Aznx originally mean that he could only explain the second of these three—which was based on the formula for triangular numbers? Did Quicksilver's mention of triangular numbers in line 1402 and more general review of their solution path help Aznx to feel that they could put together an explanation of how all the formulae fit together? The discourse in this excerpt does not seem to provide complete answers to some of these questions. While careful analysis of small-group discourse often reveals much about the problem-solving work of the group and its members, many other issues remain ambiguous, missing and even contradictory. The group did its work without resolving or explicating all of the issues that researchers may want to know about. #### **Resources in the Network of Reference** We have seen that an understanding of the intersubjective meaning-making process of a small group in a text-chat environment involves paying attention to an intricate web of connections among the items in the interaction record and items from the context that are made relevant in the discourse. There is a *threading* of the flow, with a particular posting following up on a preceding one (that may not be immediately adjacent in the chat log) and opening the possibility of certain kinds of postings to follow. There is *up-take* of one phrase or action by another, carrying the work of the group ahead. There are often important *continuities* from one posting of a particular individual to the same person's subsequent postings. Various sorts of communication problems can arise—from typos to confusion—and *repairs* can be initiated to overcome the problems. Lines of chat can *reference* items outside the chat, such as whiteboard drawings, formulae learned in the past or notions raised earlier. Terms and phrases in a posting can serve as *citations* of previous statements, making the former meanings once more present and relevant. Later in the chapter we will draw arrows on a record of the chat excerpt to indicate several dozen of these connections of threading, uptake, continuity, repair, reference and citation. The postings can be separated into columns by poster to reflect continuity (see Stahl, 2006c, p. 100), and a column added for referenced items external to the immediate discourse. The intricate web of arrows will indicate how interwoven the postings are and how the postings of the different participants are tied together, creating an overall flow to the group discourse. Meaning making proceeds through the weaving of different forms of referencing. As Valsiner & van der Veer (2000) put it, We come to knowledge by taking part in collective activities that evolve over time, and where language and material artifacts function as collective structural resources. We can distinguish a variety of kinds of resources that function in the excerpt that we have considered. The students take part in collective activities that evolve over four hours of online interaction. In the online context, textual and graphical artifacts contribute as resources in the web of meaning that is co-constructed by the group and shared by its members. The resources available in face-to-face settings are not available online in the same format, but many of them have online analogues. When we conducted a pilot study for the VMT Project in a face-to-face collaborative math classroom, we observed four girls sitting around a table and working in closely coordinated parallel work (Figure 26-2). The students were physically distinct and we could observe the embodiment of their individual behavior. The girls were obviously friends who knew each other well; they maintained close visual and auditory coordination by looking at each other's papers and by talking aloud about their work. Their quiet self-talk was a way of letting the others know what they were doing without requiring responses, a subtle form of polyphonic communication (Chapter 24). Their body language, positioning and gesturing communicated their progress on the math tasks—or lack of progress. Gestures to their own and each other's work papers were used extensively, both to communicate and to coordinate turn taking. Figure 26-2. Collaborative math in a classroom. We can distinguish various kinds of resources in the face-to-face case: - Lexical definitions. The words the students speak and hear to describe their work and their understanding may be mumbled, may interfere with other words or sounds and may be altered as they are produced. They incorporate modes of expression typical of the students' cultural background. - *Environmental resources*. There are many physical artifacts scattered about the work area: pencils, papers, rulers, scissors, calculator, watches. - *Intentional continuities*. The bodies of the students persist as visible embodiments of their identity throughout the session. - *Topical responses*. The students engage in conversational turn taking to organize their verbal interaction. - *Contextual relevancies*. They share the visual and physical environment of the classroom and their table. - *Indexical frames*. They make heavy use of glance and gesture to index resources in their shared environment, including the inscriptions on their individual pieces of paper. These kinds of resources have their equivalents online, although they take different forms there: Lexical definitions. The postings the students type and read in the chat window to describe their work and their understanding and the iconic drawings they create in the whiteboard are posted after they have been carefully typed or crafted. They tend to be more explicit, elliptical and ambiguous. They use cultural conventions of instant messaging. - *Environmental resources*. There are many tools and affordances available in the VMT environment. The students gradually learn to make use of these and to share ways of using them. - *Intentional continuities*. The successive chat postings of a given individual participant are identified with a specific chat handle or name and timestamp. Identification of whiteboard actions are less obvious. - *Topical responses*. The students engage in implicitly-threaded chat postings to organize their verbal interaction, often through proposals and responses. They sometimes use the graphical referencing tool to clarify threading response structure. - Contextual relevancies. They share the software environment of the VMT interface, which reflects most of what is seen in the interfaces of the other participants. The text and graphics are visually persistent for a while. - *Indexical frames*. The textual sequentiality establishes most of the indexical framing. Students have more trouble indexing resources online, and sometimes have to engage in chat discussions to try to straighten out referential problems. We can see these different kinds of resources at work in the excerpt reproduced in Log 26-1. #### **Lexical Definitions** Meaning is most commonly associated with dictionary definitions of words. While this is a commonsensical view of meaning, in fact the definitions of words encapsulate a wealth of resources. Language can be theoretically construed as a vast cultural repository of sedimented experiences, skills, lessons and resources. In local interactions like Team B's sessions, new jargon and shared understandings of specific verbal constructs are co-constructed and shared. Drawings and arrangements of inscriptions in the whiteboard provide visual images for the meaning of words and symbolic expressions in the chat or in whiteboard textboxes. As Chapter 24 discussed, repetition of words can be used to build "polyphonic" structures in which a term used by one participant at one point is picked up by another later on, and perhaps additional times. The repetition of a significant word often serves to create a reference back to the earlier occurrence(s). Of course, there are also terms in the language whose very function is to make references. Often terms like deictic reference words carry no other semantics. For instance, line 1424 in Log 26-1 has little content beyond its dual references: "That is theirs." Part of a complicated sorting out of references, Aznx's posting verbally references a particular symbolic expression on the whiteboard and associates it with Team C. The referencing is done purely linguistically with the use of deictic terms and the formal (syntactic) meaning of the posting consists of the combining (with the copula "is") of the two references. The meaning content (semantics) of
such a posting is completely dependent upon the situatednesss of the posting, including the whiteboard inscriptions and the community of VMT teams. #### **Environmental Resources** The group enacts or co-constructs the resources and affordances of its environment through the ways that it references and makes use of them. In the VMT sessions, the environment includes not only the technological medium with its interface, but also the presented problem and the social setting. The session was arranged by the students' teachers with the anticipation of prizes for the best collaborators. So, although it took place outside of school, using home computers, it had ties to schooling and through the Math Forum sponsorship and facilitators to school mathematics. The specific problem, carefully worded by Math Forum staff, and the feedback between online sessions posted in the whiteboard by VMT staff provided strong direction to the interaction. The students made reference to wording and ideas from the topic and from the feedback. They explored and took advantage of many of the affordances of the VMT interface and media. The software environment included the chat with its options and tools, the whiteboard with its options and tools, the graphical referencing tool, the wiki, various social awareness features and the VMT lobby. An example of the student reference to the pointing tool is given in line 1420 of Log 26-1. Bwang says, "point formula out with the tools so we don't get confused." This comes after a struggle by Aznx and Quicksilver to clarify their references to formulae in whiteboard textboxes and a 60-second silence during which no one takes any visible action. Bwang is pointing to the affordance of the available tool for clarifying confused references. His suggestion is effectively taken up by the others to co-construct a clarifying reference. #### **Intentional Continuities** Each chat posting is associated with the name (handle) of the poster. Readers of postings pay considerable attention to this handle. A new posting is closely associated with the history of previous postings under the same handle. The copresence of participants to each other is primarily mediated by the association of each posting with its poster's handle. Just as people in face-to-face situations attribute human intentionality to active human bodies that provide a visible persistent identity of speakers, so users in text-chat situations attribute human intentionality and interactional presence to the sequence of postings associated with a given handle. In the VMT interface, above the chat-messages window there is a list of people (handles) who are currently logged into the chat room. Social-awareness messages about who is typing, who is editing a textbox, who entered or exited the room or who placed an object in the whiteboard also reference the handles of participants, connecting all these activities to a unique actor. The work discussed in Chapter 19 about software agents being introduced into the VMT environment assigns a handle to the software agents and lists the agents in the list of participants logged in as well as announcing when agents "are typing" or when they enter and leave the room. Issues of intentionality gain in ambiguity in an online environment like VMT, where the indicators of agency are designed and indirect. Sometimes students wonder if the VMT mentor in a chat room is a software agent, because he/she/it may have an unusual handle, may not be very interactive and may suddenly produce long pronouncements that sound highly scripted. When viewing a chat in the VMT Replayer, you may not be able to tell if it is being generated live or if the students disappeared years ago. Although the meaning of the "interaction" must exist exclusively in the text, drawings, visual appearances and animated sequentiality of the displayed digital record, we interpret it in terms of the intentionality of virtually co-present human agents. It actually takes considerable training for an analyst to interpret the meaning as a referential network among visual and linguistic resources rather than as "expressions" of mental representations. In analyzing a chat log, it may be useful to provide a visual representation of participation and individual continuity by linking successive postings of individuals, as in Figure 26-3. | ine | participant | chat posting | time | delay | |------|-------------|---|----------|-------| | 393 | Quicksilver | (a) was define the problem, (b) was the solution which we got | 07.29.46 | | | 394 | bwangS | we calculated the # of square if the diamond makes a perfect square | 07.29.48 | 2 | | 1395 | Azna | We can define the problem. | 07.29.48 | 0 | | 1396 | Prization V | We got the solutions. | 07.29.55 | 7 | | 1397 | Quicksilver | yes | 07.30.12 | 17 | | 1398 | Quicksilver | the added corners | 07.30.16 | 4 | | 1399 | ZNX | But I'm not sure how to explain how we got to the solutions, although it makes prefect sense to me. | 07.30.18 | 2 | | 1400 | Quicksilve: | to make a square | 07.30.19 | 1 | | 1401 | AZRX | I'm just not sure how to explain it. | 07.30.24 | 5 | | 1402 | Quaksilver | and we found those were triangular numbers | 07.30.25 | 1 | | 1403 | ZHX | Well, I can explain the second formula. | 07.30.32 | 7 | | 1404 | Quarsilve: | lets go step by step | 07.30.35 | 3 | | 1405 | Quicksilver | NO | 07.30.37 | 2 | | 1406 | Quicksilver | we don't know hte second formula | 07.30.42 | 5 | | 1407 | AZIX | It was done through the method of finsing the pattern of triangular #s. | 07.30.45 | 3 | | 1408 | Stant. | Yes we do. | 07.30.50 | 5 | | 1409 | Quicksilver | ? | 07.30.55 | 5 | | 1410 | Aznx | Suppose their second formula is our third. | 07.30.56 | 1 | | 1411 | ksilver | That was teem c's tho | 07.31.06 | 10 | | 1412 | Aznx | No. | 07.31.12 | 6 | | 1413 | AZRX | They didn't do. | 07.31.16 | 4 | | 1414 | Carrette V | The nuumber of squares | 07.31.20 | 4 | | 1415 | Quicksik er | ohi! | 07.31.25 | 5 | | 1416 | Aznx | or the find the big square | 07.31.26 | 1 | | 1417 | Quicksilver | that formula | 07.31.27 | 1 | | 1418 | Quicksilver | i that u meant the other one | 07.31.31 | 4 | | 1419 | Quicksilver | yeah that is ours | 07.31.36 | 5 | | 1420 | bwang8 | point formula out with the tools so we don't get confused | 07.32.37 | 61 | | 421 | Aznx | So we're technically done with all of it right? | 07.32.49 | 12 | | 422 | Quicksilver | this is ours | 07.32.51 | 2 | | 423 | Quicksilver | all rightlets put it on the wiki | 07.32.58 | 7 | | 424 | Aznx | That is theirs. | 07.33.02 | 4 | | 1425 | ksilver (| adn lets clearly explain it | 07.33.05 | 3 | | 1426 | Aznx | bwang you do it. =P | 07.33.11 | 6 | Figure 26-3. The threading of Aznx's postings. #### **Topical Responses** The most obvious type of referencing in chat is the threaded response to a recent previous posting on a given topic. This is the equivalent of adjacency pairs in conversational talk (see Chapter 14). In face-to-face conversation within a dyad, when one person raises a question or makes a proposal, the other person is expected to provide an answer to the question or to accept the proposal. Of course, there are many possible variations for a response, like asking a clarification question or countering with an alternative proposal. The question/answer or proposal/acceptance response pair can be interrupted by a secondary sequence of interaction, for instance to repair a problem in understanding the initial question or proposal. The secondary interaction may consist of a response pair itself—and it may be interrupted, and so on recursively. But eventually, the pairs tend to get closed. In chat, because the gradual production of the original question, proposal, etc. is not observable, other participants in the chat may simultaneously be producing their own greetings, repairs, questions or proposals. They may also still be responding by producing answers to previously posted questions. Especially when more than two participants are active, the response pair-structure becomes confused. Nevertheless, there is still an underlying pairing of posts responding to each other with expectations similar to those in talk. People reading the chat must put more effort into untangling the threading of the structure of the responses. In Figure 26-4, each participant's postings have been displayed in a separate column, with a common sequential time line running down. The response structure has been indicated with arrows. The overall visual pattern of the arrows provides a sense of the flow of the group interaction. | | - | T | · - | - | |------|---|----------------------------------|---|--| | line | Arns | Quicksilver | brang6 | reference | | 1393 | | (a) was define the problem, (b) | | feedback text-box on | | | | was the solution which we got | | whiteboard | | 1394 | | | we calculated the # of | drawing of diamond with r | | | | | square if the diamond | corners on whiteboard | | 1395 | We can define the problem | | | | | 1396 | Ve got the solutions. | | | | | 1398 | | the added corners | | | | 1399 | But I'm not sure how to explain | the added corners | | | | 1333 | how we got to the solutions. | | | | | 1400 | now we got to the solutions. | to make a square | | | | 1401 | I'm just not sure how to explain it. | to make a square | | | | 1402 | Jast not sale now to explain it. | and we found those were | | a previous discussion of | | | | triangular numbers | | "triangular" numbers | | 1403 | Vell, I can explain the second | | | garar mumbers | | 1404 | a cit, i van capiani tiic Scoolia | lets of step by step | | formula for • of sticks | | 1405 | | NO | | | | 1406 | | e don't know hte second | | | |
1407 | It was done through the pethod of | | | | | 1408 | | | | | | 1409 | 113 41 40. | 2 | | | | 1410 | Suppose their second formula is our third. | | | | | 1411 | | That was taem c's tho | | Team C viki page | | 1412 | No. | | | | | 1413 | They didn't do. | | | | | 1414 | The nuumber of squares | | | | | 1415 | | ohi! | | | | 1416 | or the find the big square | | | | | 1417 | | that formula | | | | 1418 | | i thot u meant the other one 🛰 | | | | 1419 | | geah that is ours | | | | 1420 | | | point formula out with
the tools so we don't
get confused | the VMT referencing tool | | 1421 | So we're technically done with all of it right? | | | | | 1422 | | this is ours | | big square: (2n-1)^2 4
corners: n(n+1)/2*4 (2n
1)^2 - n(n+1)/2*4 | | 1423 | | all rightlets put it on the wiki | | the wiki pages | | 1424 | That is theirs. | | | n^2 + (n-1)^2 " 2 + n"3 -2 | Figure 26-4. The response structure. #### **Contextual Relevancies** The con-text—literally, what is given with the text—of text chat is co-constructed by the participants through their postings, which make reference to objects and thereby make them relevant to the discourse. Often, the chat includes implicit references to people, events or artifacts. This incorporates them into the chat context. Sometimes they are referred to by some form of citation or by repetition of words. In Figure 26-5, references that establish contextual relevancies from previous chat postings or whiteboard inscriptions are indicated. | line | Azns | Quicksilver | bwang6 | reference | |------|--|--|---|---| | 1393 | | (a) was serme a problem, b) was the solution lich we jot | 4 | feedback text-box on | | | | was the solution wich we you | | whiteboard | | 1394 | | | we calculated the # of | drawing of diamond with red | | | | | square if the diamond | corners on whiteboard | | 1395 | | | | | | 1396 | We got toe solutions | | | | | 1397 | | yes | | | | 1398 | | the added corners | | | | 1399 | But I'm not sure how to explain how we got to the solutions. | | | | | 1400 | now we got to the solutions. | to make a square | | | | | I'm just not sure how to explain it. | to make a square | | | | 1402 | Till just not sure now to explain it. | no ve pund those were | | a previous discussion of | | 1702 | l . | triangular umbers | | "triangular" numbers | | 1403 | | Grangular lumbers | | changular numbers | | 1404 | wen, I can explain the second | late on star by star | | formula for # of sticks | | 1405 | | lets go step by step
NO! | | rormula for # or sticks | | | <u> </u> | | - | | | 1406 | li di | we don't know hte second | | | | 1407 | finsing the pattern of triangular | | | | | | Yes we do. | | | | | 1409 | | ? | | | | 1410 | Suppose their second formula is our third. | | | | | 1411 | | That was taem c's tho | | Team C wiki page | | 1412 | No. | | | | | 1413 | They didn't do. | | | | | 1414 | The nuumber of squares | | | | | 1415 | | ohj! | | | | 1416 | or the find the big square | | | | | 1417 | - | t at formula | | | | 1418 | | i to a man at the outer one | | | | 1419 | | geah that is ours | | | | 1420 | | * | poil t formula or t with
the tools so we don't
get confused | the YMT referencing tool | | 1421 | So we're technically done with all of it right? | | qet comuseu | | | 1422 | | this is ours | | big square: (2n-1)*2 4
corners: n(n+1)/2*4 (2n-
1)*2 - n(n+1)/2*4 | | 1423 | | all rightlets put it on the wiki | | the wiki pages | | 1424 | That is theirs. | | | n^2 + (n-1)^2 * 2 + n*3 -2 | | 1425 | | adn lets clearly explain it | | | | 1426 | bwang you do it. =P | | | | Figure 26-5. References to contextual relevancies. #### **Indexical Frames** The discourse creates and maintains a referential system in which indexicals and deictic terms are resolved. Words like *you*, *now*, *this*, *his*, *it* or *then* rely for their meaning on the specific situation in which they are used. Their role is to index or point to agents, artifacts or events within the discourse context. They help to weave that context in which references gain their situated significance. For instance, the reference of *me* or *you* depends upon who is speaking (or typing) and who is being addressed (or reading). Verb tenses—*is*, *was*, *had been*, *will be*— are also relative to the speaker (poster) and the speaker's perspective. The use of these terms in the chat co-constructs an indexical space (see Chapter 7), which helps future similar terms to be resolved consistently. By referring to events in past, present and future tenses, participants indicate a temporal dimension in which those events and possible related other events are ordered. Figure 26-6 indicates some of the indexical references in the excerpt. | line | Azns | Quicksilver | brangs | reference | |------|--|--|--|-----------------------------| | 1393 | | (a) was define the problem, (b) | - Control of the Cont | feedback text-box on | | | | was the solution which we got | | whiteboard | | 1394 | | | we calculated the # of | draving of diamond with red | | | A | | squar ir the diamond | corners on whiteboard | | 1395 | We can define the problem. | | | | | 1396 | ₩e got the solutions. | | | | | 1397 | | ges | | | | 1398 | | the added corners | | | | 1399 | But I'm not sure how to explain 🦽 | | | | | 1400 | how we got to the solutions. | | | | | | | to make a square | | | | 1401 | I'm just not sure how to explain it. | | | | | 1402 | | and we found those were | | a previous discussion of | | **** | | triangular numbers | - | "triangular" numbers | | 1403 | Vell, I can explain the second |
 | | | 1404 | | lets go step 0, | | formula for # of sticks | | 1405 | | NO! | The second secon | | | 1406 | | we don't know hte second | | | | 1407 | It was done through the method of
finsing the pattern of triangular | | | | | 1408 | Yes we do. | | The second secon | | | 1409 | | ? | | | | 1410 | Suppose their second formula | | | | | | our third. | Section 10 to t | | | | 1411 | our time. | That was taem c's tho | | Team C wiki page | | 1412 | No. | That day tach o's the | | ream o anni page | | 1413 | They didn't do. | _ | | | | 1414 | The number of squares | | | | | 1415 | The liquiliber or squares | ohi! | | | | 1416 | or the find the his course | Onji | | | | 1417 | or the find the big square | that formula | | | | 1418 | | i that rormula | | | | | | | | | | 1419 | | geah that is ours | | | | 1420 | | | point formula out with | the YMT referencing tool | | | | | the tools so we don't | | | | | | get confused | ļ | | 1421 | So we're technically done with all
of it right? | | | | | 1422 | | this is ours | | big square: (2n-1)*2 4 | | | | | | corners: n(n+1)/2"4 (2n- | | | | | <u>La</u> | 1)*2 - n(n+1)/2*4 | | 1423 | | all rightlets put it on the wiki | | the wiki pages | | 1424 | That is theirs. | | | n^2 + (n-1)^2 * 2 + n*3 -2 | | 1425 | | adn lets clearly explain it | I . | | | | bwang you do it. =P | | | | Figure 26-6. Indexical references. Although this chapter has distinguished several kinds of referential structures and has displayed them in different diagrams to guide the reader in seeing them in the log excerpt, they all function together to make meaning. Figure 26-7 displays the references that were identified in the preceding diagrams together. When one reads a chat—either in real-time as a participant in the chat or retrospectively as an analyst, one must at least implicitly gain a sense of this complex of references in order to understand the meaning that is created in the chat. In chats like that recorded in Log 26-1, some of those references are hard to clarify, both for the participants and for analysts. Some may have gotten so confused in the interplay of the interaction that they must be considered ultimately ambiguous, at least in certain aspects. | line | Azns | Quicksilver | brangs | reference | |--|---|---|------------------------|---| | 1393 | | (a) was define the problem, (b) | | feedback text-box on | | | | was the solution which we got | | whiteboard | | 1394 | | | we calculated the | drawing of diamond with re | | | | | square if themond | corners on whiteboard | | 1395 | We can define the problem | | | - | | 1396 | We got the solutions | | | | | 1397 | | ges | | | | 1398 | V | the audid covers | | | | 1399 | But I'm not sure how to explain | | | | | 1400 | how we got to the solutions, | | | | | | | to make a square | | | | 1401
1402 | I'm just not sure how to explain it. | | | | | 1402 | | and we found those were | | a previous discussion of | | 1400 | U-III I I I | triangular numbers | | "triangular" numbers | | 1403 | Vell, I can explain the second | | | | | 1404 | | step by step | | formula for # of sticks | | 1405 | | NO | | | | 1406 | | don't know hte second | | | | 1407 | It was done through the method of finsing the pattern of tries and | | | | | 1408 | Yes we do. | | A | | | 1409 | | ? | | _ | | 1410 | Suppose their second formula is our third. | | | | | 1411 | | Thavwas taem c's tho | | Team C wiki page | | 1412 | No. | | | | | 1413 | They didn't do. | | | | | | | | | | | 1414 | The nuumber of starts | | | | | 1414
1415 | | hil | | | | 1414
1415
1416 | or the find the big square | | | | | 1414
1415
1416
1417 | | that formula | | | | 1414
1415
1416
1417
1418 | | that formula
i thot use anti-se occurrence | | | | 1414
1415
1416
1417
1418
1419 | | that formula | | | | 1414
1415
1416
1417
1418 | | that formula
i thot use anti-se occurrence | point for all out with | the YMT referencing tool | | 1414
1415
1416
1417
1418
1419
1420 | or the find the big square | that formula
i thot use anti-se occurrence | point for Ja out with | the YMT referencing tool | | 1414
1415
1416
1417
1418
1419 | | that formula
i thot use anti-se occurrence | me tools so 🐗 📖 | the YMT referencing tool | | 1414
1415
1416
1417
1418
1419
1420 | or the find the big square So we're technically done with all | that formula
i thot use anti-se occurrence | me tools so 🐗 📖 | the YMT referencing tool big square: (2n-1)*2 4 | | 1414
1415
1416
1417
1418
1419
1420 | or the find the big square So we're technically done with all | that formula
i thot up centure of the one
tech that is out. | me tools so 🐗 📖 | big square: (2n-1)*2 | | 1414
1415
1416
1417
1418
1419
1420 | or the find the big square So we're technically done with all | that formula
i thot up centure of the one
tech that is out. | me tools so 🐗 📖 | big square: (2n-1)*2 4 | | 1414
1415
1416
1417
1418
1419
1420
1421 | or the find the big square So we're technically done with all | that formula i thot up reant the ottors one tesh that is oul, s this is ours | me tools so 🐗 📖 | big square: (2n-1)*2 | | 1414
1415
1416
1417
1418
1419
1420
1421
1422 | or the find the big square So we're technically done with all of it right? | that formula i thot up reant the ottors one tesh that is oul, s this is ours | me tools so 🐗 📖 | big square: {2n-1}*2 | Figure 26-7. A network of references. ### **Methods of Intersubjective Meaning Making** The meaning of the interaction is co-constructed through the building of a web of contributions and consists in the implicit network of references. The point is not to reify this network as the answer to the question, what is meaning, but to see it as a way of understanding how meaning is co-constructed, i.e., how people make sense together. There are many methods that members of a group, community-of-practice or culture employ to accomplish meaning-making moves in small-group interactions. In face-to-face interactions, certain typical "adjacency pairs" (like question/answer or greeting/response) form common "member methods" (Garfinkel, 1967). In chat, the two postings that belong to an adjacency pair may not be directly adjacent, but they retain the basic structure of forming a meaningful interaction through their combination. In looking at collaborative problem-solving extracts in VMT logs, I defined a typical pattern of "math-proposal adjacency pairs" (Stahl, 2006c). Here, one participant proposes an approach for the group to take to a problem or current sub-problem and someone else must either accept or decline the proposal on behalf of the group. If it is declined, then some kind of argument or alternative proposal is expected. If the proposal is accepted, then the group can continue working on the proposal, often by considering a follow-up proposal pair. There are a number of conditions that must be met by a proposal for it to be successful. These involve its timing and relevance in the flow of the discourse. A bid at a proposal that does not satisfy these conditions is likely to fail to be taken up as a proposal. The bid/acceptance pair may be temporarily interrupted by clarification questions or repairs to the bid's formulation. These, in turn, can lead to discussions of indeterminate length. Math proposal response pairs provide a social order for discussions of mathematical problems in small groups. In the excerpt of Log 26-1, the students are no longer solving a math problem, but reflecting on their solution, trying to recall the steps that they went through and to explain how they solved it in a way that will be meaningful for an audience of their peers (the other teams who read the wiki) and their facilitators (who provide feedback and judge the winning teams). Here, there is a similar process of making proposals and responding to them, but the proposals are formulated more as declarative statements that recall past actions and the responses are rather oblique. In addition, Quicksilver and Aznx tend to continue their presentations in multiple postings, creating parallel threads. While there is an underlying social order that makes this excerpt meaningful, as we have seen it takes some analysis to uncover this relatively complicated and ambiguous order. Furthermore, the order was made complicated by the overlapping of different temporalities. The students were not simply conducting their own math problem-solving inquiry, they were recalling sequences of action from their previous sessions and from Team C's work. In an effort to organize and judge their explanations in the present, they repeatedly recalled, reviewed and rehearsed past sequences of math moves for future documentation on the wiki. The meaning-making process as seen here may deal with complicated temporal relationships and, in the process, weave intricate new temporal webs, including parallel meaning-making flows. Even in this brief excerpt, we have seen many member methods or social practices that the participants use to co-construct meaning. Mostly, they respond to each other, making suggestions and posing questions. In addition, they work on repairing problems, such as the confusion about references to formulae. In resolving the confusion, they called upon the referencing tool in the VMT environment. This was the equivalent for the online context of pointing with a physical gesture when face-to-face. Different media provide different affordances and impose different constraints. In new media like this specific chat environment, participants have to be creative in adapting
traditional meaning-making methods or inventing new ones. Students may be very inventive and this may impose extra effort on analysts who want to study the meaning-making processes and practices in innovative settings. The foregoing analysis of meaning making in the excerpt is purely preliminary. A fuller analysis would depend upon one's research interests and specific questions. The excerpt would have to be understood within its larger context, including: the four full sessions (see Chapter 10), which are being reflected on here; the feedback from the facilitators, as it developed in response to the different sessions and based on the original task instructions; the various postings to the whiteboard and to the wiki; and even some of the work of the other teams. But perhaps this preliminary analysis is enough to indicate some of the methods of meaning making that take place in CSCL settings like the VMT sessions. There are phenomena observable at many granularities of analysis. The interactions among brief sequences of postings such as those in Log 26-1 may be considered the cell-form or elements of the meaning making that underlies computer-supported collaborative learning. ### **Preconditions for Cognitive Processes by Groups** Now that we have a general sense of how meaning making takes place in CSCL (its *conditions*), what are the implications for design? What do we need to consider when attempting to support effective meaning making in CSCL? One approach to this question is to consider the logical and practical *preconditions* for students to get together and engage in joint meaning making to accomplish group-cognitive tasks. In philosophical terms, this is to specify the preconditions for the possibility of group cognition. Based on our empirical experiences in the VMT Project, here is a tentative list of some necessary—though not sufficient—preconditions for small groups of students to collaborate on math problems and other high-order cognitive tasks. The particular number, order and description of these preconditions is, of course, open to debate, extension and refinement. Nevertheless, it may be helpful to consider them when organizing CSCL environments and activities. Here are some preconditions (with parenthetical examples from the analyzed excerpt): - Opening of interaction space. There must be a "world" in which people can come together and interact. The world must provide a network of meanings and possibilities for action. This situation defines deictic (Hanks, 1992), semiotic and semantic relations. (a virtual world, such as those created in the VMT Project) - Object of activity. There must be a reason for interacting, a goal to work for, a topic to discuss, a problem to solve or an outcome to reach. (the math topic and motivating context) - Shared intentionality. It must be possible for participants to orient in common to objects, to focus their comments and activities on the same items, to "be-there-together" at a topic of joint concern, to "construct and maintain a shared conception of a problem." (e.g., the students' focus on the same formulae and tasks) - *Intersubjectivity*. Participants must be willing and able to interact with others as peers. They must recognize others as active subjects with their own agency and be willing to relate to them as such. (human co-presence) - *Historical interpretive horizon*. Meanings of artifacts, words, domain concepts, etc. evolve through history and local pasts. Participants must have lived histories that overlap enough to share understandings of historically evolved meanings. (the term "triangular numbers" brought in from classroom background experience) - Shared background culture. Participants must share a language, a set of member methods, a vast tacit background knowledge of domain information and of ways of being human. (including how to "do" math) - *Member methods for social order*. Participants inherit and are socialized into an endless variety of member methods for conducting interaction and creating social order. However, small groups must also constantly adapt and enact methods to meet unique situations and innovative technologies. New methods must be fluidly negotiated and adopted for shared use *in situ*. (such as pointing from a chat message) - Designed affordances of infrastructure. The technological features of a CSCL medium define many features of the world which is opened up for interaction. These features are enacted by the participants to provide affordances for their activities. The enacted affordances are often quite different from the features imagined by the designers and can only be discovered through analysis of actual usage. (e.g., the pointing tool) - Dialogic inter-animation of perspectives. A key source of creativity, meaning making, problem-solving vitality—but also ambiguity—is the interaction of participants with essentially different interpretive perspectives (Wegerif, 2006). The power of CSCL is largely dependent upon its ability to bring different perspectives together effectively. (Bwang's math skills, Aznx' questioning, Quicksilver's recall) - Creation & interpretation of group meaning. The meaning-making process discussed in this paper lies at the core of computer-supported collaborative learning. It must be supported by CSCL environments. (pointing) - Group-regulation & group meta-cognition. Small groups of learners working on wicked problems that have no fixed solution path must have methods for proposing, negotiating, discussing, adopting and reflecting upon their path of inquiry. Methods of explaining their work are part of this. Scripting and other forms of scaffolding may help groups develop skills of self-regulation. (feedback about reflection on what to post to the wiki) - Individual learning & interpretation. The establishment of shared group meanings takes place through interactive processes like those we have noticed in this paper, involving the contribution of proposal bids by individual participants and the interpretation of meanings from individual perspectives (Stahl, 2006a, ch. 16). Individual learning may result indirectly from the group cognitive processes that establish understanding by all participants. (the wiki posting done by Bwang later) - Motivation and engagement. Small groups and communities-of-practice determine their own interests and involvements through the particulars of what they work on and how they approach it. Individuals tend to become caught up in the group process through their contributions and participations in the interactions. Small-group processes appeal to the social inclinations of people, although they can also engender fears and pressures. In groups of several participants, the interactions can become quite complex, and engagement by different individuals in different activities may ebb and flow. (Bwang kept quiet, but entered strategically) ### References - Clark, H., & Brennan, S. (1991). Grounding in communication. In L. Resnick, J. Levine & S. Teasley (Eds.), *Perspectives on socially-shared cognition* (pp. 127-149). Washington, DC: APA. - Dillenbourg, P., Baker, M., Blaye, A., & O'Malley, C. (1996). The evolution of research on collaborative learning. In P. Reimann & H. Spada (Eds.), *Learning in humans and machines: Towards an interdisciplinary learning science* (pp. 189-211). Oxford, UK: Elsevier. - Dillenbourg, P., & Traum, D. (2006). Sharing solutions: Persistence and grounding in multimodal collaborative problem solving. *Journal of the Learning Sciences*, 15(1), 121-151. - Fuks, H., Pimentel, M., & Lucena, C. J. P. (2006). R-U-Typing-2-Me? Evolving a chat tool to increase understanding in learning activities. *International Journal of Computer-Supported Collaborative Learning (ijCSCL), 1*(1), 117-142. Retrieved from http://ijcscl.org/ preprints/volume1_issue1/fuks_pimentel_lucena.pdf. - Garfinkel, H. (1967). *Studies in ethnomethodology*. Englewood Cliffs, NJ: Prentice-Hall. Hanks, W. (1992). The indexical ground of deictic reference. In C. Goodwin & A. Duranti (Eds.), *Rethinking context: Language as an interactive phenomenon*. Cambridge, UK: Cambridge University Press. - Hutchins, E. (1996). Cognition in the wild. Cambridge, MA: MIT Press. - Kilpatrick, J., Hoyles, C., Sokovsmose, O., & Valero, P. (Eds.). (2005). *Meaning in mathematics education*. New York, NY: Springer. - Koschmann, T. (1999). Meaning making: Special issue. *Discourse Processes*, 27(2). Koschmann, T. (2002). Dewey's contribution to the foundations of CSCL research. In G. Stahl (Ed.), *Computer support for collaborative learning: Foundations for a CSCL community: Proceedings of CSCL 2002* (pp. 17-22). Boulder, CO: Lawrence Erlbaum Associates. - Koschmann, T., & LeBaron, C. (2003). *Reconsidering common ground: Examining clark's contribution theory in the operating room.* Paper presented at the European Computer-Supported Cooperative Work (ECSCW '03), Helsinki, Finland. Proceedings pp. 81-98. - Koschmann, T., & Zemel, A. (2006). *Optical pulsars and black arrows: Discovery's work in 'hot' and 'cold' science*. Paper presented at the International Conference of the Learning Sciences (ICLS 2006), Bloomington, IN. Proceedings pp. 356-362. - Moss, J., & Beatty, R. A. (2006). Knowledge building in mathematics: Supporting collaborative learning in pattern problems. *International Journal of Computer-Supported Collaborative Learning (ijCSCL)*, *I*(4), 441-466. - Roschelle, J., & Teasley, S. (1995). The construction of shared knowledge in collaborative problem solving. In C. O'Malley (Ed.), *Computer-supported collaborative learning* (pp. 69-197). Berlin, Germany: Springer Verlag. - Stahl, G. (2006a). *Group cognition: Computer support for building collaborative knowledge*. Cambridge, MA: MIT Press. Retrieved from http://GerryStahl.net/mit/. - Stahl, G. (2006b). Supporting group cognition in an online math community: A
cognitive tool for small-group referencing in text chat. *Journal of Educational Computing Research* - (*JECR*) special issue on Cognitive tools for collaborative communities, 35(2), 103-122. Retrieved from http://GerryStahl.net/pub/jecr.pdf. - Stahl, G. (2006c). Sustaining group cognition in a math chat environment. *Research and Practice in Technology Enhanced Learning (RPTEL)*, *1*(2), 85-113. Retrieved from http://GerryStahl.net/pub/rptel.pdf. - Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. In R. K. Sawyer (Ed.), *Cambridge handbook of the learning sciences* (pp. 409-426). Cambridge, UK: Cambridge University Press. Retrieved from http://GerryStahl.net/cscl/CSCL_English.pdf in English, - http://GerryStahl.net/cscl/CSCL_Chinese_simplified.pdf in simplified Chinese, - http://GerryStahl.net/cscl/CSCL Chinese traditional.pdf in traditional Chinese, - http://GerryStahl.net/cscl/CSCL Spanish.pdf in Spanish, - http://GerryStahl.net/cscl/CSCL Portuguese.pdf in Portuguese, - http://GerryStahl.net/cscl/CSCL German.pdf in German, - http://GerryStahl.net/cscl/CSCL Romanian.pdf in Romanian. - Suthers, D. D. (2006a). A qualitative analysis of collaborative knowledge construction through shared representations. *Research and Practice in Technology Enhanced Learning (RPTEL)*, *I*(2), 1-28. Retrieved from http://lilt.ics.hawaii.edu/lilt/2006/Suthers-2006-RPTEL.pdf. - Suthers, D. D. (2006b). Technology affordances for intersubjective meaning making: A research agenda for CSCL. *International Journal of Computer-Supported Collaborative Learning (ijCSCL)*, *I*(3), 315-337. - Valsiner, J., & Veer, R. v. d. (2000). *The social mind: Development of the idea*. Cambridge, UK: Cambridge University Press. - Wegerif, R. (2006). A dialogical understanding of the relationship between CSCL and teaching thinking skills. *International Journal of Computer-Supported Collaborative Learning (ijCSCL)*, *I*(1), 143-157. Retrieved from http://ijcscl.org/ preprints/volume1 issue1/wegerif.pdf.